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Abstract—Classical simulations of quantum computations are
vital for the future development of this emerging technology.
To this end, decision diagrams have been proposed as a comple-
mentary technique which frequently allows to tackle the inherent
exponential complexity of these simulations. In the worst case,
however, they still cannot escape this complexity. Additionally,
while other techniques make use of all the available processing
power, decision diagram-based simulation to date cannot exploit
the many processing units of today’s systems. In this work, we
show that both problems can be tackled together by employing
a hybrid Schrödinger-Feynman scheme for the simulation. More
precisely, we show that realizing such a scheme with decision
diagrams is indeed possible, we discuss the resulting problems in
its realization, and propose solutions how they can be handled.
Experimental evaluations confirm that this significantly advances
the state of the art in decision diagram-based simulation—
allowing to simulate certain hard circuits within minutes that
could not be simulated in a whole day thus far.

Index Terms—quantum computing, classical simulation, deci-
sion diagrams, hybrid Schrödinger-Feynman

I. INTRODUCTION

Despite actual quantum computers being available in the
cloud, the simulation of quantum circuits on classical machines
remains crucial for the development and design of future
quantum computing applications. Such simulations provide
insights into the inner workings of a quantum system and
allow, e.g., to analyze quantum algorithms or verify the output
of physical quantum computers. To this end, several notions of
what such a classical simulation entails exist. In this work, we
consider strong simulation of quantum circuits, i.e., we want to
compute all complex amplitudes of the quantum state resulting
from the execution of the circuit (as, e.g., in [1]–[15]). This
is in contrast to methods based, e.g., on tensor networks that
typically only compute individual amplitudes or a small batch
of them [16]–[22]. Furthermore, we do not consider approx-
imate simulation, which trades computational complexity for
accuracy of the result (as, e.g., in [11], [13]).

The most fundamental technique of simulating a quan-
tum circuit is called Schrödinger-style simulation. There, a
complete representation of the quantum system’s state is
stored and manipulated throughout the computation. While
straight-forward in principle, this quickly amounts to a com-
plex task, due to the underlying representation requiring the
storage and manipulation of 2n complex amplitudes for an
n-qubit system.

While this complexity is frequently tackled by massively
parallel computations on arrays [1]–[5] using supercomputer
clusters with immense amounts of memory and processing
power, decision diagrams [23]–[26] have been proposed as a
complementary technique that aims at compactly representing
and efficiently manipulating the 2n complex amplitudes and,
hence, often allows to conduct corresponding simulations on
just a single desktop computer [6]–[11]. But, in the worst case,
also decision diagrams are subject to the inherent exponential
complexity.

Complementary to that, there exists another formalism
suited for simulating quantum circuits which reduces the
memory complexity of the simulation by breaking it down into
simpler parts. This is known as Feynman-style path summa-
tion [12], [27]. From a high-level point of view, each gate con-
necting two or more qubits in a quantum circuit introduces a
decision point from which the simulation branches (this notion
will be made more precise later in Section III-B). As the name
implies, Feynman-style path summation calculates the result
of each path and sums up all the individual contributions—
resulting in the final quantum state. Since the number of paths
is exponential depending on the number of decision points, this
approach requires exponential runtime (but usually avoids too
harsh memory requirements).

Over the recent years, mixtures of both schemes
emerged [12]–[15]—often referred to as hybrid
Schrödinger-Feynman simulation. These approaches strive to
use all the available memory and processing units in order
to efficiently simulate quantum circuits which would (1) run
into memory bottlenecks using Schrödinger-style simulation,
or (2) take exceedingly long using Feynman-style path
summation—eventually trading-off the respective memory
and runtime requirements. However, while this hybrid
scheme can easily be realized, e.g., using arrays, no solution
for decision diagrams exists yet (in fact, there are even
discussions that a corresponding realization might not be
possible at all [26]). This constitutes a severe drawback
as it keeps decision diagram-based simulation stuck with
Schrödinger-style simulation that is only suitable if the
compact representations of decision diagrams allow to escape
the exponential memory requirements (while, in all remaining
cases, decision diagrams even impose a severe overhead
compared to rather simple arrays).



In this work, we show that realizing a hybrid Schrödinger-
Feynman scheme with decision diagrams is indeed possible—
even if some problems arise when doing so. We describe a pos-
sible realization, discuss what problems exactly arise, and pro-
pose solutions to overcome them. Eventually, the first hybrid
Schrödinger-Feynman quantum circuit simulation approach
results which works with decision diagrams. Experimental
evaluations confirm that this significantly advances the state
of the art in decision diagram-based simulation—allowing to
simulate certain hard circuits within minutes that could not
be simulated in a whole day thus far. An implementation
of the proposed simulation technique is publicly available at
https://github.com/iic-jku/ddsim.

The remainder of this paper is structured as follows.
Section II reviews the basics of (decision diagram-based)
quantum circuit simulation. Then, Section III describes the
general idea of the hybrid Schrödinger-Feynman technique.
Section IV describes the realization of such techniques for
decision diagrams, the resulting limitations, and how they can
be handled. Afterwards, Section V shows the experimental
results before the paper is concluded in Section VI.

II. BACKGROUND

To keep this paper self-contained, this section briefly re-
views the basics of quantum circuits and their simulation
as well as how this simulation can be conducted using de-
cision diagrams. We refer the interested reader to [6], [28]
for a more detailed overview of either topic. Furthermore,
an online visualization tool, which makes decision diagrams
for quantum computing more accessible [29], is available at
https://iic.jku.at/eda/research/quantum_dd/tool/.

A. Quantum Circuits and Their Simulation

In general, the state |ϕ〉 of an n-qubit quantum system is
described as a linear combination of 2n basis states, i.e.,

|ϕ〉 =
∑

x∈{0,1}n
αx |x〉 with αx ∈ C and

∑
x∈{0,1}n

|αx|2 = 1.

This is frequently represented as [α0...0, . . . , α1...1]
> and re-

ferred to as state vector. Measuring the state of a quantum
system probabilistically collapses the system’s state to one of
the basis states—each with probability |αx|2 for x ∈ {0, 1}n.

Example 1. Consider a quantum system consisting of four
qubits that resides in the all-zero initial state |0000〉. The
system’s state vector consists of 24 = 16 complex amplitudes
and is represented by

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]>.

The state of a quantum system is manipulated by quantum
operations (frequently called quantum gates). Any k-qubit
quantum gate can be identified with a unitary matrix U of
size 2k× 2k, which can be extended to the whole system size
by forming tensor products with identity matrices. A quantum
circuit describes a sequence of gates, that are applied to a
quantum system. Applying a quantum gate U to the state |ϕ〉

q3 : |0〉 H

q2 : |0〉 H

q1 : |0〉 H Z

q0 : |0〉 H Z

H = 1√
2

[
1 1
1 −1

]

Z
=

[
1
1
1
−1

]

Fig. 1. Quantum gates and quantum circuit G

of a quantum system corresponds to extending its matrix
representation to the system size and computing the matrix-
vector product of the resulting matrix with the state vector—
yielding a new state vector |ϕ′〉. Thus, simulating a quantum
circuit entails the successive application of all individual gates
to the initial state of a quantum system in order to obtain the
final state (vector). An example illustrates the idea:

Example 2. An example of a single-qubit gate (the Hadamard)
and a two-qubit gate (the controlled-Z operation) is shown
on the left-hand side of Fig. 1 with their corresponding
matrix representations. The right-hand side of Fig. 1 shows
a quantum circuit G acting on four qubits that uses these
gates. Simulating this circuit with the input state |0000〉 (see
Example 1) results in the final state vector:

1
4 ∗ [1, 1, 1, 1, 1,−1, 1,−1, 1, 1,−1,−1, 1,−1,−1, 1]

>.

B. Decision Diagram-based Simulation
The size of the state vector is inherently exponential with

respect to the number of qubits. Not only does this always
incur an exponential memory footprint, but it also implies that
all operations have to be conducted on an exponentially large
data structure.

Decision diagrams [23]–[26] have been proposed as a
complementary approach for efficiently representing and ma-
nipulating the state of a quantum system by exploiting re-
dundancies in the underlying representation. They represent
quantum states and operations as weighted, directed, acyclic
graphs. To this end, a given state vector with its complex
amplitudes αi for i ∈ {0, 1}n is decomposed into sub-vectors

[α00...0, . . . , α1...1]
>

[α0x]
> [α1x]

>

[α00y]
> [α01y]

> [α10y]
> [α11y]

>

with x ∈ {0, 1}n−1 and y ∈ {0, 1}n−2, until only individual
amplitudes remain. The resulting decision diagram has n
levels of nodes (labeled n− 1 to 0) where each node i has
exactly two successors—indicating whether the corresponding
path leads to an amplitude where qubit qi is in the state
|0〉 or |1〉. During these decompositions, common factors
are extracted as edge weights according to a normalization
scheme and equivalent sub-vectors are represented by the
same node—allowing to exploit potential redundancies in the
representation. The amplitude of a given basis state can then
be reconstructed from the multiplication of the edge weights
along the path from the root node to the terminal node.
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Example 3. Consider again the final quantum state from
Example 2. The corresponding decision diagram is shown
in Fig. 2a. The amplitude of the state |1010〉, for example,
is obtained by multiplying the root weight with the weights
along the path alternating between the right and the left
successor, i.e., by multiplying 1 ∗ 1√

2
∗ 1√

2
∗− 1√

2
∗ 1√

2
= − 1

4 .

A similar decomposition can be employed for the matrices
representing quantum gates by recursively splitting the respec-
tive matrix into four equally-sized sub-matrices according to
the operator basis

{
[
1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

]
} = {|0〉 〈0| , |0〉 〈1| , |1〉 〈0| , |1〉 〈1|}.

Example 4. Consider again the operations shown on the left-
hand side of Fig. 1. The corresponding decision diagrams are
shown in Fig. 2b.

As described above, applying a gate to a quantum system
entails the matrix-vector multiplication of the corresponding
matrix with the current state vector. This operation can be
recursively broken down according to[

U00 U01

U10 U11

]
·
[
α0x

α1x

]
=

[
(U00 · α0x + U01 · α1x)
(U10 · α0x + U11 · α1x)

]
,

with Uij ∈ C2n−1×2n−1

and αix ∈ C2n−1

for i, j ∈ {0, 1}.
Since the Uij and αix directly correspond to the successors in
the respective decision diagrams, matrix-vector multiplication
is a native operation on decision diagrams and its complexity
scales with the product of the number of nodes of both
decision diagrams. Thus, whenever the decision diagrams
remain compact throughout the computation, the simulation of
quantum circuits can be efficiently conducted using decision
diagrams [6]–[11].

III. MOTIVATION AND GENERAL IDEA

Decision diagrams offer a complementary approach for the
simulation of quantum circuits. In many cases, they have been
shown to compactly represent and efficiently manipulate the
state of a quantum system. However, there remain some ob-
stacles and limitations of decision diagram-based simulation.

In the following, we will discuss these limitations and provide
the general idea for overcoming them.

A. Limitations of Decision Diagram-based Simulation

While decision diagrams frequently allow to compactly
represent the state of a quantum system, in the worst case, their
size is still exponential with respect to the number of qubits.
Such situations arise when no redundancy in the description
of the quantum state can be exploited and, thus, only a few
nodes can be shared. This occurs, e.g., during the simulation of
quantum circuits whose gates are chosen randomly according
to some scheme (e.g., the circuits used by Google in their
quantum supremacy experiment [18], [30]). In general, such
circuits are designed to make classical simulations as hard as
possible, which—in case of decision diagrams—implies that
they try hard to not give rise to a particular structure in the
corresponding states.

At the same time, decision diagram operations such as
matrix-vector multiplication, addition, inner product computa-
tion, or sampling, scale polynomially with the number of nodes
of the involved decision diagrams. As such, they are highly
efficient whenever the underlying decision diagrams actually
emit a compact structure. However, if the number of nodes
in the decision diagram grows exponentially (which happens
in the worst case), their performance degrades significantly.
Even worse: In this regime, decision diagrams actually per-
form worse than, e.g., array-based techniques, which always
incur this exponential (memory) complexity, but have a lower
overhead of maintaining the underlying data structure.

In one way or another, all Schrödinger-style methods (such
as arrays, tensor trains, decision diagrams, etc.) face the prob-
lem of exponentially increasing simulation complexity. Many
established simulation methods compensate for this limitation
by heavily employing parallelization, i.e., making use of the
many cores in today’s systems or even large clusters of super-
computers to speed up the computation [1]–[5]. While similar
efforts have been conducted towards parallelizing decision
diagram-based simulation, e.g., in [31], no “break-through”
has been achieved there yet. The main obstacles in this regard
are that the shared nature of decision diagrams necessitates
inter-process-communication and some kind of locked access
to its central data members (such as unique or compute tables)
which, in turn, quickly eliminate the benefits of parallelization.

In this work, we entertain an approach that drastically
reduces the exponential simulation complexity for certain
classes of problems (specifically, depth-limited circuits) at
the expense of simulating multiple, independent instances
whose contributions are eventually accumulated. Coinciden-
tally, this further allows to fully utilize all available process-
ing power—effectively “killing both birds with one stone”.
The proposed approach follows the concepts of a hybrid
Schrödinger-Feynman technique, which is reviewed next be-
fore the general idea of applying this concept to decision
diagrams is described.
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B. Hybrid Schrödinger-Feynman Simulation

The hybrid Schrödinger-Feynman simulation style aims at
reducing the complexity of the Schrödinger-style simulation
by breaking it down into simpler parts. This is accomplished
by employing concepts from Feynman-style path summation.
To this end, the most important concept is the Schmidt decom-
position of a two-qubit gate: Any two-qubit gate (represented
by a unitary 4× 4 matrix U ) can be decomposed into at most
four tensor products according to

U = |0〉 〈0|⊗U00+ |0〉 〈1|⊗U01+ |1〉 〈0|⊗U10+ |1〉 〈1|⊗U11,

with unitary Uij ∈ C2×2 and i, j = 0, 1.

Example 5. Consider the controlled-Z gate whose unitary
matrix representation is given by U = diag(1, 1, 1,−1). Intu-
itively, the operation leaves both qubits untouched whenever
the control qubit is in state |0〉, while it applies a Z gate to
the target qubit in case the control qubit is in state |1〉. In
formulas:

|0〉⊗|x〉 7→ |0〉⊗I |x〉 and |1〉⊗|x〉 7→ |1〉⊗Z |x〉 for x = 0, 1.

Consequently, its Schmidt decomposition consists of two terms
and is given by

U = |0〉 〈0| ⊗ I+ |1〉 〈1| ⊗ Z = P0 ⊗ I+ P1 ⊗ Z,

with P0 (P1) denoting the projection onto |0〉 (|1〉). This is
illustrated in Fig. 3.

The Schmidt decomposition allows to split the application
of any two-qubit gate into separate parts that can be calculated
independently. As such, each decomposed gate increases the
number of simulations (i.e., the runtime) by the amount of
factors in its decomposition. After all individual contributions
have been computed, they have to be summed up in order to
obtain the full result.

Hybrid Schrödinger-Feynman approaches (such
as [12]–[15]) horizontally partition the whole circuit into
blocks by introducing cuts through the circuit’s list of qubits.
Only cross-block gates, i.e. gates acting across such a cut, are
decomposed according to their Schmidt decomposition. This
way, individual blocks are independent from each other and,
thus, can be simulated separately. Then, the total number of
necessary simulations depends on the number of cross-block
gates. As this dependence is exponential in the number of
gates (e.g., doubling on each cross-block controlled-Z gate),
such techniques are most efficient for depth-limited circuits.
However, this still constitutes a large class of quantum
algorithms—especially those targeted at near-term quantum
computers, which are inherently depth-limited due to noise.

C. General Idea

While decision diagrams offer a complementary approach to
quantum circuit simulation that (exponentially) outperforms,
e.g., array-based techniques, whenever the number of nodes
only grows polynomially, their performance is significantly
worse for “hard” instances (where almost no redundancy
can be exploited). The Schmidt decomposition, as introduced
above, allows to reduce the complexity of individual simula-
tions by splitting the circuit into independent blocks that are
significantly easier to simulate at the expense of runtime. This
concept can readily be applied to decision diagrams.

Example 6. Recall the controlled-Z gate and its decision
diagram (shown in Fig. 2). As reviewed in Section II-B, the
successors of a (matrix) decision diagram node encode its ac-
tion according to the operator basis {P0, |0〉 〈1| , |1〉 〈0| , P1}.
In case of the controlled-Z gate, the left-most successor
(corresponding to P0) leads to a node representing the iden-
tity operation while the right-most successor (corresponding
to P1) leads to a node representing the Z operation. Splitting
these contributions into individual decision diagrams yields
the decomposition shown in Fig. 4, which precisely resembles
the Schmidt decomposition of the controlled-Z gate from
Example 5 (illustrated in Fig. 3).

Overall, these techniques promise to overcome both ob-
stacles raised above: By drastically reducing the complex-
ity of individual simulations, the efficiency of decision dia-
grams can be fully exploited. Additionally, no inter-process-
communication or locked access is necessary when performing
the simulations in parallel since they are independent of
another.

Yet, hybrid Schrödinger-Feynman approaches have not been
applied to decision diagrams. Some even believe that realizing
such “circuit cutting techniques” with decision diagrams (as
they are proposed in this work) is not possible at all [26]1. In
the remainder of this paper we show that (1) this is indeed
possible, (2) which problems arise in the realization, and
(3) how they can be handled.

IV. DECISION DIAGRAM-BASED
SCHRÖDINGER-FEYNMAN SIMULATION

Following the general idea outlined above potentially
allows to overcome the limitations of decision diagram-
based quantum circuit simulation discussed in Section III-A.
In this section, we describe the realization of a hybrid
Schrödinger-Feynman technique for decision diagrams and
discuss the main bottleneck of the resulting scheme. After-
wards, we show how this bottleneck can be addressed by
relying on decision diagrams where they are most efficient,
while leaving the rest to more suitable techniques.

1In contrast to quantum circuit simulation as considered in this work, [26]
seeks for a complete representation of a quantum circuit’s functionality. Both
tasks are related as the functionality of a quantum circuit is obtained from
consecutive matrix-matrix multiplication of the individual gate descriptions.
Consequently, the results in this work are also applicable in the scenario
discussed in [26].
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A. Realization

In order to employ a hybrid Schrödinger-Feynman approach,
the circuit first has to be partitioned into blocks as reviewed
in Section III-B. In general, there is a large degree of freedom
for how to choose such a partitioning, e.g., the number of
gates acting across individual blocks (cross-block gates). In the
following, we consider splitting the circuit into two (almost)
equally-sized blocks—ensuring that each block approximately
has the same number of qubits. Then, the number of simula-
tions to be performed depends on the number of cross-block
gates that need to be decomposed (according to their Schmidt
decomposition). Each individual simulation can be assigned a
unique identifier that specifies the decision (i.e., part of the
Schmidt decomposition) to make at each decision point (i.e.,
cross-block gate).

Example 7. Consider again the circuit shown in Fig. 1 and
assume it is partitioned into two equally-sized halves. Then,
both controlled-Z gates act across the blocks and, hence, need
to be decomposed. This yields two decision points with two
choices each (the parts of the controlled-Z gate’s Schmidt
decomposition)—for a total of four individual parts to be
simulated as illustrated on the left-hand side of Fig. 5. To this
end, the first (second) term of the Schmidt decomposition is
encoded as 0 (1). Therefore, each simulation can be assigned a
bitstring of length two (i.e., number of decisions) that indicates
which term of the decomposition is to be calculated.

Splitting the circuit in this fashion has three major benefits.
Most importantly, the blocks in each individual simulation are
independent from another and, thus, can be simulated sepa-
rately. This reduces the complexity for each simulation from
simulating one n-qubit circuit to simulating two n/2-qubit
circuits—an exponential improvement since the state of an
n-qubit system grows as 2n. Furthermore, as shown in Fig. 4,
the decision diagrams for individual parts of a gate’s Schmidt
decomposition are typically much less complex than the
full decision diagram—allowing for more compact decision
diagrams throughout the simulations. Finally, all individual
simulations are independent from another and, hence, can
be more efficiently simulated in parallel—even with decision
diagrams.

Example 8. Consider again the scenario from Example 7.
Then, each of the four individual simulations requires the
simulation of two two-qubit circuits. The resulting decision
diagrams are shown in the middle of Fig. 5. A maximum of
two nodes (the best case for two-qubit decision diagrams)
is required during each individual simulation. In contrast,
the Schrödinger-style simulation (see Example 3) required the
handling of up to nine nodes.

Although this only represents a small example, it already
shows the potential that the hybrid Schrödinger-Feynman tech-
nique brings to decision diagram-based simulation. However,
the computation is not yet finished. As described in Sec-
tion III-B, the final result of the simulation is obtained as
the sum of all individual parts. First, the simulation results of
each block have to be combined by forming the tensor product
of the corresponding states. Forming the tensor product of
two decision diagrams is highly efficient, as it merely requires
replacing the terminal node of one decision diagram with the
root node of the other.

Example 9. Forming pairwise tensor products of the decision
diagrams resulting from the simulations of the circuit from
Example 8 yields four decision diagrams of size four each.
These decision diagrams (shown in the middle of Fig. 5)
represent the state vectors of the individual simulations.

Finally, all the decision diagrams need to be added up to
obtain the decision diagram representing the final state vector.
As for the simulations, these additions can be computed in
parallel without inter-process-communication using a tree-like
scheme whose depth corresponds to the logarithm of the
number of individual simulations.

Example 10. The right-hand side of Fig. 5 illustrates the
process of adding up the individual contributions in order
to obtain the final state vector. At the first addition level,
two decision diagrams of size six result, while after the final
addition, the nine-node decision diagram already seen in the
right part of Fig. 2 results.

B. Decision Diagram Addition as a Bottleneck

The combination of all the individual results, i.e., the
addition of all resulting decision diagrams, inevitably builds
up a potential bottleneck. While the complexity of the decision
diagrams throughout the individual simulations might be dras-
tically lower than the complexity of the full Schrödinger-style
simulation, the final decision diagram obviously remains the
same. Consequently, whenever the final decision diagram
grows exponentially, this complexity builds up somewhere
along the way of adding up the individual contributions. Since
addition of decision diagrams scales linearly with respect to
the number of nodes of both decision diagrams, subsequent
additions in the “addition hierarchy” take longer and longer.

At some point, this constitutes a severe bottleneck for the
hybrid Schrödinger-Feynman simulation using decision dia-
grams because the overhead of maintaining the data structure
becomes larger than the benefit gained from a potentially more
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Fig. 5. Hybrid Schrödinger-Feynman simulation of the circuit shown in Fig. 1.

compact representation. As confirmed by our experimental
evaluations (which are summarized later in Section V), de-
cision diagrams are highly efficient when it comes to the
first part of the hybrid Schrödinger-Feynman scheme (i.e.,
the simulation of individual parts constituting the overall
result), while it might get more challenging in the second
part of the computation (i.e., adding up all the individual
contributions). In the following, we show how this bottleneck
can be addressed whenever the final decision diagram is going
to be exponentially large.

C. Avoiding the Final Overhead

Thus far, we used decision diagrams for the first part
of the hybrid Schrödinger-Feynman scheme because of their
efficiency in simulation. In the second part (when the final
results are determined by addition), this benefit might disap-
pear and lead to exponentially large decision diagrams. At this
point, decision diagrams do not offer any advantages anymore
compared to simpler data-structures such as arrays (in fact,
the overhead caused by maintaining a dedicated data-structure
will make decision diagrams perform even worse than arrays,
which require practically no overhead). That is, in these cases,
one is better off extracting the state vector represented by
the decision diagram into an array and continue working with
that representation. That way, one relies on decision diagrams

where they are most efficient, while substituting more direct
representations whenever the limit for decision diagrams has
been reached.

To this end, the complete vector represented by a decision
diagram is extracted with a single recursive traversal of the
decision diagram by accumulating amplitude contributions
along the edges. After the extraction, all resulting arrays
can be added together to obtain the final state vector. As a
consequence, one benefits from the memory locality of array-
based representations as well as vectorized instruction support
of modern CPUs—completely circumventing the overhead
decision diagram-based addition incurs in this regime.

Example 11. Consider again the hybrid Schrödinger-Feynman
scheme shown in Fig. 5 for simulating the circuit from Fig. 1.
After all four individual simulations have been conducted, the
amplitudes of the corresponding decision diagrams represent-
ing the state vectors are extracted. For the top-most decision
diagram (corresponding to the “00-decision”) this results in
the following (recursive) computation:

1
2 ∗ [[· · · ] 0000 0000]

> = 1
2 ∗ [[· · · ] 0000 0000 0000]>

= 1
2 ∗ [[

1√
2
∗ [· · · ] 1√

2
∗ [· · · ]] 0000 0000 0000]>

= 1
2
√
2
∗ [[ 1√

2
1√
2
] [ 1√

2
1√
2
] 0000 0000 0000]>

= 1
4 ∗ [1111 0000 0000 0000]>



Overall, the extraction results in the respective amplitude
arrays

1
4 ∗ [ 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ]>,
1
4 ∗ [ 0 0 0 0 1−1 1−1 0 0 0 0 0 0 0 0 ]>,
1
4 ∗ [ 0 0 0 0 0 0 0 0 1 1−1−1 0 0 0 0 ]>,
1
4 ∗ [ 0 0 0 0 0 0 0 0 0 0 0 0 1−1−1 1 ]>,

which are subsequently added up to produce the final state
vector

1
4 ∗ [ 1 1 1 1 1−1 1−1 1 1−1−1 1−1−1 1 ]>.

As our experimental evaluations (which are summarized
next) confirm, employing decision diagrams for the individual
simulations of the hybrid Schrödinger-Feynman scheme, while
handing off the accumulation of individual results to computa-
tions on arrays, allows to capitalize on the best of both worlds
and mitigates the limitations discussed in Section IV-A.

V. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of decision
diagram-based hybrid Schrödinger-Feynman simulation, the
scheme proposed in this work has been implemented on
top of the state-of-the-art decision diagram-based simulator
JKQ DDSIM, which is based on [6] and is part of the JKQ
toolset for quantum computing [32]. The corresponding im-
plementation is available at https://github.com/iic-jku/ddsim.

As benchmarks, we considered Google’s supremacy cir-
cuits [30] which constitute one of the hardest instances for
quantum circuit simulation to date and, because they belong
to the class of depth-limited circuits, are exactly the kind of
circuits for which the proposed scheme is particularly suited
for (see Section III-B). The evaluations were conducted on
machine equipped with a 16-core AMD Ryzen 9 3950X CPU
and 128 GB RAM running Ubuntu 20.04. Double precision
floating points and a hard timeout of 24 h were used for all
simulations.

Table I shows the results of our evaluations. Here, the
first two columns identify the benchmark circuit and the
respective number of decisions (i.e., cross-block gates)2. Then,
the runtime of the JKQ DDSIM Schrödinger-style simulator
is listed, while the remaining four columns contain the run-
time and the speedup for the general decision diagram-based
hybrid Schrödinger-Feynman scheme (see Section IV-A) and
the optimized scheme using arrays for the final additions
(see Section IV-C), respectively.

From the results, it can be seen that, the higher the number
of qubits in the circuit, the higher the potential gain of em-
ploying the hybrid Schrödinger-Feynman scheme. While using
the general scheme from Section IV-A only yields a small
speedup for the smallest benchmarks (i.e. inst_4x4_X_Y), the

2The circuits chosen for this evaluation only use controlled-Z gates as
two-qubit gates. Consequently, for a certain number of decisions x, 2x indi-
vidual simulations have to be performed in the hybrid Schrödinger-Feynman
scheme.

medium-sized benchmarks (i.e. inst_4x5_X_Y) show an aver-
age speedup of ≈ 6.2×. However, neither the JKQ DDSIM
Schrödinger-style simulator, nor the general scheme proposed
in Section IV-A, were able to simulate the larger benchmarks
(i.e. inst_5x5_X_Y and inst_5x6_X_Y) within 24 h. As dis-
cussed in Section IV-B, this can be attributed to the fact that
decision diagram addition on exponentially growing decision
diagrams poses a severe bottleneck.

This problem is addressed by using decision diagrams for
the individual simulations and resorting to arrays for the final
additions. In fact, the numbers confirm that, then, speedups of
several factors and up to several orders of magnitude can be
observed across all benchmarks. More impressively, even the
biggest circuits in our evaluations that could not be simulated
in a whole day using the Schrödinger-style simulator can be
simulated in roughly 20 min using this scheme.

VI. CONCLUSIONS

In this work, we showed that a hybrid Schrödinger-Feynman
technique can be applied to decision diagram-based quantum
circuit simulation, which, for the first time, allows to fully ex-
ploit the available hardware resources. Due to the substantially
decreased complexity of the individual simulations, decision
diagrams are employed in a regime where more redundancy
can be exploited. By handing off the accumulation of indi-
vidual results to computations on arrays, the bottleneck of
decision diagram addition observed in this work can be effec-
tively circumvented. The resulting scheme combines the best
of both worlds and allows to significantly advance the state of
the art in decision diagram-based quantum circuit simulation.
An implementation of the proposed simulation technique is
publicly available at https://github.com/iic-jku/ddsim.
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