
Lessons Learnt in the Implementation of Quantum
Circuit Simulation Using Decision Diagrams

Thomas Grurl∗† Jürgen Fuß∗ Robert Wille†‡
∗Secure Information Systems, University of Applied Sciences Upper Austria, Austria

†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
‡Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
{thomas.grurl, juergen.fuss}@fh-hagenberg.at robert.wille@jku.at

http://iic.jku.at/eda/research/quantum/

Abstract—Decision diagrams have shown to be a suitable
data-structure for tackling the complexity of the quantum world.
Accordingly, there has been a lot of research on how to im-
prove their efficiency for quantum circuit simulation as well
as broadening their scope. However, there are several smaller
yet still interesting aspects that emerge when (re-)implementing
corresponding approaches. In this work, we cover these aspects,
illustrate them with examples, back them by further experiments,
and derive corresponding learnt lessons from these considerations.
This eventually gives more detailed insights into the implemen-
tation of quantum circuit simulation based on decision diagrams
and eventually offers some interesting lessons learnt that may help
to use those implementations in a more effective fashion and/or
to develop further improvements upon them.

I. INTRODUCTION
Quantum computers promise to solve specific problems

significantly faster than classical computers. Early examples
thereof are Shor’s algorithm for factoring integers [1] and
Grover’s database search algorithm [2]. More recently, quantum
algorithms have also been found for problems in the area of
chemistry, finance, machine learning, and mathematics [3]–[6].
In addition to the research on new applications for quantum
computers, there have also been tremendous accomplishments
towards the physical realization of quantum hardware, which
are driven by big players like Google, IBM, Intel, Rigetti,
Microsoft, and Alibaba.

Nevertheless, quantum computers are still an emerging tech-
nology and current quantum processors are limited in availabil-
ity and fidelity. Therefore, a considerable amount of research
on quantum algorithms still relies on so-called quantum circuit
simulators running on classical hardware. From a mathematical
point of view, the problem of simulating quantum circuits is
simple and boils down to matrix-vector multiplications, with
vectors describing quantum states and matrices representing
quantum operations. Many state-of-the-art quantum circuit sim-
ulators use this concept, representing vectors and matrices as
arrays and conduct simulation by matrix-vector multiplication
(e.g. [7]–[11]). While conceptually simple, the complexity of
this simulation style grows exponentially with the number of
simulated qubits—severely limiting those approaches. In order
to address this problem of exponentially growing complexity,
new approaches for quantum circuit simulation have been
developed. A promising approach is based on the use of
decision diagrams (as introduced in, e.g., [12]–[16]). Decision
diagrams offer a compact data-structure for representing and
manipulating quantum states, making the approach faster for
simulating many types of circuits and/or quantum applications
compared to other solutions [17].

Accordingly, several approaches based on decision dia-
grams have been introduced in the recent past. Besides focus-

ing on an efficient implementation of corresponding simula-
tors [18]–[20], it has also been investigated how to broaden
the scope of these approaches. In this context, work has been
conducted in the area of equivalence checking of quantum
circuits [21], as well as the simulation of quantum circuits with
consideration of error effects [22], [23]. While related work
as cited above provides detailed descriptions of the respective
approaches, there are also several smaller yet still interesting
aspects that emerge when (re-)implementing corresponding
realizations. These include, e.g., insights into multiplication and
addition of decision diagrams, as well as challenges occurring
when errors are considered during the simulation that occur in
real quantum computers.

In this work, we offer a more detailed coverage of these
aspects, that goes beyond what has been discussed in the related
work. We distinguish between approaches implementing the
“standard” quantum circuit simulation (i.e., assuming error-free
quantum systems and basically realizing “pure” matrix-vector
multiplication) and approaches additionally considering errors
and, hence, realizing a more realistic yet also more complex
simulation.

For each aspect, we discuss its potential, illustrate it with
examples, back it with further experiments, and derive cor-
responding learnt lessons from it. By this, we give more
detailed insights into the implementation of quantum circuit
simulation based on decision diagrams and eventually offer
some interesting lessons learnt that may help to use those
implementations in a more effective fashion and/or to develop
further improvements upon them.

The remainder of this paper is structured as follows: Sec-
tion II reviews quantum computing and quantum circuit simu-
lation and introduces how decision diagrams can be used for
this problem. Section III discusses aspects of multiplying and
adding decision diagrams—essential for matrix-vector multi-
plication, while Section IV addresses challenges specifically
arising from simulation of real quantum computers. Finally,
Section V concludes the paper.

II. BACKGROUND

In order to keep this work self-contained, this section briefly
introduces quantum computing. We refer the interested reader
to [24] for an in-depth introduction.

A. Quantum computing
In the quantum world the basic unit of information is a

quantum bit or qubit. Like a classical bit, qubits can assume
the states 0 or 1, which are called basis states and—using Dirac
notation are written as |0〉 and |1〉. In addition to those basis

states, however, qubits can assume a linear combination of those
basis states. More precisely, the state of a qubit |ψ〉 is described
by α0 · |0〉+α1 · |1〉, with α0, α1 ∈ C. The amplitudes α0 and
α1 describe how much the qubit is related to each of the basis
states. If both amplitudes are non-zero, the qubit is in a so-
called superposition of both states. Measuring a qubit collapses
it to one of the basis states, i.e., the probability of measuring
|0〉 (|1〉) is given by |α0|2 (|α1|2), which can then be observed.
The amplitudes themselves are fundamentally unobservable.
Naturally, the summed-up probabilities over all basis states
must be 1, therefore a valid quantum state of a single qubit
must satisfy the normalization constraint |α0|2 + |α1|2 = 1.

These concepts can be extended to describe multi-qubit
systems as well. Since each qubit can assume two possi-
ble basis states, an n-qubit system can assume 2n possible
basis states and the probability for measuring |i〉 is given
by |αi|2. Accordingly, the normalization constraint becomes∑
i∈{0,1}n |αi|2 = 1. Often the state of a qubit is written in the

form of a vector of size 2n containing only the amplitudes. So,
e.g., a 2-qubit state would be written like [α00 α01 α10 α11]

>.
Quantum states can be manipulated using quantum oper-

ations, which are represented by matrices. With exception
of the measurement operation—all quantum operations are
inherently reversible. They are applied to the state vector using
matrix-vector multiplication. Important single-qubit quantum
operations are the Hadamard (H) operation, which transforms a
basis state into a superposition, the X operation, which negates
the state of a qubit, Z operation, which flips the phase of
a qubit and the Y, which is a combination of the X and Z
operation. These operation are characterized by the matrices
H = 1/

√
2
[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, and Y =

[
0 −i
i 0

]
. In

addition to single-qubit gates, there are also two-qubit gates as
well. An important example is the CNOT gate, which flips the
state of the target qubit if the first qubit’s state is |1〉.
Example 1. Consider the two-qubit state |ψ〉, with both qubits
initialized to zero,

1 · |00〉+ 0 · |01〉+ 0 · |10〉+ 0 · |11〉 ,

which is represented by the vector [1 0 0 0]
>.

Applying an H operation, which transforms the first qubit
from |0〉 to a superposition and then applying a CNOT to it,
which transforms the second qubit of the quantum state if the
first qubit is set to |1〉, is given by

1
√
2

100
1

︸ ︷︷ ︸
|ψ′〉

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

︸ ︷︷ ︸

CNOT

· 1
√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

︸ ︷︷ ︸

H on the first qubit

·

100
0

︸︷︷︸
|ψ〉

.

The state |ψ′〉 is valid, since |1/√2|2 + 02 + 02 + |1/√2|2 = 1.
Measuring the state yields either |00〉 or |11〉, both with
probability |1/√2|2 = 1/2.

B. Quantum Circuit Simulation Using Decision Diagrams
The general idea of decision diagram-based quantum circuit

simulation is to exploit structural redundancies within the state
vectors representing the quantum state. While in the worst case
the size of the decision diagram is still exponential, in many
cases they allow to represent states and operations in a very
compact form. This in turns allows simulating quantum circuits
which cannot be tackled with other simulation approaches.

|00〉

|01〉
|10〉

|11〉

q1

q0

q0

1√
2

0

0

1√
2

(a) Vector representation

q1

q0 q0

1

1/
√
2

0 0

(b) Decision diagram representation
Fig. 1: State vector representation

Decomposing a state vector into a decision diagram re-
volves around recursively splitting the vector into equally
sized sub-vectors, until sub-vectors of size 1, i.e., complex
numbers, remain. More precisely, consider a quantum register
q0, q1, . . . , qn−1 composed of n qubits, where qn−1 represents
the most significant qubit. The first 2n−1 entries of the cor-
responding state vector represent amplitudes for basis states
where qn−1 is |0〉 and the other entries represent amplitudes
where qn−1 is |1〉. This is represented in a decision diagram
by a node labeled qn−1 with two successors labeled qn−2,
with the left (right) successor node representing the sub-vector
with amplitudes for basis states with qn−2 assigned |0〉 (|1〉).
This process is repeated recursively until complex numbers
remain. During the decomposition process identical sub-vectors
are represented by the same node and common factors of the
amplitudes are stored into the edge weights. Amplitudes can
be reconstructed from the decision diagram by multiplying the
edge weights along the corresponding path.

Example 2. Fig. 1 contains the quantum state of |ψ′〉 in both
the vector and decision diagram representation. The annota-
tions in Fig. 1a indicate how the state vector is decomposed into
the corresponding decision diagram in Fig. 1b1. To reconstruct
the amplitude of the state |00〉 the edge weights along the
bolded path have to be multiplied, i.e., 1/

√
2 · 1 · 1 = 1/

√
2.

Matrices—representing quantum operations—are decom-
posed analogously to vectors. However, due to their square
nature, they are split into four equally sized parts, which is
represented by a node with four successor nodes.

III. LESSONS LEARNT FOR
QUANTUM CIRCUIT SIMULATION

In a first series of considerations, we cover the “standard”
quantum circuit simulation using decision diagrams (based
on [14]). Recalling the concepts reviewed in Section II,
the efficiency of this approach mainly relies on the com-
pact representation of quantum states and operations pro-
vided by decision diagrams, as well as a fast realization of
matrix-vector multiplications. The underlying basis for the lat-
ter is an efficient implementation of multiplication and addition
in decision diagrams. Accordingly, we present corresponding
lessons learnt on an improved employment of these two oper-
ations during quantum circuit simulation.

A. Multiplication on Decision Diagrams
Multiplication is arguably the most important operation for

quantum circuit simulation. Hence, it has already been dis-
cussed in detail in related work. However, two aspects have
not been considered so far: (1) the position of the modified

1In order to aid the readability of the decision diagram, edge weights of
1 are omitted. Additionally, nodes with an incoming edge weight of 0 are
represented as 0-stubs.

q2

q1 q1

q0 q0

1

1/
√

2

0 0

0 0

(a) Rep. of |φ〉

q2

q1 q1

q0 q0

1

1/
√
2

00

00

(b) |φ〉 after X to q2

q2

q1 q1

q0 q0

1

1/
√
2

0 0

0 0

(c) |φ〉 after X to q0
Fig. 2: Modifications of state |φ〉, when applying an X operation

qubit within the decision diagram representation and (2) the
type of the applied quantum operation. Both aspects can have
significant impact on the cost of applying operations and thus
conducting quantum circuit simulation.

To illustrate how the position of the modified qubit affects the
cost of applying operations, consider the following example:

Example 3. Consider the 3-qubit state φ = 1√
2
[1 0 0 0 0 0 0 1]

>

whose decision diagram representation is in Fig. 2a. An
X operation is applied to the qubit represented by the root
node (q2) and the qubit farthest away from it (q0):
• Applying an X operation to q2 results in swapping the two

outgoing edges of the node q2, as shown in Fig. 2b. Since
q2 is right at the root of the decision diagram, only one
node has to be visited in order to apply the operation.

• Analogously, applying the X operation to q0, requires
swapping the outgoing edges of all nodes labeled q0,
resulting in the decision diagram shown in Fig. 2c.
However, due to the tree-like structure, accessing the
nodes q0 requires to fully traverse the decision diagram.
Moreover, q0 is represented by two nodes. Thus, applying
the operations requires visiting five nodes.

So, although in both cases the same operation is applied,
the cost of doing so is very different depending on the target
qubit. While only one node has to be visited in order to apply
the operation to q2, modifying q0 requires to traverse the entire
decision diagram.

In addition to the position of the modified qubit, the type of
operation also affects the cost of applying it. This stems from
the fact that many quantum operations, such as X =

[
0 1
1 0

]
,

Z =
[
1 0
0 −1

]
, or Y =

[
0 −i
i 0

]
, T =

[
1 0
0 eiπ/4

]
, only modify

the target qubit by some factor and/or by swapping of sub-
trees. In these cases, the compressed data structure of decision
diagrams can be explicitly exploited. More precisely, recall
that the amplitudes of the quantum state are encoded within
the decision diagram using multiplication (see Section II-B).
Thus, modifying a qubit by some factor does not require
decompressing any amplitudes, but can instead be done by
directly modifying the nodes representing the specific qubit.
The cost of applying such operations therefore becomes the
cost of accessing all nodes representing the qubit the operation
is applied to. Since decision diagrams encode the quantum
state in a tree-like structure, qubits closer to the root can be
easily accessed—making applying such operations potentially
extremely fast.

Unfortunately, this effect cannot be exploited for all quantum
operations. Examples of operations where this effect cannot
be exploited are H = 1√

2

[
1 1
1 −1

]
, Rx(π2) = 1√

2

[
1 −i
−i 1

]
or

Ry(π2) = 1√
2

[
1 −1
1 1

]
. Applying those operations not only re-

0246810121416
0

1

2

Target Qubit

R
un

tim
e

in
se

co
nd

s X Y Z T
H RX(π

2
) RY(π

2
)

Fig. 3: Average executing time for applying operation depend-
ing on the target qubit

quires accessing the nodes representing the target qubit, but
also access to all sub-nodes. Thus, it is not relevant how deep
the target qubit is within the decision diagram, since it has to
be traversed anyway.

Example 4. To illustrate this effect, we tracked the average
time it took to apply specific quantum operations to an 18-qubit
quantum system, depending on the target qubit. We applied
the operation always to the same quantum state, which we
prepared in a way to contain little redundancies, using Google’s
supremacy circuit [25]. The results are shown in Fig. 3. The
Y-axis show the average execution time of the operation, while
the X-axis indicates how deep the target qubit is within the
decision diagram, with 17 denoting that the target qubit is
directly represented by the root node and 0 denoting that the
target qubit is at the bottom. The figure clearly shows that,
when applying an H, Rx(π2), or Ry(π2) operation, the cost is
unaffected by position of the target qubit. In contrast, when an
X, Z, Y, or T operation is applied, the cost depends on how
deep the target qubit is within the decision diagram.

Lessons Learnt:
• The position of the target qubit within the decision dia-

gram is important. If the target qubit is represented by the
root node, potentially only this node has to be accessed.
The farther away the representation of the target qubit is
from the root, the more nodes need to be considered.

• The type of operation has an impact on whether the
position of the target qubit matters. If, e.g., an H, Rx(π2),
or Ry(π2) operation is applied, the position of the target
qubit does not matter at all. For other operations (such as
X, Z, Y and T), it has an impact.

B. Addition on Decision Diagrams
Multiplication is indisputably the most important opera-

tion during quantum circuit simulation. Addition, however,
is also important, due to it being a necessary subroutine
of matrix-vector multiplication. This makes adding decision
diagrams an operation worth considering. In fact, adding deci-
sion diagrams is not straightforward as the following example
shows:

Example 5. Adding two decision diagrams is similar to adding
vectors (or matrices), i.e., all values sharing the same index
have to be accessed and summed up. This is problematic for
decision diagrams since the values are encoded within the tree
structure. Fig. 4 illustrates how a generic 2-qubit state vector
is decomposed into a decision diagram (see Fig. 4a) and how
the individual edge weights relate to the amplitudes of the

q1

q0 q0

1

a

b c

d e f
g

(a) Generic 2-qubit DD

a · b · d
a · b · e
a · c · f
a · c · g

(b) Generic 2-qubit state vector

Fig. 4: Decomposition of amplitudes within a decision diagram (DD)

corresponding state vector (see Fig. 4b). Adding two decision
diagrams therefore becomes a full recursive traversal of them
both, so that all amplitudes can be restored and summed up.
Additionally, after adding the amplitudes, they have to be again
decomposed into the decision diagram representation.

Naturally, restoring all amplitudes of the decision diagram
is slow. Other decision diagram decomposition schemes are
possible, which allow adding decision diagrams without having
to decompress the stored values. However, doing so with-
out making the multiplication slower is problematic. The
decision diagram decomposition presented in Section II-B is
optimized for the more important multiplication operation.
Thus, operations—which only require multiplying decision
diagrams—can be potentially applied extremely fast (as illus-
trated in Section III-A).

Nevertheless, two shortcuts are possible compared to the
naive approach described in Example 5: Firstly, when a zero
edge is encountered during the recursive traversal in one of
the decision diagrams, all amplitudes along this path are zero.
Therefore, the new amplitudes are simply the ones stored in
the remaining decision diagram. Secondly, when two identical
(sub-)edges are added, one edge can instead be multiplied by a
factor of two. Due to the compressed data structure, identical
values are represented by the same node within decision
diagrams, which makes finding duplicate paths straightforward.

Lessons Learnt:

• Adding decision diagrams cannot be conducted directly on
the data structure but instead requires restoring the decom-
posed elements. Making the operation rather inefficient
and slow in general.

• Improving the performance of the addition without making
the multiplication less efficient is difficult. Nevertheless,
improvements are possible by exploiting zero amplitudes
as well as duplicate entries.

IV. LESSONS LEARNT FOR QUANTUM CIRCUIT
SIMULATION WITH CONSIDERATION OF ERRORS

Due to the fragile nature of quantum systems, today’s
quantum architectures are plagued by frequent unavoidable
errors [26]. Considering those errors during quantum circuit
simulation makes a hard problem even harder and requires
a dedicated approach. Nevertheless, decision diagrams have
proven to be a promising tool to handle this additional com-
plexity [22], [23]. But also here, aspects exist from which
further lessons learnt can be retrieved. Those are covered in this
section. To this end, we consider two types of corresponding
simulation approaches: deterministic and stochastic. In the
following, both types are first reviewed before the aspects
leading to the corresponding lessons learnt are discussed.

A. Deterministic Consideration of Errors
Errors in quantum computing are understood and quantum

mechanics is capable of describing them. However, considering
them during quantum circuit simulation in a deterministic
fashion requires extending the models described in Section II.
First of all, in order to describe a quantum state effected by
errors, the state description must be extended from vectors of
size 2n to density matrices (also known as density operators)
of size 2n× 2n. This new density matrix ρ is derived from the
state vector |ψ〉 description by

ρ = |ψ〉 〈ψ| with 〈ψ| := |ψ〉† . (1)

Applying an operation U to such a quantum representation ρ
now consist of two matrix-matrix multiplications in the form
of UρU†. Despite the additional complexity, the concepts for
efficient multiplications and addition of decision diagrams can
be reused for matrix-matrix multiplications. Unfortunately, this
does not fully extend to applying error effects.

Since errors are probabilistic, i.e., they occur by chance, their
representation and application differs compared to ”intentional“
operations. More precisely, using the operator-sum representa-
tion, an error is described by a tuple (E0, E1, . . . , Em) of Kraus
matrices that satisfy the condition

m∑
i=0

E†iEi = I (2)

and are applied to a quantum state (represented by a density
matrix ρ) by

ρ′ =

m∑
i=0

EiρE
†
i . (3)

Example 6. Suppose that an error could occur to |ψ′〉 from
Example 2 that dampens a qubit from a high energy state |1〉
to |0〉 (in the literature, this is usually called a T1 error) [24].
To capture this, the density matrix ρ is generated from the
vector description using Eq. (1)2,

1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

︸ ︷︷ ︸

ρ

=

1√
2
0
0
1√
2

︸ ︷︷ ︸
|ψ′〉

·
[

1√
2

0 0 1√
2

]
︸ ︷︷ ︸

〈ψ′|

.

The T1 error can be described by the Kraus matrices
E0 =

[
1 0
0
√
1−p

]
and E1 =

[
0
√
p

0 0

]
. Assume that the error affects

the second qubit with a probability of 2 % (p = 0.02). Applying
both Kraus matrices to the state ρ (as defined in Eq. (3)) leads
to 0.5 0 0 0.494

0 0 0 0
0 0 0.01 0

0.494 0 0 0.49

︸ ︷︷ ︸

ρ′

=

 0.5 0 0 0.494
0 0 0 0
0 0 0 0

0.494 0 0 0.49

︸ ︷︷ ︸

(I⊗E0)ρ(I⊗E0)†

+

0 0 0 0
0 0 0 0
0 0 0.01 0
0 0 0 0

︸ ︷︷ ︸
(I⊗E1)ρ(I⊗E1)†

.

The resulting density matrix ρ′ accordingly describes the effect
of the error: While the probability for measuring |00〉 remains
the same, the probability of measuring |11〉 has dropped to
49 % and, additionally, there is now a probability of 1 % of
measuring |10〉.

2The probabilities for measuring specific basis states are reflected within the
diagonal of ρ.

q0

q1 q1 q1 q1

1

1/2

0 0 0 0 0 0 0 0 0 0 0 0

(a) DD rep. of ρ′

q0

q1 q1 q1 q1

1

1/2

0 0 0 0
0.989

0 0 0 0
0.989

0
0.02

0 0

0.98

(b) ρ′ after T1 error with p = 0.02
Fig. 5: Effects of applying an error to a decision diagram (DD)

Thus, applying errors effects comes down to realizing
Eq. (3). However, naively implementing this scheme reduces
the performance considerably, because (1) each Kraus matrix
is individually applied to the quantum state, (2) adding fully
sized decision diagrams is slow (see Section III-B), and (3)
often more than one error effect is being considered, so that
this slow procedure has to be repeated for each considered error.

By exploiting the decision diagram structure, this can be
done in a more efficient way. To illustrate this consider the
following example:

Example 7. Consider again Example 6, where a T1 error
affects qubit q1 of the state ρ with 2 % probability. However,
now we exploit the fact that every qubit is represented in a
decision diagram by one or more nodes. Modifying each node
representing a specific qubit corresponds to modifying the qubit
itself. Therefore, we first calculate how the T1 error affects a
single qubit,[

a b
c d

]
7−→

[
a + dp

√
1− p · b√

1− p · c (1− p) · d

]
. (4)

Next, we modify all nodes labeled q1 according to the error
effect (the color illustrates how each matrix value corresponds
to the edges in the decision diagram), leading to Fig. 5b. This
new decision diagram represents ρ after the T1 decoherence
error has been applied and is equal to ρ′ from Example 6.

Applying errors in such a fashion can considerably reduce
the execution time. To illustrate this, we conducted runs where
we considered decoherence errors for simulating the quantum
Fourier transform with increasing number of qubits. In Fig. 6
the results are plotted. The Y-axis gives the runtime, while in
the X-axis the number of simulated qubits is given. The plot
clearly shows the performance improvements compared to the
basic approach.

Lessons Learnt:
• Complex operations consisting of several steps (e.g.,

Eq. (3)) can often be merged and, by this the number
of times individual elements have to be accessed, can
be considerably reduced—improving the performance for
decision diagram-based quantum circuit simulation.

B. Stochastic Simulation of Errors
Stochastic quantum circuit simulation allows consideration

of errors without the exponential overhead that comes with de-
terministic simulation. This comes with the drawback however,
that the deterministic description is lost. When using this ap-
proach, simulation is conducted as presented in Section II, i.e.,
states are represented by 1-dimensional vectors and operations
are applied by matrix-vector multiplications. Error effects are

10 15 20 25 30 35 40

0

1,000

2,000

3,000

simulated qubits

ru
nt

im
e

in
se

co
nd

s Basic
Proposed

Fig. 6: Runtime for simulating the quantum Fourier transform
with consideration of decoherence errors

viewed as unwanted operations that randomly affect the state.
Therefore, whenever an error might affect the quantum state it
is randomly chosen if the effect is applied or not based on its
probability of occurrence.

Example 8. Consider again the 2-qubit state
|ψ′〉 = 1√

2
(|00〉+ |11〉) from Example 1. Suppose that

the first qubit of this state might be affected by an error
which depolarizes it (i.e., setting it into a completely random
state) with 1 % probability. We can capture the effect of
depolarization by either applying I3, X, Y, or Z—each with
probability p

4 , where p is the probability that the error is
applied [24]. Therefore, after the error might have occurred,
with 99.25 % the state remains unchanged and it becomes
either 1√

2
(|01〉+ |10〉, i√

2
(− |01〉+ |10〉, 1√

2
(|00〉− |11〉) each

with 0.25 % probability.

After simulating in such a fashion, one possible final state is
generated. This opens the door to Monte Carlo sampling. By
repeating this process, a sufficient number of times and averag-
ing the probabilities, the actual final state can be approximated.

Therefore, the stochastic quantum circuit simulation ap-
proach can be directly implemented on top of the concepts
from Section II. However, by exploiting the compressed data
structure of decision diagrams, this process can be optimized by
exploiting an idea first suggested in [27]. To illustrate this idea,
consider again that quantum circuit simulation comes down
to matrix-vector multiplications. More precisely, m quantum
operations O0, O1, . . . , Om−1 are applied to an initial state |ψ〉,
resulting in the final state |ψ〉m, i.e.,

|ψ〉m = Om−1 ·Om−2 . . . O0 · |ψ〉 (5)

Since matrix-vector multiplications are generally cheaper than
matrix-matrix multiplications, Eq. (5) is usually solved from
right to left. When using decision diagrams, however, this
does not necessarily hold true. Since decision diagrams exploit
redundancies in the data structure, the decision diagram rep-
resentation of quantum operations can be considerably more
compact than decision diagrams representing complex states.
Thus, stacking (i.e. multiplying) quantum operations with each
other before they are applied to the quantum state can be
potentially faster.

The viability of this approach depends on finding a good
heuristic of how many operations are stacked before they are
applied to the quantum state. Additionally, it also depends on

3The Identity (I) operation leaves a state unchanged and is an important
concept when simulating with errors.

TABLE I: Experimental results
Benchmark #Qubits Basic [s] Proposed [s] Improv.

basis trotter 4 62.40 47.75 23.48 %
error cor. 5 8.02 5.99 25.31 %

vqe uccsd 6 142.33 87.65 38.42 %
qaoa 6 11.29 8.95 20.73 %
ising 10 377.78 279.30 26.07 %

cc 12 24.01 21.94 8.62 %
qf21 15 7.60 5.57 26.71 %

bv 19 215.92 169.96 21.29 %

the size of the quantum state, since when the decision diagram
representation of the quantum state is compact, stacking oper-
ations is not efficient.

Both aspects are addressed, when this approach is used
for stochastic error simulation, i.e., whenever an ”intentional“
quantum operation is applied, the error affects are stacked onto
it. Firstly, this is a good heuristic for stacking the operations,
because all operations target the same qubit, keeping the re-
sulting stacked operation, compact. Secondly, considering error
effects during the simulation of quantum circuits automatically
destroys redundancies in the state, resulting in a more complex
state description and increasing the size of the decision diagram
representing it.

To evaluate the potential of this strategy we took the circuits
from the benchmark suite QASMBench (taken from [28]) and
simulated them with consideration of errors. We simulated
the circuits with a ”basic“ implementation, where operations
are only applied sequentially, as well as with the proposed
solution. In Table I, the results are summarized. Note that, due
to space limitations, experiments whose runtimes do not differ
significantly are omitted. The results clearly demonstrate the
potential of this strategy.

Lessons Learnt:
• When working with decision diagrams operations on el-

ements with higher dimensions (e.g., matrices) can be
actually cheaper than on more complex elements of lower
dimensions (e.g., vectors).

V. CONCLUSION

Decision diagrams are a promising tool for tackling the com-
plexity of the quantum world. Several decision diagram-based
approaches have already been introduced, addressing more
efficient implementations as well as investigating new appli-
cations. However, there are several smaller yet still interesting
aspects that emerge when (re-)implementing corresponding
approaches. This work sheds light on those aspects and derives
corresponding lessons learnt. By this a better understanding
of decision diagrams for quantum computing is reached and
potential for future work has been unveiled.

ACKNOWLEDGMENTS

This work has partially been supported by the University of
Applied Sciences PhD program of the State of Upper Austria
(managed by the FFG), by the LIT Secure and Correct Systems
Lab funded by the State of Upper Austria, as well as by the
BMK, BMDW, and the State of Upper Austria in the frame of
the COMET program (managed by the FFG). Furthermore, this
project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 101001318).

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Jour. of Comp.,
vol. 26, no. 5, pp. 1484–1509, 1997.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Symp. on Theory of Computing, 1996, pp. 212–219.

[3] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová,
I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya et al., “Quantum
chemistry in the age of quantum computing,” Chemical reviews, vol. 119,
no. 19, pp. 10 856–10 915, 2019.

[4] P. Rebentrost, B. Gupt, and T. R. Bromley, “Quantum computational
finance: Monte Carlo pricing of financial derivatives,” Phys. Rev. A,
vol. 98, 2018.

[5] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means: A
quantum algorithm for unsupervised machine learning,” Proc. of the
Neural Information Processing Systems, 2019.

[6] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv:1411.4028, 2014.

[7] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qHiPSTER:
The quantum high performance software testing environment,” Comput-
ing Research Repository, vol. abs/1601.07195, 2016.

[8] G. Aleksandrowicz et al., “Qiskit: An Open-source Framework for
Quantum Computing,” Zenodo, 2019.

[9] D. Steiger, T. Häner, and M. Troyer, “ProjectQ: An open source software
framework for quantum computing,” Quantum, vol. 2, 2018.

[10] “Cirq: A python framework for creating, editing, and invoking
Noisy Intermediate Scale Quantum (NISQ) circuits.” https://github.com/
quantumlib/Cirqgithub.com/quantumlib/Cirq, 2019, accessed: 2020-01-
22.

[11] Atos SE, “Quantum learning machine,” https://atos.net/en/products/
quantum-learning-machineatos.net/en/products/quantum-learning-
machine, 2016, Accessed: 2019-11-20.

[12] V. Samoladas, “Improved BDD algorithms for the simulation of quantum
circuits,” in European Symp. on Algorithms, 2008, pp. 720–731.

[13] G. Viamontes, I. Markov, and J. Hayes, “High-performance QuIDD-
based simulation of quantum circuits,” in Design, Automation and Test
in Europe, 2004, pp. 1354–1355.

[14] A. Zulehner and R. Wille, “Advanced simulation of quantum computa-
tions,” 2018.

[15] D. M. Miller, M. A. Thornton, and D. Goodman, “A decision diagram
package for reversible and quantum circuit simulation,” in IEEE World
Congress on Computational Intelligence, 2006, pp. 8597–8604.

[16] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipulation,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 1,
pp. 86–99, 2016.

[17] T. Grurl, J. Fuß, S. Hillmich, L. Burgholzer, and R. Wille, “Arrays vs.
decision diagrams: A case study on quantum circuit simulators,” in Int’l
Symp. on Multi-Valued Logic, vol. 50, 2020, pp. 176–181.

[18] A. Zulehner and R. Wille, “Matrix-Vector vs. Matrix-Matrix Multiplica-
tion: Potential in DD-based Simulation of Quantum Computations,” in
Design, Automation and Test in Europe, 2019, pp. 90–95.

[19] P. Niemann, A. Zulehner, R. Drechsler, and R. Wille, “Overcoming the
trade-off between accuracy and compactness in decision diagrams for
quantum computation,” in IEEE Trans. on CAD of Integrated Circuits
and Systems. IEEE, 2020.

[20] A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently handle com-
plex values? Implementing decision diagrams for quantum computing,”
in Int’l Conf. on CAD, 2019.

[21] L. Burgholzer and R. Wille, “Advanced equivalence checking for quantum
circuits,” IEEE Trans. on CAD of Integrated Circuits and Systems, 2021.

[22] T. Grurl, J. Fuß, and R. Wille, “Considering decoherence errors in the
simulation of quantum circuits using decision diagrams,” in Int’l Conf.
on CAD, 2020, pp. 1–7.

[23] T. Grurl, R. Kueng, J. Fuß, and R. Wille, “Stochastic quantum circuit
simulation using decision diagrams,” in Design, Automation and Test in
Europe, 2021.

[24] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[25] S. Boixo, S. V. Isakov, V. N. Smelyanskiy et al., “Characterizing quantum
supremacy in near-term devices,” Nature Physics, vol. 14, no. 6, pp. 595–
600, 2018.

[26] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[27] A. Zulehner and R. Wille, “Matrix-vector vs. matrix-matrix multiplica-
tion: Potential in DD-based simulation of quantum computations,” in
Design, Automation and Test in Europe, 2019.

[28] A. Li and S. Krishnamoorthy, “QASMBench: A Low-level QASM
Benchmark Suite for NISQ Evaluation and Simulation,” 2020. [Online].
Available: http://arxiv.org/abs/2005.13018

