
A Survey of Graph Neural Networks
for Electronic Design Automation
Daniela Sánchez Lopera ∗‡, Lorenzo Servadei ∗, Gamze Naz Kiprit ∗‡,

Souvik Hazra∗, Robert Wille†, Wolfgang Ecker∗‡
∗Infineon Technologies AG, Germany, †Johannes Kepler University Linz, Austria,

‡Technical University of Munich, Germany

Abstract—Driven by Moore’s law, the chip design complexity
is steadily increasing. Electronic Design Automation (EDA) has
been able to cope with the challenging very large-scale integra-
tion process, assuring scalability, reliability, and proper time-
to-market. However, EDA approaches are time and resource-
demanding, and they often do not guarantee optimal solutions.
To alleviate these, Machine Learning (ML) has been incorporated
into many stages of the design flow, such as in placement
and routing. Many solutions employ Euclidean data and ML
techniques without considering that many EDA objects are
represented naturally as graphs. The trending Graph Neural
Networks are an opportunity to solve EDA problems directly
using graph structures for circuits, intermediate RTLs, and
netlists. In this paper, we present a comprehensive review of the
existing works linking the EDA flow for chip design and Graph
Neural Networks.

Index Terms—Electronic Design Automation, Very Large-scale
Integration, Machine Learning, Register-Transfer Level, Graph
Neural Networks

I. INTRODUCTION

Over time, the chip design flow has incorporated multiple
software tools to synthesize, simulate, test, and verify different
electronic designs efficiently and reliably. The compendium of
those tools is called Electronic Design Automation (EDA).
Those tools automatize the chip design flow sketched in
Figure 1. Nevertheless, the flow is sequential and time-
demanding. Often, the design has to be verified and tested to
ensure correctness, reliability, and objective closure. But only
during physical verification and signoff, and testing, the quality
of the design in terms of Power, Performance, and Area (PPA)
can be measured. Corrective modifications in intermediate
steps are often needed, and they result in multiple iterations of
the design flow. Thus, estimations of PPA in earlier stages of
the design would reduce the required iterations, increase the
reliability of the design while going deeper on the flow, and
finally, improve the Quality of Results (QoR).

In the last years, design complexity driven by Moore’s
law has increased. Chip capacity has been doubling around
every two years, which translates into increasing efforts for
the design and verification of even more diversified chips.
EDA tools have aimed at coping with the new challenges and
provided automated solutions for Very Large-Scale Integration
(VLSI). EDA tools commonly face NP-complete problems,
which Machine Learning (ML) methods could solve better and
faster. Thus, ML has been integrated into EDA, specially to
logic synthesis, placement, routing, testing and verification [1].
In [1], four main areas of action were recognized. First, ML is
used to predict optimal configurations for traditional methods.
Second, ML learns features of models and their performances
to predict the behavior of unseen designs without running the
costly step of synthesis. Moreover, design space exploration

can be conducted by ML while optimizing PPA. Finally,
Reinforcement Learning (RL) explores the design space, learns
policies, and executes transformations to get optimal designs
envisioning the future with an “AI-assisted Design Flow”.

One enabling factor for using ML in EDA is the huge
amount of data that is generated by the EDA tools along
the design process. To apply ML over such data, these
have to be pre-processed and labeled. Existing solutions
use such data as Euclidean data, i.e. representing them in
a 2-D Euclidean space, allowing the use of ML methods
such as Convolutional Neural Networks (CNNs). However,
the trending neural network framework for graphs called
Graph Neural Networks (GNNs) has shown a significant im-
provement in dealing with data whose structure is intuitively
a graph. Even though GNNs appeared already in 2005, their
recent combination with Deep Learning (DL) operations like
convolution and pooling has drawn significant attention in
fields such as molecular graphs [2], recommendation sys-
tems [3], and traffic prediction [4].

In EDA, the most natural representation of circuits, inter-
mediate RTL, netlists, and layouts are graphs. Thus, in the last
two years, few studies have recognized this opportunity and
have incorporated the usage of GNNs to solve EDA problems.

This survey gives a comprehensive review of some recent
studies using GNNs in different stages of the EDA flow. It
first provides background on both fields and, successively,
a list of the seminal related works. The rest of this survey
is organized as follows: In Section II, we briefly review the
EDA flow and background concepts. In Section III, we provide
a more detailed explanation of the different types of GNNs.
In Section IV, we discuss different studies applied to EDA.
Finally, Section V concludes by briefly mentioning some open
challenges and future directions.

II. BACKGROUND AND DEFINITION

In this section, we briefly review background concepts
related to EDA flow, graphs and GNNs.

A. Electronic Design Automation
The progress in EDA tools and design methods, and the

use of different levels of abstractions on the design flow
have improved the hardware design productivity. Figure 1
sketches the stages of a modern chip design process. The
flow starts with the chip specification modeling the desired
application. The architecture analysis and prototype of the
design represent the design as a collection of interacting
modules such as processors, memories, and buses. In the
functional and logical design, the behavioral description of
those modules is mapped to Register Transfer Level (RTL)
blocks using Hardware Description Languagess (HDLs) such978-1-6654-3166-8/21/$31.00 ©2021 IEEE

System
Specification

Architectural
Design

Functional
and Logic

Design

Physical
Design PackagingFabricationLogic

Synthesis

CPU Mem

Bus

I/O ASIC

// module.v

module switch(input1, clk);
 always @(posedge clk)
begin
 if (input1==1) begin
 ...
 end
 else if
 ...
 end
 end
endmodule

Fig. 1. Chip Design Flow

as Verilog. Nowadays, the transition from system specification
to RTL can be done in different ways. For instance, using
High-level Synthesis (HLS), which provides an automatic
conversion from C/C++/System-C specifications to HDL, or
using hardware design frameworks such as MetaRTL [5].

Logic synthesis maps the RTL blocks in HDL to a combi-
nation of gates selected from a given technology library while
optimizing the design for different objectives. Normally, this
optimization involves a trade-off between timing closure, and
area and power consumption.

In physical synthesis, four main steps are executed: floor-
planning, placement, clock insertion, and routing. First, main
RTL blocks of the chip and ports are assigned to regions of
the layout. Second, the gates of the resulting logic netlists are
placed to specific locations of the chip. Finally, the wires for
clock signals and for connecting the gates are added. These
steps are executed targeting better area utilization, timing
performance, and routability while considering design rules.

Since errors in the design cost time and resources, verifi-
cation is a fundamental step of the flow and is executed after
functional and physical design. After verification and signoff,
the design goes through the manufacturing flow: fabrication,
packaging, and final testing.

Even though the flow is highly automated, it encounters
some drawbacks: (1) It relies on the hardware designer’s
expertise to select proper configurations, (2) Design space
exploration is limited and time-demanding, (3) Corrections in
the design would reinitialize the flow, (4) There is no early
analysis or predictability of the results.

B. Graphs
a) Definition I (Graphs): A graph is a data structure for

representing interactions between related objects. Mathemat-
ically, it is as a tuple G = (V,E), where V is the set of
nodes and E, the set of edges. The edges are defined as the
connection between nodes, e.g. for the nodes u, v ∈ V , the
edge is represented as eu,v ∈ E. The neighborhood of a node
N(v) is defined as N(v) = u ∈ V |(u, v) ∈ E. A graph can
be represented then as a list of nodes and edges. But a more
convenient representation is through an adjacency matrix A
defined as Au,v = 1 if eu,v ∈ E, otherwise Au,v = 0. The
degree of a node is the number of nodes D incident to a node
u, mathematically it can be defined as Du =

∑
v∈V Au,v [6].

A graph with n nodes and m edges may have node and
edge features of dimension d and c respectively, i.e. the node
features are X, where X ∈ Rn×d and the edge features Xe,
where Xe ∈ Rm×c [6].

b) Definition II (Types of Graphs): Graphs are classified
into different classes. If the direction of the edges matter,
the graph is directed and the adjacency matrix A will be
symmetric. If the edges do not have a direction, the graph
is undirected. In case the edges are represented with a cost

or real-value, the graph is called weighted, and the matrix
A will have real-values as entries. Multiplex graphs can be
decomposed into layers, and the relation between each layer
and the belonging nodes are additional intra-layer edges.
Graphs can also be homogeneous or heterogeneous. In the
former, all nodes and edges have the same type. In the latter,
nodes have different types and their attributes may be of
distinct types too (e.g. text or images) [6].

C. Shallow Embeddings Methods
The traditional approach for processing graph-structured

data is to use shallow embedding methods. These aim to
decompose the node information into low-dimensional em-
bedding vectors that consider the position of the nodes in
the graph and the structure of the neighborhood [6]. One
of the best-known graph embedding techniques is Random
Walk [7]. In this technique, given a starting point within
a graph, a random neighbor point is selected. As a second
step, a neighbor of the randomly selected point is chosen
again. This, in a recursive fashion. This generates a random
sequence of points, namely the random walk. DeepWalk [8]
and Node2vec [9] are well-known graph embedding methods
that are based on random walks. Although these methods
have achieved groundbreaking success, they are transductive,
i.e. they learn a unique embedding vector per node. Thus,
they have two main limitations: They are computationally
expensive in large graphs, and they cannot deal with unseen
nodes. Moreover, they do not consider node features that could
provide information during the encoding [6].

D. Graph Neural Networks
To overcome the limitations of the shallow methods, a novel

Neural Network (NN) called GNN was introduced in [10].
GNNs are a framework for NNs, that operate directly on
data structured as graphs, without losing structural and feature
information [10]. Originally, GNNs were formulated as a type
of Recurrent Neural Networks (RNNs) trained by a version of
backpropagation through time [11].

Having an input graph, a GNN aims to learn the embedding
vectors per node, defined as hu ∀u ∈ V , which encodes the
neighborhood information of each node [12]. The message
passing between nodes is assumed as the most generic GNN
layer [11]. Through the message passing updates determined
by the graph structure, the edge embeddings he

(u,v) are ob-
tained using Equation 1.

he
(u,v) = φ(hu,hv,x

e
(u,v)), (1)

where φ(·) is an arbitrary, non-linear, differentiable function
that aggregates its inputs, and xe

(u,v) the initial edge feature
vector. After the edge representation is obtained, and defining
x(u) as the feature vector for the starting node, the node
representation is updated as in Equation 2.

Circuits
Netlists

RecGNN
ConvGNN

GAE
Spatial-temporal

u

EDA

v

z

y

Featured and Labelled Graphs

e_uj

x_u
GNNs Embedding Representation

Node:
Classification,
Regression

Edge:

Classification,
Link Prediction

Graph:

Classification

ML Task

Tools

h_*x_v e_uz

u

v

z

y

h_u

h_v

Labels

Fig. 2. End-to-End flow using EDA objects as graphs. Feature nodes x and ground truth labels (e.g. red and green flags) are collected using EDA tools. One
of the GNNs flavors extracts node embeddings h, which are the inputs to other ML methods for classification or regression at node, graph, or edge level.

h
′

u = φ(hu,
∑

v∈N(u)

he
(v,u),xu) (2)

The graph embeddings learned by GNNs can be used as
inputs to other ML models building an end-to-end framework
depicted in Figure 2. There are three levels of tasks for such
a framework: Node, edge, and graph [12]. In the node-level
tasks, all nodes are labeled so that a regression or classification
of the nodes is possible. In edge-level tasks, the goal is to
classify edges or predict the link between two nodes. Finally,
in graph-level tasks, the entire graph is labeled and a NN,
combined with pooling and readout operations, can classify
new unseen graphs. Moreover, the learning tasks of GNNs can
be transductive or inductive. In the former, the GNN learns
the embedding vectors per each node in the training graphs.
Thus, during inference, it cannot generalize to new nodes. On
the contrary, an inductive GNN learns the aggregation function
that combines the node’s neighborhood features to get the
embedding vectors [12].

III. CLASSIFICATION OF GNNS

GNNs are divided into four types [12]. In this section, we
review them and describe their core ideas.

A. Recurrent Graph Neural Networks
Recurrent Graph Neural Networks (RecGNNs) [13] process

the node information recurrently by assuming that the nodes
exchange information with their neighbors until a stable point
is reached. RecGNNs define the node aggregation function as
in Equation 3.

ht
u =

∑
v∈N(u)

φ(xu,x
e
(u,v),xv,h

(t−1)
v), (3)

where φ(·) is a non-linear differentiable recurrent function.
In [13], the proposed architecture is a RNN where the con-
nections between the neurons are classified into internal and
external connections. While the first refer to the internal
connections within units of the network, the external ones refer
to the edges of the processed graph.

B. Convolutional Graph Neural Networks
Convolutional Graph Neural Networks (ConvGNNs) are a

generalization of CNNs to graph data and are divided into
spectral, and spatial approaches. The spectral approaches are
based on the Laplacian’s eigenbasis, which differs depending
on the graph structure. Spatial approaches, however, are based
on the spatial structure of the graph, i.e. they work on
spatially close neighbors [12]. In [14], a spectral approach for
performing the convolution operations on graph structures has
been presented. This is named Graph Convolutional Networks
(GCNs). The main principle of this approach is to extract the

high-level embeddings of the nodes by aggregating the features
of the central node and the neighbor nodes. Mathematically,
this is expressed as in Equation 4.

h(l+1)
u = φ

(∑
v∈N(u)

1

c(u,v)
h(l)
v W(l)

)
, (4)

where c(u,v) =
√
|N(u)|

√
|N(v)| is the normalization con-

stant of the edge eu,v , W is a learnable weight matrix,
l ∈ {1, ..., L} with L being the number of layers, and φ is the
non-linear activation function [12]. Even though GCN are very
powerful in generating low-dimensional embeddings of large
graphs, they are transductive, i.e. all possible nodes have to
be present during training. To alleviate this, GraphSAGE [15]
proposes an inductive framework that generalizes to unseen
nodes. It utilizes an update rule which is similar to Equation 4,
by defining c(u,v) = |N(u)|.

GraphSAGE uses a fixed-size neighborhood of the nodes,
which can limit the network performance during inference.
To solve this, Graph Attention Networks (GATs) [16] were
introduced. A GAT computes each node embeddings by going
through all the neighbors using the self-attention mechanism
presented in [17]. Mathematically, this node embedding pro-
cess can be expressed as in Equation 5.

h(l+1)
u = φ

(∑
v∈N(u)

α
(l)
(u,v)z

(l)
v

)
, (5)

where z
(l)
u = W(l)hu, and α(l)

(u,v) is the normalized attention
score of the node v to u calculated by the l-th attention mecha-
nism. The main benefit of GAT is not only the consideration of
the entire neighborhood of each node but also the increasing
model’s expressiveness that comes with the specification of
different relevance scores of each edge for a given node.

C. Graph Autoenconders
Graph Autoencoders (GAEs) belong to the family of un-

supervised frameworks and are used for graph-based repre-
sentation learning and graph generation [12]. In both tasks,
an encoder is employed to extract node embeddings of a
graph, followed by the reconstruction of new graphs from
corresponding latent or embedding vectors. For representation
learning, graph structural information is reconstructed as an
adjacency matrix. In the case of graph generation, the process
might involve a step-wise generation of the nodes and edges,
or output the entire graph at once.

D. Spatial–Temporal Graph Neural Networks
Spatial-Temporal Graph Neural Networks (STGNNs) aim

at capturing underlying spatial and temporal relation simul-
taneously [12]. The spatial relation is captured by using
graph convolutions, and the temporal relation is modeled by
employing RNN blocks.

IV. APPLICATION TO EDA
These two seminal papers [18], [19] highlight the important

link between EDA tasks and GNNs.
The first study to recognize the high potential of GNNs

in EDA is [18]. They stated that graph structures are the
most intuitive way to represent Boolean functions, netlists, and
layouts, which are the main focus of the EDA flow. They see
GNNs as an opportunity for EDA to improve the QoRs and to
replace the used traditional shallow methods or mathematical
optimization techniques. The paper lists related studies that
have been applying analytical and heuristic approaches and
shallow methods to EDA. Finally, they introduced spectral-
based and spatial-based GNNs and presented only two cases
of study: Test point insertion and timing model selection.

In [19], a review of CNNs as well as GNNs used in the
EDA flow was presented. They stated that ML could improve
the QoRs during the chip design flow by predicting important
metrics in different phases such as design space exploration,
power analysis, physical design, and analog design. Similar
to [18], they envisioned the use of Deep Reinforcement
Learning (DRL) to solve combinatorial optimization problems
in EDA, similarly to what is done in [20].

In [18] and [19], the motivation of incorporating the trend-
ing GNNs into the EDA flow is clear. However, they did not
exclusively center on both areas. [18] focuses also on existing
applications using traditional shallow methods. On the other
hand, [19] reviews the use of CNNs and GNNs. Moreover, [19]
compares the applications from an EDA perspective, without
revealing the details of the GNN concepts behind.

Considering the drawbacks of the above-mentioned work,
this survey gives a background and a review of recent im-
portant studies applying GNNs to the EDA field. To clarify
the link between both areas, the review of these studies is
organized according to their corresponding stages in the design
flow. Table I lists the studies considered in this review.

A. Logic Synthesis
During logic synthesis, the RTL blocks describing the

hardware design are mapped to logic cells from a technology
library. This mapping must meet the timing constraints to
operate at the desired clock rate while considering area and
power. Therefore, synthesis is a complex optimization problem
where ML can be applied. For instance, providing earlier
QoR predictions to avoid multiple runs of the time-demanding
synthesis step.

To predict a more accurate delay for Field Programmable
Gate Array (FPGA) blocks, [21] proposes to learn the mapping
and clustering patterns of arithmetic operations in FPGAs,
specially Digital Signal Processor (DSP) and carry blocks.
They recognized that current HLS solutions only sum up the
individual delays of each component along the paths. This
does not consider the underlying optimizations done during
the synthesis. As solution, they proposed a novel architecture
D-SAGE [21], a GNN to predict the complex technology
mapping done by logic synthesis. In [21], designs are mapped
to Data Flow Graphs (DFGs). The nodes are the set of opera-
tions (i.e. additions or multiplications), and the edges, the data
dependencies between the nodes. Node types and bit widths of
the data are considered as node attributes. Nodes and edges are
labeled according to the end-to-end task. For instance, if the
nodes are mapped to DSP blocks or Lookup Tables (LUTs),
they are labeled to one or zero, respectively. Similarly, edges
are marked with one if their connected nodes are mapped to

the same device. D-SAGE leverages GraphSAGE to support
directed graphs and distinguish between successors SU(u) and
predecessors PR(u) of a node u. To that end, Equation 4 is
split over SU(u) and PR(u), and finally, the successors and
predecessors embeddings are concatenated as in Equation 6.

h(l+1)
u = φ

(
h
(l+1)
u,PR, h

(l+1)
u,SU

)
(6)

Using the graph embeddings, D-SAGE solves two end-to-
end tasks: Binary node classification, to predict which nodes
are mapped to which device, and binary edge classification,
to cluster nodes mapped into the same device. D-SAGE
outperforms HLS tools in node classification, edge prediction,
and also in operation delay estimation across all data paths.

B. Verification and Signoff
Verification is done to check the functionality of the design

after functional, logic, and physical design. Especially before
fabrication, the correctness of the design has to be assured.
In the signoff step, a set of verification steps is executed to
formally verify the functionality but also design closure, signal
integrity, lifetime checks, etc. The design closure is determined
in terms of PPA. Negative results in this step translate into
going backward on the flow and increasing the time-to-market
of the chip. Therefore, early, accurate and fast estimations of
those constraints could accelerate the design process.

For instance, the power integrity signoff requires power
analysis of the design. For this, vector-based methods are
preferred because of their accuracy, but they require gate-level
simulations, that are time-demanding and replaced in practice
by Switching Activity Estimators (SAEs). SAEs are fast but
not accurate. In [22], an alternative method based on GNN
is proposed using toggle rates as inputs and improving the
prediction accuracy. To that end, they built a graph based on
the netlist, where single-output components are the nodes. The
edges are defined as the connection between gates. From the
RTL simulations, input and register toggle rates are taken as
feature nodes, which are encoded in a 4-D vector. Finally, the
predicted toggle rates per gate are evaluated against the ground
truth labels obtained by the gate-level simulation. Intuitively,
the toggle rates are expected to propagate from one level to
the next one. Therefore, they proposed GRANNITE [22], a
sequential and inductive version of a GCN, in which the node
embeddings are not calculated in parallel but sequentially.
Using the node embeddings, GRANNITE predicts average
toggle rates from RTL simulations in few seconds with more
accuracy than classical SAEs.

C. Floorplanning
In chip floorplanning, the main and large blocks of a netlist

are placed onto 2-D grids aiming for optimal PPA, while
obeying design rules. This can be represented as a Markov
process, which can be solved using RL.

The most significant work in this area is presented in [23].
Google demonstrates the success of chip macro placement
using a DRL framework for the floorplanning of Tensor
Processing Unit (TPU) accelerators. In [23], a GNN is in-
corporated to the RL framework to encode the different
states of the process, predict the reward labels for congestion,
density, and wirelength, and generalize to unseen netlist. The
proposed architecture is called Edge-Based Graph Neural
Network (Edge-GNN) [23], which calculates the node and
edge embeddings for the whole netlist. This RL agent gives

TABLE I
SUMMARY OF GNNS FOR THE EDA FLOW

Section GNN Algorithm Type of Task End-to-End Task Reference

Logic Synthesis GraphSAGE Node classification Learning mapping patterns from HLS to FPGA blocks D-SAGE [21]

Verification and Signoff GCN Node regression Vector-based average power estimation GRANNITE [22]

Floorplanning GCN GNN-RL Floorplanning optimization as RL task Edge-GNN [23]

Placement
GAT Node regression Net length estimation Net2 [24]

GraphSAGE Node clustering Optimization of placement groups as guidance for tool PL-GNN [25]

GraphSAGE GNN-RL Generalization PPA optimization as RL task - [26]

GraphSAGE GNN-RL Optimization of placement parameters using RL - [27]

Routing GAT Node regression Estimation routing congestion CongestionNet [28]

Testing GCN Node classification Prediction of observation point candidates - [29]

Analog Design
GraphSAGE, GAT Node regression Prediction of net parasitic capacitances ParaGraph [30]

GNN Graph regression Simulation electromagnetic properties of distributed circuits CircuitGNN [31]

GCN GCN-RL Transferring knowledge of transistor sizing Circuit Designer [32]

GAT Node regression Prediction analog circuit performance due to placement PEA [33]

comparable or better results than a human designer but takes
hours instead of months.

D. Placement
During placement, the design gates are mapped to the

exact locations of the chip layout. The larger the design,
the more complex this process is. A poor decision during
placement can increase the chip area but also worsen the chip
performance and, even, make it unsuitable for manufacturing
if the wirelenght is higher than the available routing resources.
Therefore, placement is seen as a constrained optimization
problem. ML and specially, GNNs are being explored to ease
this steps [24], [25], [26], [27].

A GAT called Net2 is used to provide pre-placement net
and path length estimations in [24]. To that end, they converted
the netlists to directed graphs, where nets represent nodes, and
edges connect nets in both directions. The number of cells, fan-
in, fan-out sizes, and areas are used as feature nodes. The edge
features are defined using clustering and partitioning results.
The ground truth label for the nodes is the net length obtained
as the half-perimeter wirelength of the bounding box after
placement. During inference, Net2 predicts the net length per
node, outperforming existing solutions. For instance, Net2a, a
version targeting accuracy, is 15% more accurate in identifying
long nets and paths, and Net2f targeting runtime, is 1000 ×
faster.

In [25], GraphSAGE is leveraged to build PL-GNN, a
framework helping placer tools to make beneficial decisions
to accelerate and optimize the placement. PL-GNN converts
netlists to hypergraphs, where nodes and edges features are
based on the hierarchy and the affinity of the net with
memory blocks, as this provides information about critical
paths. A GNN is used to learn the node embeddings, which
are clustered by the K-means algorithm to determine optimal
placement groups based on the cell area. This guidance leads
the placer tool to a placement that reduces wirelength, power,
and worst slack.

A proof of concept framework mapping the PPA optimiza-
tion task in EDA to a RL problem is presented in [26]. This
RL framework uses GraphSAGE with unsupervised training to
learn node and edges embeddings that can generalize to unseen

netlist. The GCN is a key component because it extracts local
and global information, which is needed by the RL agent.
Wirelength optimization during 2-D placement is analyzed as
a case of study.

In [27], an autonomous RL agent finds optimal placement
parameters in an inductive manner. Netlists are mapped as
directed graphs, and nodes and edges features are handcrafted
placement-related attributes. GraphSAGE learns the netlist
embeddings and helps to generalize to new designs.

E. Routing
In this step, the placed components, gates, and clock signals

are wired while following design rules (e.g. type of permitted
angles). These rules determine the complexity of the routing,
which is mostly an NP-hard or NP-complete problem. Thus,
routing tools are mostly based on heuristics, and they do not
aim to find an optimal solution. ML methods could enhance
the routing process by providing earlier estimations, which can
be used to adjust the placement accordingly, and avoid high
area and long wires.

In [28], a GAT is used to predict routing congestion values
using only a technology-specific gate-level netlist obtained
after physical design. To that end, the netlists are built as
undirected graphs, where each gate is a node, and the edges are
defined as the connections between gates that are connected by
a net. The feature nodes are 50-D vectors containing informa-
tion about cell types, sizes, pin counts, and logic descriptions.
To get the ground truth labels for the nodes, congestion maps
are split into grids, and the congestion value of each grid is
taken as a label for the cells that were placed into that grid.
The architecture presented in [28] called CongestionNet is not
more than an eight-layer GAT following the Equation 5. The
node embeddings are used to predict local congestion values.
Using GATs improves the quality of the predictions, and the
inference time is around 19 seconds for circuits with more
than one million cells.

F. Testing
Testing takes place only after the packaging of the design.

The larger the design, the higher the complexity and the
execution time of the testing tools. Moreover, testing should

guarantee a high coverage, avoiding redundant test cases. Test-
ing is not scalable, and it strongly relies on human expertise.
To overcome those challenges, ML is being incorporated into
the testing phase. For instance, to reduce test complexity by
providing optimal test points in a design. [29] proposes a
GCN to insert fewer optimal test points on the design while
maximizing the fault coverage. To that end, a directed graph
is built using the components of the netlist and primary ports
as the nodes, and the wires between them as edges. The
node features are 4-D vectors containing information about
the logic level of each gate, controllability, and observability
attributes. Using Design-for-Test tools, the ground truth labels
are collected, and the nodes are labeled as “easy-to-observe”
or “difficult-to-observe”. The proposed GCN model generates
the node embeddings using Equation 4, replacing the aggre-
gation function with a weighted sum to distinguish between
predecessor and successor nodes.

Having the node embeddings, a binary node classification
is performed. During inference, the nodes of new netlists are
classified into “difficult” or “easy-to-observe”. This informa-
tion is then used by testing tools to reduce the test complexity.
Compared with commercial test tools, [29] reduces the obser-
vation points by around 11% while keeping the same coverage.

G. Analog Design
The high complexity of the analog design flow is due

to the large design space and the signal susceptibility w.r.t.
noise. Thus, the analog flow could strongly benefit from
modern approaches like ML to modernize the methods and
improve the QoRs. Specially, GNNs are being applied to
this field. In [30], a GNN is used to predict net parasitic
capacitance and device parameters. The design schematics are
converted to hypergraphs and are the inputs to ParaGraph [30],
a version of GNN that combines ideas from GraphSAGE
and GAT. CircuitGNN [31] uses a GCN to predict magnetic
properties per node using components as nodes and edges as
magnetic and electrical relationships. Circuit Designer [32]
uses a GCN to extract the node embeddings of a circuit, which
are later used as inputs to an RL agent targeting technology-
independent transistor sizing. In [33], a new architecture called
Pooling with Edge Attention (PEA) is introduced to evaluate
how different placement solutions would affect the analog
circuit performance.

V. CONCLUSION

To the best of our knowledge, our work is the first that
collects seminal papers on the crossing between EDA and
modern GNNs. In the presented works, GNNs outperformed
the baseline methods. However, as the complexity of circuits
in EDA continues growing, scalability and heterogeneity are
still open challenges. We expect that the usage of GPUs
helps to alleviate this bottleneck. We believe that the high
potential of ML combined with GNNs will open the door to
many more solutions targeting the EDA flow. We hope that
using netlist, layouts, and intermediate RTL directly as graph
structures can accelerate the earlier prediction of hardware
metrics, and the usage of RL to solve combinatorial tasks
in the EDA flow. Finally, we also expect that future work
on GNNs targets some open-graph-related challenges such as
heterogeneity, scalability, and diversity of graphs.

REFERENCES

[1] G. Huang et al., “Machine Learning for Electronic Design Automation:
A Survey,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2021.

[2] J. You et al., “Graph Convolutional Policy Network for Goal-Directed
Molecular Graph Generation,” ArXiv, 2018.

[3] R. Ying et al., “Graph Convolutional Neural Networks for Web-scale
Recommender Systems,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018.

[4] B. Yu et al., “Spatio-Temporal Graph Convolutional Networks: A Deep
Learning Framework for Traffic Forecasting,” ArXiv, 2017.

[5] J. Schreiner et al., “Design Centric Modeling of Digital Hardware,”
in 2016 IEEE International High Level Design Validation and Test
Workshop (HLDVT), 2016.

[6] W. L. Hamilton, Graph Representation Learning.
[7] L. Lovász et al., “Random Walks on Graphs: A Survey,” Combinatorics,

Paul erdos is eighty, 1993.
[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of

Social Representations,” ser. KDD ’14, Aug. 2014.
[9] A. Grover and J. Leskovec, “Node2vec: Scalable Feature Learning for

Networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16,
Aug. 2016.

[10] M. Gori et al., “A New Model for Learning in Graph Domains,”
in Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005.

[11] T. N. Kipf, “Deep Learning with Graph-Structured Representations,”
Ph.D. dissertation, University of Amsterdam, 2020.

[12] Z. Wu et al., “A Comprehensive Survey on Graph Neural Networks,”
IEEE Transactions on Neural Networks and Learning Systems, 2020.

[13] F. Scarselli, M. Gori et al., “The Graph Neural Network Model,” IEEE
Transactions on Neural Networks, 2009.

[14] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolu-
tional Networks,” ArXiv, 2017.

[15] W. L. Hamilton et al., “Inductive Representation Learning on Large
Graphs,” ArXiv, 2018.

[16] P. Veličković et al., “Graph Attention Networks,” ArXiv, 2018.
[17] Z. Lin et al., “A Structured Self-attentive Sentence Embedding,” ArXiv,

2017.
[18] Y. Ma et al., “Understanding Graphs in EDA: From Shallow to Deep

Learning,” in ACM Proceedings of the 2020 International Symposium
on Physical Design, 2020.

[19] B. Khailany et al., “Accelerating Chip Design With Machine Learning,”
IEEE Micro, 2020.

[20] L. Servadei et al., “Cost Optimization at Early Stages of Design Using
Deep Reinforcement Learning,” ser. MLCAD ’20, 2020.

[21] E. Ustun et al., “Accurate Operation Delay Prediction for FPGA HLS
Using Graph Neural Networks,” in Proceedings of the 39th International
Conference on Computer-Aided Design, ser. ICCAD ’20, 2020.

[22] Y. Zhang et al., “GRANNITE: Graph Neural Network Inference for
Transferable Power Estimation,” in 2020 57th ACM/IEEE Design Au-
tomation Conference (DAC), 2020.

[23] A. Mirhoseini et al., “A Graph Placement Methodology for Fast Chip
Design,” Nature, 2021.

[24] Z. Xie et al., “Net2: A Graph Attention Network Method Customized
for Pre-Placement Net Length Estimation,” in 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2021.

[25] Y.-C. Lu et al., “VLSI Placement Optimization using Graph Neural
Networks,” 2020.

[26] A. Agnesina et al., “A General Framework for VLSI Tool Parameter
Optimization with Deep Reinforcement Learning.”

[27] ——, “VLSI Placement Parameter Optimization Using Deep Reinforce-
ment Learning,” in Proceedings of the 39th International Conference on
Computer-Aided Design, ser. ICCAD ’20, 2020.

[28] R. Kirby et al., “CongestionNet: Routing Congestion Prediction Using
Deep Graph Neural Networks,” in 2019 IFIP/IEEE 27th International
Conference on Very Large Scale Integration (VLSI-SoC), 2019.

[29] Y. Ma et al., “High Performance Graph Convolutional Networks with
Applications in Testability Analysis,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19, 2019.

[30] H. Ren et al., “ParaGraph: Layout Parasitics and Device Parameter
Prediction using Graph Neural Networks,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020.

[31] G. Zhang et al., “Circuit-GNN: Graph Neural Networks for Distributed
Circuit Design,” in International Conference on Machine Learning,
2019.

[32] H. Wang et al., “GCN-RL Circuit Designer: Transferable Transistor
Sizing with Graph Neural Networks and Reinforcement Learning,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), 2020.

[33] Y. Li et al., “A Customized Graph Neural Network Model for Guiding
Analog IC Placement,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020.

