
SMT-based Placement for System-on-Chip Design
Sebastian Pointner∗ Sven Wenzek‡ Robert Wille∗†

∗Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
†Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
‡EPOS GmbH & Co KG - An Infineon Company, Duisburg, Germany

Email: sebastian.pointner@jku.at sven.wenzek@epos-d.com robert.wille@jku.at

Abstract—The utilization of System on Chips (SoCs) for short-
living consumer applications has become very popular over the
last decades. Because of that, more and more effort has been put
into the physical design of SoCs and especially into the so-called
macro placement step in order to keep the final price suitable
for mass production. How to guarantee that the SoC is realized
based on a minimal die area remains a challenging task. Current
state-of-the-art solutions for this macro placement-problem mostly
try to tackle the problem based on meta-heuristic- and genetic
algorithms. However, although such methods are commonly used
for macro placement, they can not guarantee that the macro
placement and, therefore the die size is optimal. In this work,
we are proposing the utilization of modern satisfiability solvers
in order to generate optimized macro placements. To this end,
we symbolically formulate the placement problem and forward
it to a solver which allows us to obtain optimized solutions for
the macro placement problem. In case this is not possible, search
space pruning is employed which does not allow to employ the
full optimization strategy anymore but still determines feasible
results. We demonstrate the approach in experiments and made
the resulting tool available as open-source.

I. INTRODUCTION
The technological progress achieved by academia as well

as industry within the last decades for Integrated Circuits (ICs)
is remarkable. Applications of ICs like smartphones or tablets
have become essential parts of our modern life. To this end,
the design of Application Specific ICs (ASICs) and especially
of so-called Systems on Chips (SoCs) has received lots of
attention. In order to stay compatible with their products,
semiconductor companies have to steadily optimize their time-
to-market duration. One way to do so is to not do a classical
ASIC design from scratch, but to re-use existing components.
This is useful since more and more systems are composed of
recurring components (e.g. a CPU, etc.) which can be pre-
designed, pre-verified, and eventually be used for the design
of different SoCs. These components, which are also called
macros, can be used in a drag and drop fashion which allows
to substantially speed up the entire design process.

Leading to a design flow as sketched in Fig. 1: This
simplified design flow starts with the specification as the input
of the flow and ends with a tested chip that is ready to be
shipped to the customers. Compared to a standard cell-based
ASIC design flow, the design flow for SoCs, which is based on
the usage of pre-designed and verified macros, shifts its major
focus more to the physical design steps. This is because the
macros which are used in the SoC have been already designed
and verified, while their physical design remains to be open.
The main task of physical design is to eventually map the
respective components onto the chip. The result of physical
design is ready to be forwarded for production.

In this work, we particularly consider the step of macro
placement within this process. Macro placement as part of the
physical design phase tries to place the macros on the die
while trying to find a placement which minimizes a certain
cost function (e.g. the needed die area for the SoC). Finding
an optimal or as good as possible placement is essential in
order to promote new SoC success on the market. In order
to determine a good macro placement, multiple approaches
have been published in the last decades. However, most of
these approaches are based on Simulated Annealing (SA) [1]
or Genetic Algorithms (GA) [2] which can not guarantee that
the found placement is an optimal placement.

In the following, we propose the utilization of mod-
ern reasoning engines such as solvers for Satisfiability
Modulo Theories (SMT) for the macro placement within the
physical design for SoCs. To this end, we formulate the macro
placement problem symbolically and forward it to a reasoning

System Design

Verification

Sign-Off State

Test

Fabrication

Physical Design { Routing

Macro Placement

Synthesis

Fig. 1: Abstract System-on-Chip Design Flow.
engine. In order to ensure that certain properties are satisfied,
particular constraints for the placement are added (e.g. no over-
lapping constraints). Based on these constraints, the reasoning
engine can prove whether there is a valid placement possible or
not. Besides that, the consideration of a cost function on top of
these constraints allows to address corresponding optimization
objectives (such as reducing the required die area). By utilizing
optimizing solvers for the SMT problem, we are capable to
obtain optimized placements for all macros or, by additionally
employing search space pruning in case the complexity gets
too large, reasonably sized layouts for larger designs. We
demonstrate the applicability of the proposed method based
on a set of benchmarks for macro placement and made the
corresponding implementation available open-source.

The remainder of this work is structured as follows: The
next section briefly reviews the physical design for SoCs and
the state-of-the-art in terms of macro placement, providing the
motivation for this work. In the same section, also the general
idea of the proposed solution is sketched. Afterwards, the
implementation of the proposed idea is described in Section III.
Finally, Section IV demonstrates some results obtained by the
tool before this work is concluded in Section V.

II. MOTIVATION AND GENERAL IDEA
This section first briefly reviews the phase of physical

design for SoCs – with a particular focus on macro placement.
Afterwards, we discuss the current state-of-the-art in macro
placement including its limitations. Motivated by that, we
introduce the general idea for the macro placement approach
proposed in this work which aims to overcome the discussed
limitations of the state-of-the-art.

A. System-on-Chip Physical Design
Physical design for SoCs can be seen as the design phase

between functional designing/verifying a chip and getting the
final layout data ready for chip fabrication. To this end, the
input data for physical design can e.g. be an HDL-design
based on a certain target technology in combination with
particular design constraints. Therefore, the design is based
on the instatitiation of pre-designed macros (i.e. functional
blocks like an interrupt controller or an SPI interface). In
order to obtain the final layout data, multiple design steps
are conducted. These design steps, seen in the abstract design
flow sketched in Fig. 1, include (1) synthesis, (2) macro
placement, (3) routing, as well as the (4) final sign-off state.
More precisely:

1) Synthesis: The first physical design step in the abstract
design flow as shown in Fig.1 is the synthesis and technology
mapping step [3] for HDL-based macros. The SoC design
based on HDL-code is synthesized and eventually mapped on a
target technology [4]. Therefore, the target technology directly
contains the macro blocks which can be directly utilized for.



Macro 1

Macro 2 

Macro 3

Whitespace Area

h
e
ig

h
t 

=
 3

 m
m

width = 3 mm

(0/0)

(dieux/dieuy)

(xm/ym)

om

Fig. 2: Placement Problem.
2) Macro Placement: After the design has been mapped

to the target technology, the macros have to be placed on the
layout [5], [2], [6]. To this end, the placement underlies cost
functions like minimizing the needed die area.

3) Routing: After the macros have been placed, the con-
nections between them have to be established [7]. To this end,
of course the respective placements have to be considered. At
the same time, further objectives such as minimizing the wire-
length used for routing are considered.

4) Sign-Off State: After placement and routing has been
successfully performed, the defined constraints are finally
checked again before the design can be exported and sent to
the fabrication site [5].

In this work, we are focusing on macro placement. Here,
a given set of macros shall be placed on a die, i.e., on a
2-dimensional area leading to a macro layout. Within the scope
of this work, macros are defined as follows:
Definition 1. Assume that all macros are stored in a set M .
The shape of a rectilinear macro m ∈M which can be placed
on a layout is defined by its width wm ∈ N as well as its height
hm ∈ N. The position of a macro within a layout is defined
by the lower left corner (xm, ym) ∈ N2 in combination of its
orientation om ∈ {N,W,S,E}. That is, the placement of the
macro can be performed by setting proper values for the lower
left corner (xm, ym) as well as the orientation om (c.f. Fig.2).

The task of macro placement is to place all macros m ∈M
on a given 2-dimensional area. This process shall result in a
layout defined as follows:
Definition 2. The layout of an SoC represents a placement
of all macros m ∈ M on a given area of the die. The
available layout-area is a rectangular area spanned between
two points. These points are defined as (dielx, diely) ∈ N2

and (dieux, dieuy) ∈ N2. Macros can be arbitrarily placed
onto this area as long as they satisfy certain constraints such
as that they do not overlap.

As cost objective, several metrics such total area size, Half-
Perimeter Wirelength (HPWL) [8], or others can be used. For
sake of simplicity, we describe the approach proposed in this
work considering area as cost metric (however, the proposed
solution can be adjusted for other costs metrics/cost functions
as well). This is straight-forwardly defined as follows:
Definition 3. The cost of a layout is defined by the area ∈ N
which is needed in order to place all macros. These costs can
be easily determined by area = dieux · dieuy .

Example 1. The layout as shown in Fig. 2 consists of three
macros. However, the placement is not optimal in terms of
area since there is a significant percentage of whitespace (i.e.
unused) die area (c.f. the upper right corner).

B. State of the Art Macro Placement
Macro placement for SoC design has already been stud-

ied widely within the industrial as well as the academic

research communities. These efforts led to multiple approaches
including the application of meta-heuristic algorithms like
Simulated Annealing (SA) [1], approaches based on Machine
Learning (ML) [5], as well as Genetic Algorithms (GA) [2],
or approaches based on reasoning engines [6], [9].

SA is utilized in academic macro placers like Parquet [10].
The underlying approach is inspired by the cooling process
of hot metal. To this end, the mobility of the underlying
atoms depends on the temperature of the metal. Transferring
this approach into the domain of macro placement means,
the flexibility of the macros (i.e., the flexibility to move a
macro on the die) depends on the “temperature”. The hotter
the temperature, the further the distances the macros can be
moved. The movement (e.g., random switching macros within
a certain range) of the macro should only be applied if the
movement shifts the current solution closer to the global
maxima of the cost function. Therefore, the number of moves
in combination with the speed of the cooling process posses a
significant impact on the success of the eventual placement.

Besides that, several approaches based on GAs have been
proposed for the domain of macro placement. To this end,
approaches like [11], [12] utilize randomness and heuristics.
However, heuristic-based approaches are not capable to guar-
antee that the macro placement which is based on an optimal
die area is found. Recently, also approaches based on ML
have been published for macro placement [5]. Compared to
approaches based on SA or GA, ML as applied in [5] is
used in order to support the placement algorithm (e.g. as
cost function). Therefore, neither SA nor GA are capable
to guarantee that an optimal placement for the macros and,
therefore, a solution minimizing a given cost function (e.g.
area) is getting found.

The strategies of GAs as well as SA are based on iden-
tifying a global maxima for their underlying cost function.
However, since both categories of algorithms are heuristic
based it can not be guaranteed that the found maxima is a
global maxima and not one of the local maxima. In order
to overcome the uncertainties of heuristic-based approaches
like GA or SA, we are now introducing our approach for
macro placement based on the utilization of modern reasoning
engines which allows it to generate optimized placement
results for a given placement problem.

C. General Idea
In order to overcome the limitations of existing macro

placement approaches and, in order to determine optimized
solutions, all possibilities of placements have to be considered.
In a naive fashion, this could be conducted by enumeratively
generating and evaluating all possible macro placements. More
precisely, for a given set of macros, all possible placements
are iteratively considered. From all these placements, those
are eventually discarded which do not realize the respectively
given circuit and/or violate any constraints (e.g., macros which
overlap). Afterwards, from the remaining placements, the
placement is picked which comes up with the smallest costs
(e.g. die area). An approach like that would eventually yield
an optimal macro placement. However, a naive approach based
on enumeration would not be capable of determining designs
of appropriate size – the sheer number of possibilities would
be too huge.

Hence, we are proposing to utilize the computational power
of solving engines such as satisfiability solvers (see e.g., [13],
[14], [15]) and optimizers (see e.g, [16], [17]) for the SMT.
They are heavily optimized and additionally employ highly so-
phisticated deduction and learning schemes which allow them
to automatically prune large parts of the search space without
discarding any valid solution. In the past, this already have
been proven to be very effective for many practically relevant
problems such as model checking [18], stimuli generation [19],
test pattern generation [20], and more [21].

The application of optimizing solvers allows to obtain an
optimized macro placement. However, those approaches will
be limited due to the size (i.e., the number of macros) of
modern SoCs, i.e., the search space for the macro placement
of modern SoCs is getting too big and would often not
allow to obtain a result within a reasonable time. In order



to overcome this limitation, we further propose another search
space pruning by partitioning the macro placement problem
into a number of sub-problems which can then be solved by
the solving engine within a reasonable time. Although this will
eventually lead to results for which the optimization strategy
cannot be applied anymore, the respectively obtained results
are expected to be close to the optimum.

III. PROPOSED SMT-BASED MACRO PLACEMENT
The general idea proposed above motivates the utilization

of modern reasoning engines for SoC macro placement. This
section describes the details of the corresponding solution.
We first introduce the symbolic formulation of the problem
which represents all (valid) solutions of the problem and is
to be processed by a solver. Afterwards, we describe how
to formulate the corresponding optimization objective and
the application of optimizing solvers to determine optimized
results for the placement. Since solving the resulting instance
is infeasible for larger instances (as discussed above), finally
our ideas for search space pruning are discussed.

A. Problem Formulation
For the realization of the proposed approach, we first

have to describe the macro placement problem in terms of
a symbolic formulation representing all possible placements.
To this end, we first introduce the symbolical notation of the
grid onto which macros should be placed:
Definition 4. The symbolic grid (i.e. layout) used for the
macro placement is described by two coordinates within a
2-dimensional area (as depicted in Fig. 2). The variables
(dieux, dieuy) ∈ N2 denote the upper right corner of the grid.
Additionally, a lower left corner would be needed to define
a rectangular grid. Without loss of generality, however, we
assume this coordinate to be (0, 0) which does not require
explicit variables for representation.

Next, given a set M of macros, each macro m ∈M should
be placed. To symbolically represent all possible placements
for all macros, the following formulation is used:
Definition 5. The symbolic representation for each macro
m ∈M consists out of five variables. Therefore, the variables
xm, ym ∈ N define the lower left corner of the macro (c.f.
Fig. 2 [22].). Together with the width and height wm, hm,∈ N
and also the macro’s orientation om ∈ {N,W,S,E}, the
shape and location of the macro is defined symbolically. To
this end, the reasoning engine can now assign values to these
free-variables and place them on the layout. However, since the
macro can change its orientation, we are going to abstract the
coordinates (i.e. the shape) of the macro for later constraint
encoding.

In order to abstract the shape of macro from its orienta-
tion, we are introducing the auxiliary variables lmx , lmy ∈ N
to describe the lower left corner of the macro as well as
um
x , um

y ∈ N to describe the upper right corner of the macro.
The values of the four variables are directly depending on the
macro’s orientation and, therefore, we have to define the values
for each particular case. Moreover, we are going to introduce
these auxiliary variables in order to abstract the encoding from
the orientation, which means, that the reasoning engine does
only know the five free-variables as discussed above. To this
end, Fig. 3 shows the four possible macro orientations includ-
ing their corresponding reference point. For the calculation
of these variables, we assume the N -orientation as the base
case and calculate the other orientations back to this case.
The four auxiliary variables which are used for the eventual
constraint can than be directly calculated for each of the four
cases (c.f. [22]).
Example 2. Consider again Fig. 2 which illustrates a possible
solution of the macro placement problem. Here, the reasoning
engine assigned the macro m2 to be orientated N, and set
the values for the lower left corner of the macro to: xm = 0
and ym = 3. Using the formulation introduced above, the
shape of the placed macro can be deduced by calculating the
coordinates: lm2

x = x, lm2
y = y, um2

x = x+w and um2
y = y+h.

N W S E

Fig. 3: Supported Orientation.
From this, it can obviously be seen, that m2 is placed between
the coordinates (0, 3) and (3, 6).

Passing this formulation to an SMT solver would lead to
arbitrary placements of all the macros. To this end, the solving
engine may not only place the macros arbitrarily, but also
would allow for layouts of arbitrary size (while the objective is
to keep the layout size as small as possible). In fact, since none
of the introduced variables are restricted (all can be assigned to
any value of N), macros may overlap or even be placed outside
of the given layout boundaries. To prevent that, constraints are
added which enforce that only assignments representing valid
macro placements are allowed. First, we have to ensure that
all macros are placed within the given layout boundaries. This
is accomplished through:∧

m∈M

∧
lmx ≥dielx
lmy ≥diely

∧
um
x ≤dieux

um
y ≤dieuy

(1)

Next, all macros should be placed so that no macro overlaps
with another. This is accomplished through:∧

m1∈M
m2∈M

∨
lm1
x ≥u

m2
x

um1
x ≤l

m2
x

∨
lm1
y ≥u

m2
y

um1
y ≤u

m2
y

(2)

Passing these formulations over to a solving engine now
either gives an assignment of the variables defining a valid
placement or proves that a valid placement cannot be realized.

B. Cost Optimization
The placement determined by the reasoning engine allows

it so far to place non-overlapping macros on the layout. Rea-
soning engines like Z3 [13] or Boolector [14] can be utilized
for this purpose. However, whether the solution determined
by these SMT engines indeed is minimal with respect to the
costs can not be deduced from the found solution. In order
to overcome this problem, we utilize solving engines for the
Optimization Module Theories (OMT) problem like vZ [17] or
OptiMathSAT [16]. Compared to SMT, OMT commands over
an extended set of instructions and introduces the possibility to
minimize/maximize certain variables of an existing encoding.

In order to invoke an OMT solving engine, we have to
formulate a cost function to be minimized/maximized. Since
we aim for minimize the total area of the layout, a cost function
based on the product of dieux and dieuy would be suitable for
our approach. However, solving engines like vZ do not support
non-linear cost functions for the optimization. Hence, adding
the following optimization target to the proposed problem
formulation ensures that the reasoning engine determines an
optimized macro placement result:
Definition 6. The cost function is based on the minimization
of the two coordinates dieux and dieuy . By utilizing an OMT
solving engine, we can add these two optimization targets to
the encoding in order to obtain an optimized macro placement.

minimize
dieux,dieuy∈N

dieux, dieuy (3)

Modern OMT solvers like vZ [17] support different op-
timization strategies. To this end, a box optimizer could be
utilized for single object optimizations. Therefore, we are go-
ing to invoke vZ’s Pareto optimizer which is capable to handle
multi-object optimization. In case of the Pareto optimization,
the solver generates a number of optimized solutions. In order



TABLE I: Results comparing our approach based on the MCNC benchmark suite [23].
SMT (ISED 2016 [6]) Parquet Placer [10] Proposed

Circuit Size Min. Area Area Whitespace Area Whitespace Area Whitespace Partitioning
apte 9 46.56 48.05 3.10 46.94 0.79 46.92 0.77
hp 11 8.83 9.26 4.64 9.66 8.59 8.94 1.3
xerox 9 19.35 20.01 3.30 19.91 3.21 19.8 2.25
ami33 33 1.16 1.28 9.38 1.23 6.03 1.23 5.69
ami49 49 35.45 40.04 11.46 37.76 3.59 38.76 8.54

Note that the units for area are mm2 and that whitespace is given percentage compared to the minimum area.

to obtain the best possible placement result we search the set
of optimized results for the best solution. Therefore we are
using the product of the generated solution for dieux and dieuy
to classify the best result. The optimized placement result
therefore depends on the underlying reasoning engine.

C. Search Space Pruning: Partitioning
The problem encoding as introduced above is capable to

find optimized macro placements. However, due to the size of
modern SoCs, this approach ends up with scalability issues
due to the exponential growth of the search space. In order to
overcome these scalability issues, we use a further approach
for search space pruning, namely partitioning. Search space
pruning tries to break down the placement problem into smaller
partitions, which contain macros themselves and can be solved
in a reasonable time utilizing the reasoning engine. Eventually,
the partitions are used for final placement instead of the macros
directly. Therefore, a partition is defined as follows.
Definition 7. A partition p ∈ P commands over a subset of
macros Mi ⊂ M . By utilizing partitioning, all macros have
to be part of any partition ∪Mi

= M . In order to apply the
encoding as shown above, every partition has to command
over the same variables as a macro. These variables, namely
xMi , yMi ∈ N which denotes the lower left corner of the
partition, the partition’s width and height wMi , hMi ∈ N and
it’s orientation oMi ∈ {N,W,S,E}.

The approach of partitioning is capable to break down
the macro placement problem into sub-problems. However,
identifying the macros which should be clustered together as
a partition still remains an open issue. The partition should
consist of a significant number of macros in order to break
down the eventual partition placement on the die as much as
possible. At the same time, the partitions, same as the eventual
layout on the die, should be realized with minimal costs (i.e.
the partitions should be as small as possible) while still all
constraints (e.g. non overlapping) are getting fulfilled.

In order to identify the macros to be clustered within a
partition, we are going to utilize the similarity of the macros
shapes (i.e. the width and the height). Moreover, we are going
to utilize K-means clustering for this application [24]. Thereby
the algorithm tries to identify K cluster in an unknown set
of data. The algorithm starts by picking a random start point
and iteratively approximates the optimal clusters for the given
number of clusters (i.e. K cluster).

For the creation of a partition, the partitions size has to be
determined first. For this, the partition is treated like a layout
in order to find the values for its width and height. To this
end, the encoding as introduced for finding the global macro
placement is getting applied for partitioning as well.

IV. EXPERIMENTAL EVALUATION
In order to evaluate the performance of the pro-

posed approach, we implemented the solution as described
in Section III in form of an open source tool called
SMT MacroPlacer 1. In this section, we summarize the ob-
tained results based on benchmarks which are widely used
for macro placement. To this end, we first describe the setup
as well as the considered test cases. Afterwards, results are
provided and discussed.

1The tool is available at http://github.com/gledr/SMT MacroPlacer.

A. Setup and Benchmarks
For our experiments, we considered the MCNC benchmark

suite. We have decided to work based on these benchmarks in
order to allow a comparison of our approach with other exist-
ing approaches, namely [6], [10]. Based on these benchmarks,
we applied our approach as realized by the tool in order to
determine a macro placement. Afterwards, we compared our
results with the results as stated in [6] which is to the best of
our knowledge the only other macro placement approach based
on reasoning engines and the results of the local execution of
the Parquet placer proposed as in [10].

B. Results and Discussion
The results of the conducted experiments are shown in

Table I. The table compares the performance of two exist-
ing approaches for macro placement, namely [6], [10], with
the method proposed in this work. More precisely, the first
columns provide the name of the benchmark circuit, the num-
ber of macros utilized by the circuits, and the minimal possible
area needed for a legal placement (i.e. the sum of the area of all
macros m ∈M ). Afterwards, results of the considered macro
placement methods are reported, including the needed die area
(placement result), the percentage of whitespace (i.e. unused
area) compared to the theoretical minimum. If the problem
size was still feasible without applying search space pruning,
the “pure” SMT-based approach has been applied. To this end,
we applied a timeout of 3000 CPU seconds. If it was possible
to determine a solution within that time, no partitioning had
been utilized. Otherwise, search space pruning as described in
Section III-C was additionally invoked.

Table I shows that the results obtained by the proposed ap-
proach for small circuits (c.f. apte, hp and xerox) outperforms
the results shown by both other approaches. Moreover, for the
first three benchmarks, no partitioning had been utilized and
the reasoning engine could command over the entire search
space which ended up in an optimized macro placement. For
the other two benchmarks (ami33, ami49), the obtained results
are non optimal since partitioning had to be utilized. Even
though the obtained results could not approximate an optimal
placement, we could still outperform the results generated
by [6]. Overall, this demonstrates the applicability of modern
reasoning engines for the application of macro placement.

V. CONCLUSION
This paper demonstrated the application of satisfiability

solving engines for the macro placement step during the
physical design of modern SoCs. While other approaches for
macro placement are e.g. based on meta-heuristic algorithms
which are not capable to guarantee an optimal solution, our
approach utilizes the power of modern optimization engines to
overcome this existing limitation. To this end, we proposed a
symbolic formulation of the constraints as well as the symbolic
formulation of the optimization target in order to approximate
an optimal placement for given benchmark circuits. In case the
complexity of an instance can still not been tackled by this,
also proposed a method for state space pruning which does not
guarantee optimal results anymore, but still allows to determine
reasonable layouts. To this end, a partitioning strategy is
employed. We demonstrate the applicability of the proposed
method based on a set of benchmarks for macro placement
and made the corresponding implementation available online
in terms of an open-source tool.



ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure

and Correct Systems Lab funded by the State of Upper
Austria, the “University SAL Labs” initiative of Silicon Austria
Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems, as well as
the BMK, BMDW, and the State of Upper Austria in the frame
of the COMET program (managed by the FFG).

REFERENCES
[1] S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing

on a multiprocessor,” IEEE Trans. on CAD of ICs and Systems, 1987.
[2] A. Kaur and S. S. Gill, “Hybrid swarm intelligence for vlsi floorplan,”

in Int’l Conf. on Computing, Communication and Automation, Noida,
India, 2016.

[3] W. Clifford and J. Glaser, “Yosys - a free verilog synthesis suite,”
in 2018 Austrochip Workshop on Microelectronics (Austrochip), Linz,
Austria, 2013.

[4] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard
cell library design and optimization methodology for asap7 pdk: (invited
paper),” in Int’l Conf. on CAD, Irvine, USA, 2017.

[5] Y. Huang, Z. Xie, G. Fang, T. Yu, H. Ren, S. Fang, Y. Chen, and
J. Hu, “Routability-driven macro placement with embedded cnn-based
prediction model,” in Design, Automation and Test in Europe, Florence,
Italy, 2019.

[6] S. Banerjee, A. Ratna, and S. Roy, “Satisfiability modulo theory based
methodology for Floorplanning in VLSI circuits,” in International
Symposium on Embedded Computing and System Design, Patna, India,
2016.

[7] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: An initial detailed
router for advanced vlsi technologies,” in Int’l Conf. on CAD, San
Diego, USA, 2018.

[8] C. Chu, “Flute: fast lookup table based wirelength estimation tech-
nique,” in Int’l Conf. on CAD, San Jose, USA, 2004.

[9] A. Grimmer, Q. Wang, H. Yao, T. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in
ASP Design Automation Conf., Chiba, Japan, 2017.

[10] S. N. Adya and I. L. Markov, “Fixed-outline Floorplanning : Enabling
Hierarchical Design,” IEEE Trans. on VLSI Systems, 2003.

[11] M. Tang and X. Yao, “A memetic algorithm for vlsi floorplanning,”
IEEE Trans. on Systems, Man, and Cybernetics, 2007.

[12] P. Fernando and S. Katkoori, “An elitist non-dominated sorting based
genetic algorithm for simultaneous area and wirelength minimization
in vlsi floorplanning,” in VLSI Design, Hyderabad, India, 2008.

[13] L. De Moura and N. Bjørner, “Z3: An efficient SMT Solver,” Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[14] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system descrip-
tion,” Journal on Satisfiability, Boolean Modeling and Computation,
2014.

[15] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD:
A SAT like prover using word level information,” in VLSI-SoC: Ad-
vanced Topics on Systems on a Chip: A Selection of Extended Versions
of the Best Papers of the Fourteenth International Conference on Very
Large Scale Integration of System on Chip, 2009.

[16] R. Sebastiani and P. Trentin, “OptiMathSAT: A Tool for Optimization
Modulo Theories,” Journal of Automated Reasoning, 2018.

[17] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz - an optimizing smt
solver,” in Tools and Algorithms for the Construction and Analysis of
Systems, Heidelberg, Germany, 2015.

[18] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp. 193–207.

[19] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based
stimuli generation in the SystemC verification library,” in Forum on
Specification and Design Languages, 2009, pp. 1–6.

[20] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved sat-based ATPG:
more constraints, better compaction,” in Int’l Conf. on CAD, 2013.

[21] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. IOS Press, 2009.

[22] “LEF/DEF Language Reference,” Cadence Design Systems, Inc., Tech.
Rep. Version 5.7, 2009.

[23] C. J. Alpert, “The ISPD98 Circuit Benchmark Suite,” in Int’l Symp. on
Physical Design, New York, USA, 1998.

[24] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society., 1979.


