
1

Advanced Equivalence Checking for Quantum Circuits
Lukas Burgholzer∗ Student Member, IEEE Robert Wille∗† Senior Member, IEEE

∗Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
†Software Competence Center Hagenberg GmbH (SCCH), Austria

lukas.burgholzer@jku.at robert.wille@jku.at

Abstract—In the not-so-distant future, quantum computing
will change the way we tackle certain problems. It promises to
dramatically speed-up many chemical, financial, cryptographical,
and machine-learning applications. However, in order to capital-
ize on those promises, complex design flows composed of steps
such as compilation, decomposition, mapping, or transpilation
need to be employed before being able to execute a conceptual
quantum algorithm on an actual device. This results in many
descriptions at various levels of abstraction which may signifi-
cantly differ from each other. The complexity of the underlying
design problems makes it ever more important to not only provide
efficient solutions for the single steps, but also to verify that
the originally intended functionality is preserved throughout all
levels of abstraction. This motivates methods for equivalence
checking of quantum circuits. However, most existing methods for
this are inspired by equivalence checking in the classical realm
and have merely been extended to support quantum circuits
(i.e., circuits which do not only rely on 0’s and 1’s, but also
employ superposition and entanglement).

In this work, we propose an advanced methodology which
takes the different paradigms of quantum circuits not only as a
burden, but as an opportunity. In fact, the proposed methodology
explicitly utilizes characteristics unique to quantum computing
in order to overcome the shortcomings of existing approaches.
We show that, by exploiting the reversibility of quantum circuits,
complexity can be kept feasible in many cases. Moreover, we show
that, in contrast to the classical realm, simulation is very powerful
in verifying quantum circuits. Experimental evaluations confirm
that the resulting methodology allows one to conduct equivalence
checking dramatically faster than ever before—in many cases
just a single simulation run is sufficient. An implementation of
the proposed equivalence checking flow is publicly available at
https://iic.jku.at/eda/research/quantum_verification/.

I. INTRODUCTION

Quantum computers [1] aim to change the way we tackle
certain problems in the future. As more and more big com-
panies like Google, IBM, Intel, and Microsoft as well as
start-ups like Rigetti and IonQ set foot in this domain, the need
for design methods that allow to use this new technology is
steadily increasing. Without appropriate methods, we might
reach a point where we have quantum computers readily
available but no means to actually use them. In order to utilize
the theoretical advantage of quantum computers in practice, a
multitude of (computationally complex) design tasks have to
be conducted—resulting in descriptions of quantum algorithms
at various abstraction levels which may significantly differ
in their basis operations and structure. This is similar to
the classical realm where, e.g., descriptions at the Electronic
System Level, the Register Transfer Level, and the Gate Level
exist.

More precisely, a high-level description of a quantum algo-
rithm has to be compiled to a low-level description satisfying
all constraints imposed by the targeted device. Today’s quan-
tum computers only support a very limited (yet universal) set
of quantum operations natively. Thus, non-native operations

first have to be decomposed into sequences of native oper-
ations [2]–[6]. Furthermore, most quantum computers limit
the pairs of qubits (the main computational unit in quantum
computing) that may directly interact with each other. Realiz-
ing a generic quantum algorithm on such a device therefore
requires a mapping step (sometimes also called transpilation
or qubit routing), where a given circuit is made compliant to
the imposed connectivity constraints by inserting SWAP or
H gates [7]–[14]. Finally, current devices are heavily affected
by noise and decoherence effects and are considered part of
the Noisy-Intermediate-Scale-Quantum (NISQ) era of quantum
computing [15]. On the one hand, this motivates quantum
circuit optimizations, such as gate fusion, gate cancellation, or
block-wise re-synthesis—which aim to reduce the overall gate
count of circuits to be executed in order to reduce the effect
of noise and allow the computation to stay coherent [16]–[24].
On the other hand, mapping techniques which take the targeted
device’s calibration and error data into account to achieve
noise-adaptive mappings shift into focus [25], [26].

All this substantially changes the circuit description during
the design process. At the same time, all these steps should
obviously preserve the originally intended functionality of the
quantum circuit—even if other basic operations and structures
are eventually used for the realization. In order to check that,
equivalence checking is usually conducted to prove whether
two circuits (the originally given quantum algorithm and
the quantum circuit resulting from the compilation process)
are equivalent or to determine a counterexample showing
the non-equivalence between them. In the classical realm,
equivalence checking is conducted using design automation
expertise leading to efficient methods in order to guarantee
correctness throughout the design [27]–[30].

Inspired by these methods, several solutions for equivalence
checking of quantum circuits have been proposed in the
recent past, e.g., based on re-writing [24], [31], Boolean
satisfiability [32], and decision diagrams [33]–[36]. However,
all of them merely extended classical methods in order to
additionally support quantum circuits (i.e., are extended to
support superposition or entanglement) and, by this, take
the different computation paradigm only as a burden to be
addressed. Consequently, those methods remain unsatisfactory
in many cases.

In this work1, we propose a different take. Rather than a bur-
den, we see the computation paradigm of quantum circuits as
an opportunity. We propose an advanced equivalence checking
methodology which explicitly utilizes characteristics unique to
quantum computing in order to substantially improve existing
approaches. More precisely, we unearth potential which rests
on the following two observations:

1Preliminary versions of this work have been published in [37], [38].

https://iic.jku.at/eda/research/quantum_verification/

2

• Quantum circuits are inherently reversible. Because of
that, if two quantum circuits G and G′ are equiva-
lent, then concatenating the first circuit G with the
inverse G′−1 of the second circuit would realize the
identity function I, i.e., G · G′−1 = I. The potential
now lies in the order in which the operations from either
circuit are applied. Whenever a strategy can be employed
so that the respective gates from G and G′ are applied
in a fashion frequently yielding the identity, the entire
procedure can be conducted rather efficiently since the
identity constitutes the best case for most representations
of quantum functionality (e.g., linear in the number of
qubits for decision diagrams).

• Moreover, even in the case where the two considered
quantum circuits are not equivalent, quantum characteris-
tics can be exploited. In fact, we observed that, again due
to the inherent reversibility of quantum operations, even
small differences in quantum circuits frequently affect the
entire functional representation. Hence, it may not always
be necessary to check the complete functionality, but it
is highly likely that the simulation of both computations
with a couple of arbitrary input states (i.e., considering
only a small part of the whole functionality) will already
provide a counterexample showing the non-equivalence.
This is in stark contrast to the classical realm, where
the inevitable information loss introduced by many logic
gates and the resulting masking effects often require a
complete consideration of all possible input states or
sophisticated schemes for constraint-based stimuli gen-
eration [39]–[42], fuzzing [43], [44], etc.

Both observations provide the nucleus of an advanced equiv-
alence checking methodology in which the non-equivalence
is often detected by a few simulation runs (which can be
conducted dramatically faster than the actual equivalence
check). Moreover, passing several simulation runs leading to
the same results for both circuits provides an indication (albeit
no proof) that the circuits might be equivalent. The proof itself
can, afterwards, be significantly accelerated by using strategies
which keep the check for G ·G′−1 = I close to the identity I.
Combining these complementary ideas into a comprehensive
equivalence checking flow allows for efficient verification of
quantum circuits.

Experimental evaluations confirm that the resulting flow
allows one to conduct equivalence checking dramatically faster
than ever before—in many cases, just a single simulation run
is sufficient. By this, we do not only show ways to handle
the complexity of verifying quantum circuits, but also show
the potential of simulation for this task. An implementation of
the proposed equivalence checking flow is publicly available
at https://iic.jku.at/eda/research/quantum_verification/.

The remainder of this paper is structured as follows: Sec-
tion II reviews the background needed to keep this work
self-contained. Section III motivates the considered problem
and discusses the related work. Then, Section IV introduces
and illustrates the general ideas proposed in this work. Based
on that, Section V describes the dedicated equivalence check-
ing schemes resulting from the ideas and provides a theoret-
ical discussion on the power of simulation for equivalence
checking of quantum circuits. All these findings eventually

result in an advanced equivalence checking methodology
which is described and discussed in Section VII. Finally,
Section VIII summarizes the obtained experimental results
before Section IX concludes the paper.

II. BACKGROUND
In this section, we review the main concepts of quantum

computing and illustrate decision diagrams as one way of ef-
ficiently representing and manipulating quantum functionality.
While the following descriptions are kept brief, we refer to [1]
and [34] for more details on either topic.

A. Quantum Computing
The main computational unit in quantum computing is the

qubit. In contrast to classical bits, a qubit cannot only be in
one of the computational basis states |0〉 or |1〉 (written in
Dirac notation), but also in an arbitrary superposition of these
states. Specifically, the state |ϕ〉 of a qubit is described by two
amplitudes α0, α1 ∈ C such that

|ϕ〉 = α0 |0〉+ α1 |1〉 ≡ α0

[
1
0

]
+ α1

[
0
1

]
= [α0

α1]

and |α0|2 + |α1|2 = 1. The resulting column vector is also
referred to as state vector. In a system of n qubits, there exist
2n computational basis states |i〉 with i from 0 to 2n − 1.
Analogously, the state of an n-qubit system is described by
2n complex amplitudes αi ∈ C such that |ϕ〉 =

∑2n−1
i=0 αi |i〉

and
∑2n−1
i=0 |αi|2 = 1—which can again be interpreted as a

state vector, i.e., |ϕ〉 ≡ [α0, . . . , α2n−1]
>.

Example 1. Consider a two qubit system whose state is
described by the state vector
1√
2
[1, 0, 0, 1]> ≡ 1√

2
|0〉+ 1√

2
|3〉 = 1√

2
|(00)2〉+ 1√

2
|(11)2〉 .

This is a valid quantum state, since |1/√2|2 + |1/√2|2 = 1.
Furthermore, it demonstrates a key phenomenon unique to
quantum computing called entanglement. While the complete
system’s state can be accurately described (by the above
statevector), its individual parts, i.e., the state of the individual
qubits, cannot. More precisely, the state |ϕ〉 cannot be split
into |q1〉⊗ |q0〉, where |qi〉 describes the state of the ith qubit
and ⊗ denotes the tensor product of both vectors.

In a real quantum system, the individual amplitudes αi
are not directly observable. Instead, a measurement operation
collapses the system’s state to one of the computational basis
states |i〉—each with probability |αi|2—which can then be
read-out classically.

Example 2. The state 1/
√
2 |(00)2〉+ 1/

√
2 |(11)2〉 from Ex. 1

represents an equal superposition of two basis states. Mea-
suring this state would yield |(00)2〉 in half of the cases
and |(11)2〉 otherwise.

The state of a quantum system is manipulated by quantum
operations (often also referred to as quantum gates). Typically,
these operations only operate on a small subset of a system’s
qubits. An operation acting on k ≤ n qubits (most frequently
k = 1 or k = 2) is described by a 2k × 2k unitary matrix2 U .
Applying such an operation to an n-qubit system in the

2A complex matrix U is unitary if U†U = UU† = I, where U† denotes
the conjugate-transpose of U and I the identity matrix.

https://iic.jku.at/eda/research/quantum_verification/

3

q2 :

q1 : H

q0 :

g0 g1 g2 g3

(a) Quantum circuit G

1√
2

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0
1 0 −1 0 0 0 0 0

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

(b) System matrix U

Figure 1: Quantum computations

state |ϕ〉 corresponds to extending the (local) 2k × 2k matrix
to a 2n × 2n (system) matrix using tensor products and, then,
calculating the matrix-vector product U |ϕ〉—resulting in a
new state |ϕ′〉3.

Example 3. Consider a single-qubit operation (i.e., k = 1)
represented by the unitary matrix Us ∈ C2×2. Further assume
that this operation is to be applied to the second qubit in
a system consisting of n = 3 qubits. Then, the full 23 × 23

matrix corresponding to this operation is given by I2⊗Us⊗I2,
where I2 denotes the 2×2 identity matrix. Its application to the
23-dimensional state vector |ϕ〉 ≡ [α0, . . . , α7]

> then yields
the new state |ϕ′〉.

Quantum computations are just sequences of quantum oper-
ations applied to the state of a system. This is predominantly
described by quantum circuits and visualized as quantum
circuit diagrams. There, horizontal wires indicate the system’s
individual qubits, while gates that are placed on these wires
indicate the sequence of operations to apply—operating from
left to right.

Example 4. Fig. 1a shows a quantum circuit G comprised
of three qubits q0, q1, q2 and four gates g0, g1, g2, g3. The
first gate represents a Hadamard operation (indicated by a
box with the label H), which can be used to create an
equal superposition from a given basis state (cf. Ex. 2).
The remaining three gates represent controlled operations. A
specific operation (in this case a negation of the qubit state)
is applied to a target qubit (indicated by ⊕) if and only if
certain control qubits (indicated by •) are in state |1〉.

Each gate gi represents a corresponding unitary matrix Ui
that is subsequently applied during the execution of a
quantum circuit. Thus, the functionality of a given circuit
G = g0 . . . gm−1 can be obtained as a unitary system ma-
trix U itself by determining U = Um−1 · · ·U0. Moreover,
executing the quantum circuit for a given initial state |ϕ〉
(also called simulation when conducted on a classical com-
puter) leads to an evolution of the state |ϕ〉 according to
Um−1 · · ·U0 |ϕ〉 = U |ϕ〉 = |ϕ′〉. Note that, if |ϕ〉 = |i〉 for
some i ∈ {0, . . . , 2n − 1}, i.e., |ϕ〉 is a computational basis
state, the simulation precisely calculates the ith column ui
of U , i.e., U |i〉 = |ui〉.
Example 5. Consider again the circuit G = g0g1g2g3 shown
in Fig. 1a. Consecutively multiplying the corresponding gate
matrices U3 · U2 · U1 · U0 eventually yields the system ma-
trix U shown in Fig. 1b. Given the initial state |4〉 = |(100)2〉,
executing the quantum circuit G precisely transforms this
state to the state described by column four of U , i.e.,
U |(100)2〉 = |u4〉 = 1/

√
2 [0 0 1 0 0 0 1 0]> = 1/

√
2 |(010)2〉+ 1/

√
2 |(110)2〉.

3As a consequence, quantum operations are inherently reversible, i.e.,
U† |ϕ′〉 = U†U |ϕ〉 = |ϕ〉.

qn−1

[U00] [U10] [U01] [U11]

[|0〉 |1〉
|0〉 U00 U10

|1〉 U01 U11

]
U : to

from
qn
−1

Figure 2: Decomposition scheme

Since quantum operations are inherently reversible,
the inverse of a whole quantum circuit G = g0 . . . gm−1
can always be determined by reversing the order of
operations and inverting each individual operation, i.e.,
G−1 = (g0 . . . gm−1)

−1 = g−1m−1 . . . g
−1
0 —corresponding to

the matrix operations U†0 · · ·U
†
m−1 = U†.

B. Decision Diagrams for Quantum Computing
State vectors and operation matrices of a quantum system

are exponential in size with respect to the number of qubits—
quickly rendering the simulation of a quantum circuit G
and even more the construction of its system matrix U an
extremely difficult task. Decision diagrams (DDs) have been
proposed as an efficient way for representing and manipulating
quantum functionality [33], [34], [45]–[47]. While they are
still exponential in the worst-case, decision diagrams have
been shown to lead to very compact representations for the
vectors and matrices in many cases. In the following, we
review how decision diagrams can be used to compactly
represent matrices (e.g., the system matrix U). As we will
see, (state) vectors are just a special case of matrices that can
be handled analogously.

Consider a unitary matrix U ∈ C2n×2n . Then, U can be
split into four 2n−1 × 2n−1-sized sub-matrices Uij as shown
on the left side of Fig. 2. This splitting corresponds to the
action of U depending on the value of the topmost qubit qn−1,
i.e., Uij describes how the rest of the system is transformed
given that qn−1 is mapped from |i〉 to |j〉 for i, j ∈ {0, 1}. In
the corresponding decision diagram, this manifests as a node
with label qn−1 and four successor nodes as shown on the
right side of Fig. 2.

This decomposition scheme can now be applied recur-
sively until only single matrix entries (i.e., complex numbers)
remain—eventually forming the decision diagram’s terminal
nodes. During this process, identical sub-matrices can be
represented by the same node which allows to capitalize on
possible redundancies in the matrix U .

Example 6. The most compact decision diagram is achieved
by the identity I since all sub-matrices U00 and U11 are
recursively identical and all sub-matrices U01 and U10 are
solely composed of 0-entries—yielding a decision diagram
with exactly n nodes as shown in Fig. 3 for three qubits4.

I8 =

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

0

0
0

0
0

0 q2

q1

q0

1

00

00

00

Figure 3: Identity matrix and DD for n = 3

4Sub-matrices only containing zero entries are represented as 0-stubs.

4

q2

q1 q1 q1 q1

q0 q0

1

1√
2

00 00 00 00

00 0 0

−1 −1

1st level

2nd level

Figure 4: Decision diagram for U

Further compaction is achieved by employing edge weights
in order to unify sub-matrices only differing by a common
factor. As a consequence, one terminal node always suffices
and, hence, is typically not counted towards the overall size
(i.e., node count) of a decision diagram.

Example 7. Consider again the matrix U as shown in Fig. 1b.
Recursively decomposing this matrix yields the decision dia-
gram shown in Fig. 4—representing the entire matrix U . While,
at the first decomposition level (indicated by a thick bold line
in Fig. 1b) all sub-matrices have a different structure, two
nodes suffice to completely represent the entire functionality
at the second decomposition level (indicated by a dotted line in
Fig. 1b). Due to the utilization of edge weights and exploitation
of redundancies, just seven nodes suffice to capture the whole
functionality of U .

Constructing decision diagrams in this fashion results in a
canonic representation of the functionality5. Moreover, vectors
can be interpreted as matrices where each node’s U10 and U11

successors are zero.
Decision diagrams do not only allow one to efficiently

represent quantum functionality, but also to manipulate it.
Here, we just illustrate how the most prominent operation—
matrix-matrix multiplication—is conducted using decision di-
agrams. However, many of the typical operations on matrices
and vectors can directly be carried over for decision diagrams
in a similar fashion. This includes, but is not limited to,
addition, (conjugate) transposition, fidelity and (partial) trace
calculation. The multiplication of two matrices U and V is
recursively broken down into sub-expressions according to[
U00 U01

U10 U11

]
·
[
V00 V01
V10 V11

]
=

[
(U00V00 + U01V10) (U00V01 + U01V11)
(U10V00 + U11V10) (U10V01 + U11V11)

]
,

until only operations on complex numbers remain. Note that
the individual sub-matrices exactly correspond to the respec-
tive successors of the currently considered decision diagram
node. Eventually, this allows decision diagrams to efficiently
represent and manipulate quantum functionality in many cases.

III. MOTIVATION

As reviewed in Section I, the typical design flow for realiz-
ing a quantum algorithm on a real quantum computer requires
several steps in which the desired functionality is decomposed,
mapped, and optimized. During all these steps, it has to be
ensured that the functionality of the correspondingly resulting

5Canonicity is achieved for a fixed variable order and under the assumption
that a suitable normalization scheme is employed. For example, nodes can be
normalized through division by the leftmost non-zero edge weight.

q2 : T

q1 : H T T †

q0 : H T † T T † T H

g′0 g′1 g′2 g′3 g′4 g′5 g′6 g′7 g′8 g′9 g′10 g′11 g′12 g′13 g′14 g′
15

Figure 5: Alternative circuit realization G′

circuit descriptions does not change—motivating equivalence
checking for quantum circuits. In this section, we first give
an explicit description of this problem. Then, we review how
equivalence checking is conducted to date and discuss why
current solutions are still unsatisfactory. Those discussions
provide the overall motivation of our work.

A. The Quantum Circuit Equivalence Checking Problem

The functionality of a quantum algorithm is most promi-
nently described in the form of a quantum circuit—potentially
consisting of high-level operations, such as Grover itera-
tions [48], the quantum Fourier transform [1], etc. Technically,
one could also consider other “functional descriptions” such
as a unitary matrix, a decision diagram, or a tensor network.
However, those are usually internal representations used by
tools and hardly a functional description provided by a de-
signer. Consequently, equivalence checking in the domain of
quantum computing—as we consider it in this work—is about
proving that two quantum circuits G and G′ are functionally
equivalent (i.e., realize the same function), or to show the non-
equivalence of these circuits by means of a counterexample.

To this end, consider two quantum circuits G = g0 . . . gm−1
and G′ = g′0 . . . g

′
m′−1 operating on n qubits. Then, as re-

viewed in the previous section, the functionality of each
circuit can uniquely be described by the respective system
matrices U = Um−1 · · ·U0 and U ′ = U ′m′−1 · · ·U ′0, where the
matrices U

(′)
i describe the functionality of the i-th gate of

the respective circuit (with 0 ≤ i < m(′)). Consequently,
deciding the equivalence of both computations amounts to
comparing the system matrices U and U ′. More precisely, U
and U ′ are considered equivalent, if they at most differ by a
global phase factor (which is fundamentally unobservable [1]),
i.e., U = eiαU ′ with α ∈ [0, 2π).

Example 8. Consider again the circuit G from Fig. 1a and
an alternative realization G′ as shown in Fig. 5. Since the
functionality of G′ exhibits the same system matrix U as shown
before in Fig. 1b, both circuits G and G′ are indeed equivalent.

If U and U ′ differ in any column i (by more than a global
phase factor eiα), then the corresponding circuits G and G′

are not equivalent and |i〉 serves as a counterexample showing
that

U |i〉 = |ui〉 6≡ |u′i〉 = U ′ |i〉 .

Here, the fidelity F between two states |x〉 and |y〉 is typically
used as a similarity measure for comparing quantum states,
where F is calculated as the squared overlap between the
states, i.e., F = | 〈x|y〉 |2 ∈ [0, 1]. Two states are considered
equivalent if the fidelity between them is 1 (up to a given
tolerance ε).

5

1√
2

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 −ω3 0 ω3 0 0 0 0

−ω3 0 ω3 0 0 0 0 0

0 0 0 0 −ω3 0 −ω3 0
0 0 0 0 0 −ω3 0 −ω3

Figure 6: Erroneous circuit matrix Ũ ′ (ω = 1+i√

2
)

Example 9. Consider the same scenario as in Ex. 8, but
additionally assume that, due to an error, the last T -gate of G′

(i.e., g′15) is not applied (yielding a new circuit G̃′). Then, a
new functionality results, which is described by the system
matrix Ũ ′ shown in Fig. 6. Since U and Ũ ′ are obviously not
identical anymore, the circuits G and G̃′ have been shown to
be non-equivalent. Moreover, since both matrices differ, e.g.,
in column four, |4〉 serves as a counterexample showing that

U |4〉 = |u4〉 = 1√
2
[0 0 1 0 0 0 1 0]>,

while
U ′ |4〉 = |u′4〉 = 1√

2
[0 0 1 0 0 0 1−i√

2
0]>.

It holds that F(U |4〉 , U ′ |4〉) = F(|u4〉 , |u′4〉) ≈ 0.92 < 1.

Unfortunately, the whole functionality U (and similarly U ′)
is not readily available for performing this comparison, but has
to be constructed from the individual gate descriptions gi—
requiring the subsequent matrix-matrix multiplications

U (0) = U0, U (j) = Uj · U (j−1) for j = 1, . . . ,m− 1

to construct the whole system matrix U = U (m−1). While
conceptually simple, this quickly constitutes an extremely
complex task due to the exponential size of the involved
matrices (and vectors) with respect to the number of qubits. In
fact, equivalence checking of quantum circuits has been shown
to be QMA-complete [49].

B. Related Work

In order to tackle the underlying complexity, equivalence
checking of quantum circuits has been intensively considered
in the past. Inspired by methods for equivalence check-
ing of classical circuits [27]–[30], methods based on re-
writing [24], [31], Boolean satisfiability [32], and decision
diagrams [33]–[36] have been proposed. However, approaches
based on re-writing suffer from the fact that they are ei-
ther incomplete, provide inconclusive results in case of non-
equivalence, or may require the enumeration of an exponential
number of possibilities to check. Solvers for Boolean satis-
fiability may cope with these problems but, in the case of
quantum circuits, face the problem that an infinite number
of quantum states needs to be encoded.6 Because of that,
approaches based on decision diagrams (also called DD-based
equivalence checking) still constitute the state of the art for
equivalence checking of quantum circuits.

6This problem has partially been addressed in [32] by employing a detailed
structural analysis that restricts the number of possible states to a finite one.
However, the resulting encoding does not support key features of quantum
circuits such as entanglement and, hence, is not applicable for almost all
relevant quantum circuits.

Indeed, decision diagrams offer several benefits for this task:
As reviewed in Section II-B, they provide means for compact
representation and efficient manipulation of the respective
functionality realized by a quantum circuit. Moreover, most
decision diagrams provide a canonical way of representing
quantum functionality (usually with respect to a given variable
order and normalization scheme). Because of that, once the
functionalities of different quantum circuits are represented
as decision diagrams, checking their equivalence can be con-
ducted in constant time by simply comparing their root edges
(and the associated weights in case both circuits differ only
by a global phase factor).

Example 10. Consider again the two quantum cir-
cuits G and G′ from Ex. 8. Creating decision diagrams for
both circuits yields the representation as shown in Fig. 4. Since
representations for both, U and U ′, would point to the (same)
root node of this decision diagram, G and G′ are proven to
be functionally equivalent.

However, despite the benefits discussed above, DD-based
equivalence checking of quantum circuits as conducted thus
far still has significant shortcomings. In fact, representing
the entire functionality of a quantum circuit still might be
exponential in the worst case. Even if the representation
of the overall functionality of a circuit might be compact,
intermediate results may require significantly more space. As
an example, the final decision diagram discussed in Ex. 10
and shown in Fig. 4 is composed of seven nodes; however,
intermediate decision diagrams generated during the construc-
tion required up to nine nodes.7 Moreover, the generation
of a counterexample (which is supposed to be provided in
case two quantum circuits are not equivalent) requires further
potentially expensive manipulations of the decision diagrams.
In fact, in order to generate such a counterexample, the “dif-
ference” between the two non-equivalent decision diagrams
has to be determined. To this end, one decision diagram
has to be inverted (i.e., the conjugate-transpose representation
has to be generated) and multiplied with the other decision
diagram—requiring non-trivial operations on potentially large
representations. Then, any path in the resulting difference
decision diagram containing a node not resembling the identity
constitutes a counterexample.

Example 11. Consider again the quantum circuit G shown
in Fig. 1a and the erroneous circuit G̃′ from Ex. 9. Then, the
decision diagram representation of Ũ ′ would not point to the
same root node as the decision diagram for U—from which
it can be concluded that they are not equivalent. In order to
generate counterexamples, the difference of both circuits has
to be determined—requiring the inversion of the decision di-
agram for Ũ ′ (i.e., calculating the conjugate-transposed) and
multiplication with the decision diagram for U (see Fig. 4).
Eventually, this results in the decision diagram shown in
Fig. 7. From this, one may obtain, e.g., the counterexample
|(100)2〉 = |4〉 as observed previously in Ex. 9, since the
corresponding path contains the node q2—which does not

7An increase by two nodes might not seem substantial. However, for
realistic quantum circuits which represent much more complex functionality
than this example, the difference in the number of nodes between the final and
intermediate decision diagrams easily sums up to several orders of magnitudes.

6

q2

q1

q0

1

00

00

00

ω

Figure 7: Difference DD of G and G̃′

resemble the identity due to the rightmost edge weight being
equal to 1/

√
2(1 + i) 6= 1.

IV. GENERAL IDEAS

In this section, we illustrate the general ideas developed
in this work to address the shortcomings of the related work
discussed above and, indeed, to solve the equivalence checking
problem dramatically faster than ever before—in many cases
even just with a single simulation run. To this end, we utilize
certain characteristics of quantum computing. While those, at a
first glance, make the problem of verification harder compared
to the classical realm (circuits have to be supported which do
not only rely on 0’s and 1’s, but also on superposition or
entanglement), they also offer potential which has not really
been exploited yet. In the following, we sketch this unearthed
potential before dedicated equivalence checking schemes and
flows resulting from these ideas are covered in the remaining
sections of this paper.

A. Exploiting Reversibility

Many classical logic operations are irreversible
(e.g., x ∧ y = 0 does not allow one to determine the
precise values of x and y). As there is no bijective mapping
between input and output states, in general, the concept
of the inverse of a classical operation (or a sequence
thereof) does not make sense. In contrast, all quantum
operations are inherently reversible. Consider an operation g
described by the unitary matrix U . Then, its inverse U−1 is
efficiently calculated as the conjugate-transpose U†. Given
a sequence of m operations g0, . . . , gm−1 with associated
matrices U0, . . . , Um−1, the inverse of the corresponding
system matrix U = Um−1 · · ·U0 is derived by reversing the
operations’ order and inverting each individual operation, i.e.,
U−1 = U† = U†0 · · ·U

†
m−1.

Now consider two quantum circuits G and G′. In case
both circuits are functionally equivalent, this allows for the
conclusion that concatenating one circuit with the inverse of
the other realizes the identity function I, i.e.,

G ·G′−1 = G′−1 ·G = G−1 ·G′ = G′ ·G−1 ≡ I.8

Since, as discussed in Section II-B, the identity constitutes the
best case for decision diagrams (the identity can be represented
by a decision diagram of linear size), this offers significant
potential.

Unfortunately, creating such a concatenation in a naive
fashion, e.g., by computing U ·U ′† hardly yields any benefits
compared to the state of the art. That is, because, even if

8Throughout this paper we particularly focus on the arrangement G′−1 ·G
as it results in the “intuitive” order of matrix multiplication U ·U ′†. However,
all findings in this paper hold for any possible arrangement of G and G′.

the final decision diagram would be as compact as possible,
the full (and potentially exponential) decision diagrams repre-
senting U ≡ G and U ′† ≡ G′−1 would still be generated as
intermediate results. Even if the whole sequence of m +m′

operations is considered as one huge quantum circuit whose
functionality is to be constructed and compared to the identity,
this would still entail the construction of the full decision
diagram of one circuit for the first m(′) operations.

Example 12. Consider again the two circuits G and G′ from
Fig. 1a and Fig. 5 as discussed before in Ex. 10. Concatenating
G and G′−1 yields a quantum circuit G̃ = G · G′−1 with
4 + 16 = 20 gates. Since both computations are equivalent
(see Ex. 8) constructing the functionality of G̃ would eventually
yield an identity decision diagram as shown in Fig. 3. How-
ever, during the construction, the first four operations would
essentially construct the decision diagram for G as shown in
Fig. 4. Thus, there is no real benefit over the state of the art
when conducting equivalence checking in this fashion.

Instead, the full potential of this observation is utilized if the
associativity of the respective multiplications is fully exploited.
More precisely, given two quantum circuits G and G′, it holds
that

G′−1 ·G = (g′−1m′−1 . . . g
′−1
0) · (g0 . . . gm−1)

≡ (Um−1 · · ·U0) · (U ′†0 · · ·U
′†
m′−1)

= Um−1 · · ·U0 · I · U ′†0 · · ·U
′†
m′−1

=: G � I � G′.

Here, G � I � G′ symbolizes that, starting from the identity I,
either gates from G can be “applied from the left”, or
(inverted) gates from G′ can be “applied from the right”. If the
respective gates of G and G′ are applied in a fashion frequently
yielding the identity, the entire equivalence checking process
can be conducted with rather small (intermediate) decision
diagrams only. This is illustrated by the following example.

Example 13. Consider again the two circuits G and G′ from
Ex. 12 and assume that, starting with a decision diagram
representing the identity, gates from G and G′ are applied
as sketched in Fig. 8. Here, the top of the figure indicates
the respectively applied gates, and the bottom provides the
corresponding sizes of the decision diagrams. As can be seen,
applying the gates from G and G′ in a particular order
“from the left” and “from the right”, respectively, frequently
yields situations where the impact of a gate from circuit G
(potentially increasing the size of the decision diagram) is
reverted by multiplications with inverted gates from G′ (po-
tentially decreasing the size of the decision diagram back to
the representation of the identity function).

Moreover, even if the considered circuits G and G′ are not
functionally equivalent (and, hence, identity is not achieved),
the observations from above still promise improvements com-
pared to creating the complete decision diagrams for G and G′.
This is, because in this case, the result of G � I � G′

inherently provides an efficient representation of the circuit’s
difference that allows one to obtain counterexamples almost
“for free” (while state-of-the-art solutions have to explicitly
create those using additional inversion and multiplication
operations as discussed in Section III-B).

7

Gate application sequence: I g0 g′†0 g1 g′†1 g′†2 g′†3 g′†4 g2 g3 g′†5 g′†6 g′†7 g′†8 g′†9 g′†10 g′†11 g′†12 g′†13 g′†14 g′†15

DD node count: 3 3 3 4 3 3 4 4 6 6 7 7 7 5 5 4 3 3 3 3 3

Figure 8: Illustration of the general idea: G � I � G′ with G and G′ from Ex. 10 using decision diagrams

Example 14. Consider again the scenario of Ex. 11. In
contrast to the state-of-the-art equivalence checking routine,
applying the general idea proposed above follows the same
steps as illustrated in Fig. 8 up to the very last multiplication—
which is dropped. This precisely leads to the decision diagram
obtained in Ex. 11 and shown in Fig. 7. Thus, counterexamples
can easily be derived from this decision diagram (see Ex. 11).

Overall, exploiting this characteristic and following those
ideas, equivalence checking of two quantum circuits can be
conducted much more efficiently and compactly than before.
But determining when to apply gates from G and when
to apply (inverted) gates from G′ is not at all obvious.
Corresponding strategies for this purpose will be presented
and evaluated in Section V and Section VIII, respectively.

B. The Power of Simulation

The second characteristic we are exploiting rests on the
observation that simulation is much more powerful for equiv-
alence checking of quantum circuits than for equivalence
checking of classical circuits. More precisely, in the classical
realm, it is certainly possible to simulate two circuits with
random inputs to obtain counterexamples in case they are
not equivalent. However, this often does not yield the desired
result. In fact, due to masking effects and the inevitable
information loss introduced by many classical gates, the
chance of detecting differences in the circuits within a few
arbitrary simulations is greatly reduced (e.g., x ∧ 0 masks
any difference that potentially occurs during the calculation
of x). Consequently, sophisticated schemes for constraint-
based stimuli generation [39]–[42], fuzzing [43], [44], etc. are
employed in order to verify classical circuits.

This is significantly different in quantum computing. Here,
the inherent reversibility of quantum operations dramatically
reduces these effects and frequently yields situations where
even small differences remain unmasked and affect entire
system matrices—showing the power of random simulations
for checking the equivalence of quantum circuits. Because of
that, it is in general not necessary to compare the entire system
matrices—in particular when two circuits are not equivalent
and, hence, their system matrices differ from each other. Then,
rather than constructing the overall matrices U and U ′ for
both computations, it is sufficient to just compare a couple
of individual columns. If any of those columns differ, the
two circuits have been shown to be non-equivalent. This is
illustrated by the following example.

Example 15. Consider again the circuit G and the erroneous
circuit G̃′ from Ex. 9. As discussed earlier, the respective
system matrices U and Ũ ′ are shown in Fig. 1b and Fig. 6, re-
spectively. Upon comparison of U and Ũ ′, the non-equivalence
of both circuits is clearly seen. Moreover, since U and Ũ ′

differ in all their columns, this non-equivalence can also be
detected by constructing any two columns |ui〉 and |ũ′i〉, rather

than constructing the entire matrices U and Ũ ′. Specifically,
it holds that F(|ui〉 ,

∣∣ũi′〉) ≈ 0.92 for all i from 0 to 7.

While the construction of the matrix U (and accord-
ingly of U ′) requires expensive matrix-matrix multiplica-
tions Um−1 · · ·U0, the construction of a single column |ui〉
with i ∈ {0, . . . , 2n − 1} equates to simulating G with the
computational basis state |i〉 as input, i.e., performing the
matrix-vector multiplications

|u(0)i 〉 = U0 |i〉 , |u(j)i 〉 = Uj · |u(j−1)i 〉 for j ∈ {1, . . . ,m− 1}.

If the results of those simulations (respectively yielding the
ith columns |ui〉 = |u(m−1)i 〉 and |u′i〉 = |u

′(m′−1)
i 〉) differ,

the two circuits have been shown to be non-equivalent.
This constitutes an exponentially easier task than con-

structing the entire system matrices U and U ′—although the
complexity of simulation still remains exponential with respect
to the number of qubits. Regarding the complexity, creating the
entire system matrices corresponds to simulating the respec-
tive circuit with all 2n different computational basis states.
All this, of course, does not guarantee that any difference
is indeed detected by just simulating a limited number of
arbitrary computational basis states |i〉. But motivated by these
observations, a more detailed consideration of this direction
was triggered whose results are summarized in Section VI. In
combination with the ideas from Section IV-A, this eventually
leads to the proposal of an advanced equivalence checking
flow (described in detail in Section VII) which, first, quickly
checks for a possible non-equivalence with some simulation
runs. If no counterexample has been obtained by this, the
(highly probable) equivalence is proven afterwards. As evalu-
ations summarized in Section VIII confirm, this dramatically
outperforms the state of the art.

V. STRATEGIES FOR CONDUCTING G � I � G′

Following the general ideas outlined in Section IV-A poten-
tially allows one to conduct equivalence checking of quantum
circuits with decision diagrams in a significantly more efficient
fashion than before. However, to fully exploit the idea’s
potential, a “good” strategy for how to eventually conduct
G → I ← G′ (i.e., when to apply gates from G and when
to apply inverted gates from G′) is essential. In this section,
we propose several promising strategies and illustrate their
application.

A. Naive Strategy
The first strategy is motivated by the (rather naive) as-

sumption that a given circuit G is checked against itself, i.e.
G → I ← G. Then, obviously the best possible strategy is
to alternate between applications of gates from G and their
respective inverse—yielding the identity function after each
pair of operations. In case that G 6= G′ (and, without loss
of generality, assuming that m < m′, i.e., that G′ has more
gates), this strategy alternates between G and G′ until all

8

Naive (Section V-A): I g0 g′†0
g1 g′†1

g2 g′†2
g3 g′†3 g′†4 g′†5 g′†6 g′†7 g′†8 g′†9 g′†10 g′†11 g′†12 g′†13 g′†14 g′†15

3 3 3 4 3 5 5 5 6 6 7 7 7 5 5 4 3 3 3 3 3

Proportional (Section V-B): I g0 g′†0 g′†1 g′†2 g′†3
g1 g′†4 g′†5 g′†6 g′†7

g2 g′†8 g′†9 g′†10 g′†11
g3 g′†12 g′†13 g′†14 g′†15

3 3 3 4 4 5 4 4 7 7 7 7 5 5 4 4 3 3 3 3 3

Look-ahead (Section V-C): I g0 g′†0
g1 g′†1 g′†2 g′†3 g′†4

g2 g3 g′†5 g′†6 g′†7 g′†8 g′†9 g′†10 g′†11 g′†12 g′†13 g′†14 g′†15

3 3 4 4 6 5 5 6 6 6

3 3 4 3 3 4 4 7 7 7 7 7 5 5 4 3 3 3 3 3

Figure 9: Application of the proposed strategies and corresponding node counts (for the circuits G and G′ from Ex. 10)

gates of G have been applied. Afterwards, the “left-over” gates
from G′ are applied. This strategy supposedly works well if G
and G′ are very similar, but obviously looses its benefits if
both circuits significantly differ in their structure (in particular
if one circuit has significantly more gates than the other, i.e.,
if m� m′).

Example 16. Consider again the two circuits G and G′ as
discussed before in Ex. 10. Applying the naive strategy leads
to an order of gate applications as shown at the top of Fig. 9
with the corresponding node count listed below the respective
identifier. During this process, the size of the (intermediate)
decision diagrams never exceeds 7 nodes, while the average
node count is 4.43. This is significantly less than required by
the state-of-the-art approach which has a maximal node count
of 9 and an average one of 5.95.

B. Proportional Strategy
Applying the naive strategy to circuits which, structurally,

are significantly different obviously leads to an imbalance
since a huge portion of “left-over” gates are applied—possibly
neglecting the effect of staying close to the identity function.
In order to avoid that, the proportional strategy aims for a
more balanced approach. To this end, first, the ratio with
respect to the number of gates for both circuits is determined.
Afterwards, the gates from G and G′ are proportionally
applied according to this ratio.

Example 17. Consider again the two circuits G and G′ as
discussed before in Ex. 10. The ratio between their gate counts
is 4 : 16 = 1 : 4. Hence, applying the proportional strategy
leads to an order of gate applications as shown in the second
row of Fig. 9 with the corresponding node count listed below
the respective identifier. During this process, the size of the
(intermediate) decision diagrams never exceeds 7 nodes, while
the average node count is 4.33. For the problem at hand, this
strategy constitutes near optimal performance.

C. Look-ahead Strategy
Despite strategies considering structural elements of the

given circuits for deciding the actions to be performed, also
schemes based on the actual size of the (intermediate) decision
diagrams may provide a good indication of how to proceed.
Recall that the general aim is to stay as close as possible to
the identity function (leading to the smallest possible decision
diagram). Hence, the decision to apply a gate either from
G or G′ can be based on which case actually leads to a
smaller decision diagram. This is conducted by the look-
ahead scheme. While this potentially doubles the number of

multiplications to be performed (since both alternatives have
to be checked out), it may lead to smaller decision diagrams
and, by this, a more efficient equivalence checking routine.

Example 18. Consider again the two circuits G and G′ as
discussed before in Ex. 10. Applying the look-ahead strategy
leads to an order of gate applications as shown in the third row
of Fig. 9. As long as there are still gates left to be multiplied
in both circuits, the bottom of Fig. 9 indicates the node count
of both alternatives (G on top, G′ on the bottom). The bold
line indicates which path was chosen. The resulting sequence
of operations is exactly the one shown in Fig. 8 which was
employed in Ex. 13—resulting in a maximum of 7 nodes, while
the average node count is 4.24.

Even for the small example showcased throughout this
section, all proposed strategies perform significantly better in
terms of maximum as well as average decision diagram size
when compared to the state-of-the-art approach.

VI. INVESTIGATING THE POWER OF SIMULATION

In Section IV-B, we illustrated the potential power of
simulation for equivalence checking and argued that, in case
two quantum circuits G and G′ operating on n qubits are
not equivalent, even a few simulation runs will likely yield a
counterexample. This idea triggered a more detailed consider-
ation in which we elaborated how significantly the matrices U
and U ′ differ from each other in case of non-equivalence and
whether this would make an incomplete coverage of the func-
tionality feasible. The results obtained by this consideration
are summarized in this section.

To this end, we first introduce the notion of the difference
of two unitary matrices. Given two unitary matrices U and U ′,
their difference D is defined as the unitary matrix D = U†U ′

and it holds that U · D = U ′.9 In case both matrices are
identical (i.e., the circuits are equivalent), it directly follows
that D = I. One characteristic of the identity function I
resulting in this case is that all diagonal entries are equal
to one, i.e., 〈i|U†U ′ |i〉 = 1 for i ∈ {0, . . . , 2n − 1},
where |i〉 denotes the ith computational basis state. More
generally—in case of a potential relative/global phase differ-
ence between G and G′—all diagonal elements have modulus
one, i.e., | 〈i|U†U ′ |i〉 |2 = 1. This expression can further be
rewritten to

1 = | 〈i|U†U ′ |i〉 |2 = |(U |i〉)†(U ′ |i〉)|2 = | |ui〉† |u′i〉 |2

= | 〈ui|u′i〉 |2,

9Similarly to picking G′−1 ·G in Section IV-A, the particular arrangement
D = U†U ′ is just one of the four possibilities to introduce the notion of the
difference of two unitaries.

9

where |ui〉 and |u′i〉 denote the ith column of U and
U ′, respectively. This essentially resembles the simulation
of both circuits with the initial state |i〉 and, afterwards,
calculating the fidelity F between the resulting states |ui〉
and |u′i〉 (see Section III-A). Hence, if only one simu-
lation yields Fi := F(|ui〉 , |u′i〉) 6≈ 1, then |i〉 proves the
non-equivalence of G and G′.

Now, the question is how many computational basis
states |i〉 yield Fi 6≈ 1 for a given difference matrix D,
i.e., how likely it is for an arbitrary simulation to detect
possible differences. Since the difference D of both matrices
is unitary itself, it may as well be interpreted as a quantum
circuit GD. For the purpose of this theoretical consideration,
we assume that each gate of GD either represents a single-
qubit or a (multi-)controlled operation10.

Example 19. Assume that GD only consists of one (non-
trivial) single-qubit operation defined by the matrix Us applied
to the first of n qubits. Then, the system matrix D is given by

D = I2n−1 ⊗ Us =

[
Us

Us

]
.

The process of going from U to U ′, i.e., calculating U · D,
impacts all columns of U . Thus, an error is detected by a
single simulation with any computational basis state.

Among all quantum operations, single-qubit operations
posses a system matrix least similar to the identity matrix due
to the tensor product structure of their corresponding system
matrix.

Example 20. In contrast to Ex. 19, assume that GD only
consists of one operation Us targeted at the first qubit and
controlled by the remaining n − 1 qubits. Then, the corre-
sponding system matrix is given by

D =
[I2

I2
Us

]
.

In this case, applying D to U only affects the last two columns
of U . As a consequence, a maximum of two columns (out of 2n)
may serve as counterexamples—the worst case scenario.

These basic examples cover the extreme cases when
it comes to the difference of two unitary matrices. In
case GD exhibits no such simple structure, the analy-
sis is more involved, e.g., generally quantum operations
with c ∈ {0, . . . , n− 1} controls will exhibit a difference in
2n−c columns. Furthermore, given two operations showing a
certain number of differences, the matrix product of these
operations in most cases (except when cancellations occur)
differs in as many columns as the maximum of both operands.

Example 21. Consider a two-qubit system and two circuits
G and G′ exhibiting a difference-circuit GD consisting of
two gates—the first of which is a Hadamard operation H(q1)
on the second qubit, while the second is a CNOT opera-
tion CNOT (q1, q0) with target on the first and control on
the second qubit. As discussed in Ex. 19 and Ex. 20, the
application of the single-qubit matrix UH affects all columns,

10This does not limit the applicability of the following findings, since
arbitrary single-qubit operations combined with CNOT form a universal gate-
set [1].

while the application of the controlled two-qubit operation
matrix UCNOT only affects two of the four columns. Their
combination, however, still affects all columns of the result.

The gate-set provided by (current) quantum computers typ-
ically includes only (certain) single-qubit gates and a specific
two qubit gate, such as the CNOT gate. Thus, multi-controlled
quantum operations usually only arise at the most abstract
algorithmic description of a quantum circuit and are then
decomposed into elementary operations from the device’s
gate-set before the circuit is mapped to the target architecture.
As a consequence, errors occurring during the design flow
will typically consist of (1) single-qubit errors, e.g., offsets in
the rotation angle, or (2) errors related to the application of
CNOT or SWAP gates. In both cases, non-equivalence can
be efficiently concluded by a limited number of simulations
with arbitrary computational basis states.

Of course, this cannot be guaranteed—otherwise, the prob-
lem would hardly be QMA-complete. However, following
the above discussion and considering that comparing single
columns (i.e., a partial consideration of the functionality) is
substantially cheaper than a full functional coverage, the sim-
ulation of arbitrary computational basis states is a promising
option. Moreover, as also confirmed by the experimental eval-
uation in Section VIII-D, if a counterexample was not obtained
after a few simulations, this yields a highly probable estimate
of the circuit’s equivalence—in contrast to the classical realm,
where this generally does not allow for any conclusion.

VII. RESULTING ADVANCED
EQUIVALENCE CHECKING FLOW

The general ideas proposed in Section IV and elaborated
in Section V as well as Section VI complement each other in
many different ways. Trying to keep G � I � G′ close to the
identity (see Section IV-A) proves very efficient in case two
circuits are indeed equivalent—provided a “good” strategy can
be employed. Conducting simulations with randomly chosen
computational basis states |i〉 (see Section IV-B) on the other
hand allows to quickly detect non-equivalence even in cases
where both circuits only differ slightly. This section first
describes how these findings eventually result in an advanced
equivalence checking flow—followed by a discussion of the
resulting methodology.

A. Resulting Flow
The motivation and considerations above eventually led us

to an advanced equivalence checking flow as shown in Fig. 10.
Here, instead of constructing and comparing the complete
matrix representations of both circuits, we propose to first
perform a limited number of r � 2n simulation runs with
randomly chosen computational basis states. Should one of
those simulations yield different outputs in both circuits (i.e.,
a fidelity Fi 6≈ 1), the non-equivalence of the circuits under
consideration has been shown. If this is not the case, the
equivalence checking routine G � I � G′ is utilized to
complete the task. Moreover, if simulation has not revealed any
differences, the likelihood of the circuits being non-equivalent
is significantly reduced as shown in the discussions from
Section VI and confirmed by the evaluations in Section VIII.
Overall, this eventually leads to three possible outcomes:

10

Randomly
choose
|i〉

|i2〉 |(ui)2〉
|i1〉 H |(ui)1〉
|i0〉 |(ui)0〉

g0 g1 g2 g3

· · ·
· · ·
· · ·

|i2〉
∣∣(u′

i)2
〉

|i1〉 H
∣∣(u′

i)1
〉

|i0〉 H
∣∣(u′

i)0
〉

g′0 g′1 g′2 · · ·

Same output upon simulation with input state |i〉?

|i〉 =

|i〉 =

= |ui〉

= |u′
i〉

F i ≈ 1?

Simulation Runs

H

g3 g2 g1 g0

· · ·
· · ·
· · ·

H

H

g′0 g′1 g′2 · · ·

q1

q2

q0

1

00

00

00

(inverted)

IG G′

Equivalent according to equivalence checking routine?

EC Routine

No

Yes

Timeout

×

X

X?

Not
equivalent

Equivalent

Probably
equivalentr runs?

Yes Yes

No

No

Figure 10: Proposed equivalence checking flow

• Not equivalent, if any simulation run yields Fi 6≈ 1 or if
the equivalence checking routine is employed after the
simulation runs and yields this result.11 As confirmed
by the evaluations summarized later in Section VIII,
this can be conducted very efficiently in many cases,
while state-of-the-art equivalence checking routines re-
quire substantial runtime or even time out frequently.

• Equivalent, if, after r simulation runs, the equivalence
checking routine is employed and yields that result. If this
is the case, the simulation runs conducted before (which
did not lead to a conclusive result) only constitute a neg-
ligible runtime overhead. As discussed earlier, this is be-
cause constructing the whole functionality is complexity-
wise equivalent to simulating all 2n computational basis
states and we have chosen r � 2n.

• Timeout, if the simulation runs did not lead to a coun-
terexample and the equivalence checking routine was not
able to complete the task within a given resource limit.
If this is the case, we at least get an indication that
both circuits might be equivalent (since the conducted
simulations did not provide a counterexample which,
according to the discussions from Section VI, is rather
rare). Even if this does not provide a guarantee of non-
equivalence, this is a stronger result than provided by the
state of the art thus far, which does not allow for any
kind of conclusion in this case.

B. Discussion
The resulting equivalence checking flow with the combi-

nation of using the power of simulation together with the
dedicated G � I � G′ scheme dramatically improves the
state of the art. In contrast to constructing and comparing the
whole functionality of two circuits, simulation can typically be
conducted significantly faster while already providing valuable
insights, i.e., a counterexample or an indication that both
circuits might be equivalent. If the results of simulation remain
inconclusive, i.e., no counterexample was found, the subse-
quent functional comparison can be improved by utilizing the
G � I � G′ scheme. Even if the latter step (the actual
proof) cannot be completed due to time or resource limits,
a meaningful result has already been obtained after conduct-
ing the simulations—namely that the circuits are presumably
equivalent—while previously proposed approaches provide no
indication on the equivalence at all.

Naturally, there are cases where even single simulation runs
prove too resource-consuming to conduct. Especially in cases
where simulation fails due to the immense complexity of the

11As a consequence of the discussions from Section VI it is far more likely
that this result already occurs during simulation.

involved state vector, the G � I � G′ scheme still provides
a complementary alternative. If a strategy can be employed
which manages to keep the intermediate decision diagrams
close to the identity, the whole procedure can again be
conducted with a rather low memory footprint. The design of
corresponding strategies could benefit from specific knowledge
about the origin of both circuits, e.g., if G′ is the result of
compiling G to a certain target device. It is left for future
work to explore such application-specific strategies based on
the G � I � G′ scheme.

Besides that, our discussions in Section VI show that choos-
ing computational basis states uniformly at random as input
for the simulation part of the proposed equivalence checking
flow promises high success rates in the quantum realm. This
is in stark contrast to the (simulative) verification of classical
circuits, where sophisticated techniques such as constrained-
based stimuli generation [39]–[42], fuzzing [43], [44], etc.
have to be employed for such techniques to work at all.
Our experimental results (summarized in the next section)
empirically show that such sophisticated techniques might not
be that urgently needed in the quantum realm. First results
towards the study of quantum stimuli generation schemes have
been obtained in [50].

Furthermore, previous works on equivalence checking of
quantum circuits often employed several optimizations such as
template replacement [24], [31]. Potential candidates include
optimizations frequently used during compilation [18], [21]–
[24] (as reviewed in Section I). Those optimization techniques
may of course also be applied in the methodology proposed
here—as long as the optimization itself is valid (which could
be verified beforehand using the proposed methodology). In
general, lowering the gate count of the respective circuits (or
their concatenation in case of the G � I � G′ scheme)
can be expected to improve the performance of the proposed
equivalence checking flow (since less operations have to be
applied).

Finally, there is no need to conduct both complementary
steps (simulation and the G � I � G′ scheme) in a sequential
fashion as proposed in Fig. 10. In fact, the r simulations
and the G � I � G′ scheme could also be started in parallel
(provided sufficient memory and processor resources). If then,
any of the simulations yields a counterexample, the remaining
calculations can be aborted. Vice versa, if the equivalence
checking routine returns “equivalent”, any ongoing simulation
runs can be stopped.

VIII. EXPERIMENTAL EVALUATION
In order to evaluate the ideas and methods proposed above,

the advanced methodology for equivalence checking of quan-
tum circuits (as summarized in Fig. 10) has been implemented

11

and integrated into the JKQ toolset [51]. For simulation, the
method proposed in [46] based on the decision diagram pack-
age proposed in [47] has been used and we fixed r = 16, i.e.,
we conduct up to sixteen random simulations before opting
for the equivalence checking routine if no counterexample
has been obtained. The dedicated strategies for conducting
G � I � G′ (proposed in Section V) have been implemented
on top of the above decision diagram package as well. In this
section, we summarize the obtained results. To this end, we
first review the further setup, before the results themselves are
covered.

A. Setup
In order to evaluate the performance of the proposed equiv-

alence checking flow, we used benchmarks frequently consid-
ered for evaluating quantum circuit compilers, simulators, and
equivalence checking tools—taken from [52]. Each benchmark
consists of a “high-level” description G (directly obtained
from [52]) as well as a “low-level” description G′ generated by
compiling the given descriptions into elementary gates and/or
mapping them for a certain quantum computer architecture
using IBM Qiskit [53].

The performance is compared against the state-of-the-art
equivalence checking technique taken from [34] (see Ex. 8).
All computations have been performed on a 4 GHz
Amazon EC2 z1d instance running Ubuntu 18.04 with at least
32 GB per job using GNU Parallel [54]. A hard timeout of 1 h
(i.e., 3 600 s) was set for each run.

In the following, we provide a representative subset of
the obtained results. Additionally, the implementation of the
proposed methodology (together with an archive of all bench-
marks) is publicly available at https://iic.jku.at/eda/research/
quantum_verification for further evaluation.

B. Showing Equivalence
In a first series of evaluations, we considered cases where

the two given circuits G and G′ are equivalent. Table I
provides the obtained results. The first columns describe the
benchmarks themselves (i.e., their name, number n of qubits,
as well as the gate count |G| and |G′|), followed by the runtime
tsota (in CPU seconds) for the state-of-the-art approach. Then,
the performance of the proposed flow is listed—split into the
runtime tsim for the simulation runs as well as the runtime
of the individual G � I � G′ strategies. Finally, the last
columns list the total runtime tproposed of the proposed scheme
and its relative improvement compared to the state-of-the-art
routine12.

From the results it can be seen that, in the majority of
cases, the dedicated strategies proposed in this work reduce the
equivalence checking time down to a half or a third compared
the state-of-the-art routine. Especially the proportional strat-
egy performs rather well in this regard—sometimes leading
to magnitudes of improvement. Furthermore, the additionally
conducted simulations only lead to a negligible run-time
overhead to the overall flow. Hence, although they cannot
prove equivalence, they also do not “hurt” much. On the

12The total runtime tproposed is calculated as the sum of the simulations’
runtime and the runtime of the proportional scheme which, as discussed next,
turns out to be the most efficient scheme, i.e., tproposed = tsim + tprop .

contrary, as discussed in Section VII and further confirmed by
the following evaluations, they often provide indications of the
circuits’ equivalence—in particular for cases where no decisive
answer could be obtained by any equivalence checking routine
due to timeouts (e.g., for the topmost four benchmarks in
Table I), this is better than no result at all.

C. Showing Non-equivalence
In a second series of evaluations, we considered cases where

the two given circuits G and G′ are not equivalent. To this end,
we injected errors into each benchmark by removing either
one or a total of three random gates from the corresponding
circuit G′. This led to benchmarks, where the difference
between G and G′ is difficult to detect (usually, differences
caused by errors in the compilation flow would have much
more severe effects). The respectively obtained results are
provided in Table II.

Using the state-of-the-art approach, detecting these dif-
ferences indeed causes substantial runtimes—or cannot be
completed within the given time limit at all. In contrast, the
proposed methodology can determine the non-equivalence for
all benchmarks in just a matter of seconds or even less.
Moreover, in the vast majority of cases, simulation alone
is capable of showing the non-equivalence—in more or less
negligible run-time. Only in the case of mlp4_245 (and only
assuming the removal of a single gate, i.e., a most subtle
difference), an actual equivalence checking routine is needed.
Here, the G � I � G′ strategies can finish the job in feasible
runtime.

On top of that, the results also show that it is indeed rather
unlikely that differences get masked so that they cannot be
detected by simulation. While this indeed happens in case just
one gate is removed (as reported in Table IIa for benchmark
mlp4_245), not a single such instance exists in our evaluation
if three gates are removed (which still constitute rather subtle
differences compared to the effect an actual error in the
compilation flow would have on G′). In fact, Table IIb shows
that, in the majority of cases, a single simulation run (and
never more than 3 runs) are necessary to detect the error—
clearly demonstrating the power of simulation.

D. The Power of Simulation

In order to further evaluate the power of simulation, we
finally conducted a third series of evaluations in which the
success probability of the simulation part was evaluated in
detail. To this end, not just a single erroneous instance has
been considered for each benchmark, but a hundred different
instances with either one or three gates removed have been
created. Afterwards, we again executed r = 16 simulation runs
to check whether this shows the respective non-equivalence.
Table III provides the obtained results, i.e., the average number
of simulations, the average and the maximum simulation
runtime, as well as the success probability, i.e., the probability
that non-equivalence was detected within sixteen simulations.

In cases where just a single gate was removed from the
circuit (which, thus far, was really hard, if not impossible, to
detect), the success probability is 85.2 % on average. Already
this provides a rather strong argument that, when checking the

https://iic.jku.at/eda/research/quantum_verification
https://iic.jku.at/eda/research/quantum_verification

12

Table I: Equivalent benchmarks

Benchmark State-of-the-art Proposed Equivalence Checking Flow
EC Routine Simulation Runs EC Routine

Name n |G| |G′| tsota [s] #sims tsim [s] tnaive [s] tprop [s] tlook [s] tproposed [s]
tproposed
tsota

apla_203 22 80 13 548 >3 600.00 16 2.68 >3 600.00 >3 600.00 >3 600.00 >3 600.00 -
cm151a_211 28 33 3 889 >3 600.00 16 1.01 >3 600.00 >3 600.00 >3 600.00 >3 600.00 -
rd84_313 34 113 2 295 >3 600.00 16 0.65 >3 600.00 >3 600.00 >3 600.00 >3 600.00 -
mod5adder_306 32 110 2 348 >3 600.00 16 0.66 >3 600.00 >3 600.00 >3 600.00 >3 600.00 -
sym9_317 27 64 1 540 >3 600.00 16 0.39 >3 600.00 63.61 1 484.83 64.00 -
c2_182 35 305 2 545 >3 600.00 16 0.73 2 664.79 2 500.79 3 081.50 2 501.52 -
cm163a_213 29 39 3 539 >3 600.00 16 0.94 496.95 183.93 503.43 184.87 -
cm150a_210 22 53 31 595 3 452.70 16 3.43 >3 600.00 0.59 10.24 4.03 0.001
rd73_312 25 76 1 426 1 108.62 16 0.36 598.57 196.10 761.75 196.47 0.177
c2_181 35 116 2 708 403.80 16 0.77 60.53 4.06 62.58 4.83 0.012
example2_231 16 157 19 411 187.63 16 3.31 133.82 79.62 132.26 82.93 0.442
cu_219 25 40 5 031 177.15 16 1.12 124.00 72.20 121.63 73.32 0.414
C7552_205 21 80 6 384 158.30 16 1.26 93.96 80.38 94.50 81.64 0.516
add6_196 19 229 262 179 150.56 16 25.92 79.49 13.85 78.62 39.78 0.264
dk17_224 21 49 6 650 105.19 16 1.22 39.77 36.56 39.78 37.78 0.359
mlp4_245 16 131 14 513 79.06 16 2.41 33.13 22.69 34.95 25.10 0.317
alu1_198 20 32 1 377 13.19 16 0.36 8.44 4.02 7.23 4.39 0.333
5xp1_194 17 85 5 487 10.78 16 1.10 5.07 4.59 5.16 5.70 0.529
pcler8_248 21 22 1 522 3.44 16 0.38 2.06 1.66 1.99 2.04 0.593
dk27_225 18 24 1 208 2.83 16 0.31 1.82 1.48 1.48 1.78 0.629

n: Number of qubits |G|: Gate count of G |G′|: Gate count of G′ tsota : Runtime of state-of-the-art EC routine #sims: Number of simulation runs
tsim : Runtime of simulation runs tnaive/tprop/tlook : Runtime of EC routine tproposed : Runtime of proposed EC flow

equivalence of quantum circuits, simulation frequently is suffi-
cient (in contrast to the classical realm, where masking effects
frequently make simulation insufficient). Moreover, removing
just two more gates (still constituting a rather subtle difference
compared to the effect an actual error in the compilation flow
may have on G′) results in an average success probability
which is very close to 100 %. Additionally considering that
the runtime for that is almost always negligible, this clearly
shows the power of simulation to either quickly show the non-
equivalence of two circuits or, at least, provide an indication
of equivalence.

IX. CONCLUSIONS

In this paper, we proposed an advanced methodology for
equivalence checking of quantum circuits which takes the
different paradigms of quantum computing not as burden, but
as an opportunity. If a “good” strategy for keeping G � I � G′

close to the identity is available, obtaining the complete
proof of two circuit’s equivalence can be dramatically accel-
erated. Furthermore, we showed that, in contrast to classical
computing, inherent characteristics of quantum circuits allow
for the conclusion that simulations provide an indication on
whether two circuits are equivalent—even in the case of rather
minor differences. Experimental evaluations confirmed that the
resulting methodology allows one to check the equivalence or
non-equivalence magnitudes faster than ever before—and, in
many cases, by simulation only.

Specifically, strategies for keeping G � I � G′ close
to the identity may be derived from utilizing information
about how a given circuit G is compiled to a resulting
implementation G′. First studies on verifying the results of
IBM’s quantum circuit compilation flow Qiskit [53] employing
the proposed methodology have been conducted in [55]. In
contrast to the classical realm, this could eventually make
verifying the results of sophisticated design flows feasible
in general. An implementation of the proposed equivalence
checking flow is publicly available at https://iic.jku.at/eda/
research/quantum_verification/.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria
as well as by the BMK, BMDW, and the State of Upper Austria
in the frame of the COMET program (managed by the FFG).

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2010.
[2] B. Giles and P. Selinger, “Exact synthesis of multiqubit Clifford+T

circuits,” Phys. Rev. A, vol. 87, no. 3, p. 032 332, 2013.
[3] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-

middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 32, no. 6,
pp. 818–830, 2013.

[4] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler, “Improving the
mapping of reversible circuits to quantum circuits using multiple target
lines,” in Asia and South Pacific Design Automation Conf., 2013.

[5] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-control Toffoli gates,” in Int’l Symp. on Multi-
Valued Logic, 2011.

[6] D. Maslov, “On the advantages of using relative phase Toffolis with
an application to multiple control Toffoli optimization,” Phys. Rev. A,
vol. 93, no. 2, p. 022 311, 2016.

[7] M. Y. Siraichi, V. F. dos Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proc. Int’l Symp. on Code Generation and
Optimization, 2018, pp. 113–125.

[8] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1226–
1236, 2019.

[9] A. Zulehner and R. Wille, “Compiling SU(4) quantum circuits to IBM
QX architectures,” in Asia and South Pacific Design Automation Conf.,
Tokyo, Japan, 2019, pp. 185–190.

[10] K. N. Smith and M. A. Thornton, “A quantum computational compiler
and design tool for technology-specific targets,” in Int’l Symp. on
Computer Architecture, 2019, pp. 579–588.

[11] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and H
operations,” in Design Automation Conf., 2019.

[12] A. Matsuo and S. Yamashita, “An efficient method for quantum
circuit placement problem on a 2-D grid,” in Int’l Conf. of Reversible
Computation, 2019, pp. 162–168.

[13] M. Amy and V. Gheorghiu, “Staq—A full-stack quantum processing
toolkit,” Quantum Sci. Technol., vol. 5, no. 3, p. 034 016, 2020.

[14] A. Cowtan et al., “On the qubit routing problem,” in Theory of quantum
computation, communication and cryptography, 2019.

[15] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, 2018.

https://iic.jku.at/eda/research/quantum_verification/
https://iic.jku.at/eda/research/quantum_verification/

13

Table II: Non-equivalent benchmarks
(a) Removed 1 random gate

Benchmark State-of-the-art Proposed Equivalence Checking Flow
EC Routine Simulation Runs EC Routine

Name n |G| |G′| tsota [s] #sims tsim [s] tnaive [s] tprop [s] tlook [s] tproposed [s]

apla_203 22 80 13 547 >3 600.00 1 0.15 - - - 0.15
cm151a_211 28 33 3 888 >3 600.00 2 0.12 - - - 0.12
rd84_313 34 113 2 294 >3 600.00 4 0.16 - - - 0.16
mod5adder_306 32 110 2 347 >3 600.00 4 0.17 - - - 0.17
c2_182 35 305 2 544 >3 600.00 1 0.05 - - - 0.05
cm150a_210 22 53 31 594 >3 600.00 1 0.62 - - - 0.62
rd73_312 25 76 1 425 >3 600.00 1 0.02 - - - 0.02
sym9_317 27 64 1 539 >3 600.00 1 0.02 - - - 0.02
cm163a_213 29 39 3 538 >3 600.00 3 0.17 - - - 0.17
cu_219 25 40 5 030 >3 600.00 1 0.09 - - - 0.09
c2_181 35 116 2 707 899.19 1 0.05 - - - 0.05
example2_231 16 157 19 410 194.51 1 0.18 - - - 0.18
C7552_205 21 80 6 383 160.90 3 0.23 - - - 0.23
add6_196 19 229 262 178 143.05 1 0.33 - - - 0.33
dk17_224 21 49 6 649 106.03 11 0.84 - - - 0.84
mlp4_245 16 131 14 512 80.97 16 2.36 33.81 23.35 33.02 25.71
alu1_198 20 32 1 376 42.56 1 0.03 - - - 0.03
5xp1_194 17 85 5 486 11.43 1 0.07 - - - 0.07
pcler8_248 21 22 1 521 4.41 8 0.19 - - - 0.19
dk27_225 18 24 1 207 3.45 1 0.02 - - - 0.02

n: Number of qubits |G|: Gate count of G |G′|: Gate count of G′ tsota : Runtime of state-of-the-art EC routine #sims: Number of simulation runs
tsim : Runtime of simulation runs tnaive/tprop/tlook : Runtime of EC routine tproposed : Runtime of proposed EC flow

(b) Removed 3 random gates

Benchmark State-of-the-art Proposed Equivalence Checking Flow
EC Routine Simulation Runs EC Routine

Name n |G| |G′| tsota [s] #sims tsim [s] tnaive [s] tprop [s] tlook [s] tproposed [s]

apla_203 22 80 13 545 >3 600.00 3 0.50 - - - 0.50
cm151a_211 28 33 3 886 >3 600.00 1 0.08 - - - 0.08
rd84_313 34 113 2 292 >3 600.00 1 0.04 - - - 0.04
mod5adder_306 32 110 2 345 >3 600.00 1 0.04 - - - 0.04
c2_182 35 305 2 542 >3 600.00 1 0.04 - - - 0.04
sym9_317 27 64 1 537 >3 600.00 1 0.03 - - - 0.03
cm163a_213 29 39 3 536 >3 600.00 3 0.18 - - - 0.18
c2_181 35 116 2 705 >3 600.00 1 0.05 - - - 0.05
C7552_205 21 80 6 381 >3 600.00 1 0.12 - - - 0.12
add6_196 19 229 262 176 >3 600.00 1 1.66 - - - 1.66
cu_219 25 40 5 028 >3 600.00 2 0.16 - - - 0.16
rd73_312 25 76 1 423 >3 600.00 1 0.02 - - - 0.02
cm150a_210 22 53 31 592 2 982.74 1 0.19 - - - 0.19
example2_231 16 157 19 408 1 215.63 1 0.26 - - - 0.26
dk17_224 21 49 6 647 327.62 1 0.07 - - - 0.07
mlp4_245 16 131 14 510 186.00 1 0.14 - - - 0.14
alu1_198 20 32 1 374 84.76 1 0.03 - - - 0.03
5xp1_194 17 85 5 484 21.52 1 0.08 - - - 0.08
dk27_225 18 24 1 205 5.22 1 0.02 - - - 0.02
pcler8_248 21 22 1 519 4.03 1 0.02 - - - 0.02

n: Number of qubits |G|: Gate count of G |G′|: Gate count of G′ tsota : Runtime of state-of-the-art EC routine #sims: Number of simulation runs
tsim : Runtime of simulation runs tnaive/tprop/tlook : Runtime of EC routine tproposed : Runtime of proposed EC flow

[16] W. Hattori and S. Yamashita, “Quantum circuit optimization by chang-
ing the gate order for 2D nearest neighbor architectures,” in Int’l Conf.
of Reversible Computation, 2018, pp. 228–243.

[17] Z. Sasanian and D. M. Miller, “Reversible and quantum circuit
optimization: A functional approach,” in Int’l Conf. of Reversible
Computation, 2013, pp. 112–124.

[18] G. Vidal and C. M. Dawson, “Universal quantum circuit for two-
qubit transformations with three controlled-NOT gates,” Phys. Rev. A,
vol. 69, no. 1, p. 010 301, 2004.

[19] T. Itoko, R. Raymond, T. Imamichi, A. Matsuo, and A. W. Cross,
“Quantum circuit compilers using gate commutation rules,” Asia and
South Pacific Design Automation Conf., pp. 191–196, 2019.

[20] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated
optimization of large quantum circuits with continuous parameters,”
npj Quantum Inf, vol. 4, no. 1, p. 23, 2018.

[21] D. Maslov, G. Dueck, D. Miller, and C. Negrevergne, “Quantum
circuit simplification and level compaction,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 3, pp. 436–444, 2008.

[22] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel,
“Data structures and algorithms for simplifying reversible circuits,” J
Emerg Technol Comput Syst, vol. 2, no. 4, pp. 277–293, 2006.

[23] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-Based quantum circuits,” in Design Automation
Conf., 2002, pp. 419–424.

[24] R. Duncan, A. Kissinger, S. Perdrix, and J. van de Wetering. (2019).
“Graph-theoretic simplification of quantum circuits with the ZX-
calculus.” arXiv: 1902.03178.

[25] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S.
Ghosh, “MUQUT: Multi-constraint quantum circuit mapping on NISQ
computers: Invited paper,” in Int’l Conf. on CAD, 2019.

[26] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Noise-adaptive compiler mappings for Noisy
Intermediate-Scale Quantum computers,” in Int’l Conf. on Architec-
tural Support for Programming Languages and Operating Systems,
2019, pp. 1015–1029.

[27] D. Brand, “Verification of large synthesized designs,” in Int’l Conf. on
CAD, 1993, pp. 534–537.

[28] P. Molitor and J. Mohnke, Equivalence checking of digital circuits:
Fundamentals, principles, methods. Springer, 2010.

[29] J. Marques-Silva and T. Glass, “Combinational equivalence checking
using satisfiability and recursive learning,” in Design, Automation and
Test in Europe, 1999.

https://arxiv.org/abs/1902.03178

14

Table III: Simulation runtime and success probability

Benchmark Removed 1 random gate Removed 3 random gates

Name n |G| |G′| #inst ∅#sims ∅tsim [s] max tsim [s] psuccess ∅#sims ∅tsim [s] max tsim [s] psuccess

apla_203 29 80 13 548 100 4.40 0.62 2.46 0.83 1.33 0.23 1.43 1.00
cm151a_211 37 33 3 889 100 5.00 0.24 0.87 0.81 1.35 0.07 0.63 1.00
rd84_313 37 113 2 295 100 3.56 0.13 0.63 0.86 1.07 0.04 0.15 1.00
mod5adder_306 37 110 2 348 100 2.86 0.10 0.62 0.90 1.11 0.04 0.19 1.00
sym9_317 28 64 1 540 100 4.10 0.09 0.43 0.84 1.34 0.03 0.37 0.99
c2_182 37 305 2 545 100 2.31 0.09 0.68 0.97 1.14 0.05 0.14 1.00
cm163a_213 37 39 3 539 100 4.78 0.24 0.82 0.84 1.36 0.07 0.30 1.00
cm150a_210 22 53 31 595 100 4.20 0.76 3.09 0.82 1.17 0.21 0.69 1.00
rd73_312 28 76 1 426 100 3.55 0.07 0.38 0.88 1.11 0.02 0.08 1.00
c2_181 37 116 2 708 100 3.38 0.14 0.69 0.89 1.22 0.05 0.66 0.99
example2_231 24 157 19 411 100 4.98 0.95 3.61 0.81 1.66 0.31 2.99 0.99
cu_219 33 40 5 031 100 5.01 0.29 0.97 0.80 2.15 0.13 1.06 0.96
C7552_205 28 80 6 384 100 4.11 0.28 1.13 0.88 1.29 0.13 0.53 1.00
add6_196 19 229 262 179 100 4.27 6.06 24.53 0.81 1.58 2.53 24.41 0.98
dk17_224 28 49 6 650 100 4.75 0.31 1.09 0.82 1.45 0.11 0.99 0.99
mlp4_245 24 131 14 513 100 3.49 0.49 2.34 0.91 1.22 0.19 0.67 1.00
alu1_198 28 32 1 377 100 3.82 0.08 0.43 0.86 1.11 0.02 0.18 1.00
5xp1_194 28 85 5 487 100 3.98 0.24 1.03 0.87 1.26 0.08 0.26 1.00
pcler8_248 28 22 1 522 100 5.29 0.14 0.88 0.80 1.41 0.03 0.37 0.99
dk27_225 24 24 1 208 100 4.15 0.08 0.66 0.84 1.20 0.03 0.14 1.00

n: Number of qubits |G|: Gate count of G |G′|: Original gate count of G′ #inst: Considered instances ∅#sims: Average number of simulation runs
∅tsim : Average runtime of simulation runs max tsim : Maximum runtime of simulation runs psuccess: Success probability

[30] S. Jha, Y. Lu, M. Minea, and E. M. Clarke, “Equivalence checking
using abstract BDDs,” in Int’l Conf. on Comp. Design, 1997.

[31] S. Yamashita and I. L. Markov, “Fast equivalence-checking for quan-
tum circuits,” in Int’l Symp. on Nanoscale Architectures, 2010.

[32] R. Wille, N. Przigoda, and R. Drechsler, “A compact and efficient SAT
encoding for quantum circuits,” in IEEE Africon, 2013.

[33] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo, “An XQDD-
based verification method for quantum circuits,” in IEICE Trans.
Fundamentals, 2008, pp. 584–594.

[34] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipula-
tion,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 35,
no. 1, pp. 86–99, 2016.

[35] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in Int’l Conf. on CAD, 2007.

[36] P. Niemann, R. Wille, and R. Drechsler, “Equivalence checking in
multi-level quantum systems,” in Int’l Conf. of Reversible Computa-
tion, 2014.

[37] L. Burgholzer and R. Wille, “Improved DD-based equivalence check-
ing of quantum circuits,” in Asia and South Pacific Design Automation
Conf., 2020, pp. 127–132.

[38] L. Burgholzer and R. Wille, “The power of simulation for equivalence
checking in quantum computing,” in Design Automation Conf., 2020.

[39] J. Yuan, C. Pixley, and A. Aziz, Constraint-based verification. New
York, NY: Springer, 2006, 253 pp.

[40] J. Bergeron, Writing Testbenches using System Verilog. Boston, MA:
Springer, 2006.

[41] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in Int’l Conf. on CAD, 2007, pp. 258–265.

[42] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based
stimuli generation in the SystemC Verification library,” in Forum on
Specification and Design Languages, 2009, pp. 1–6.

[43] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs,” in Int’l Conf. on
CAD, 2018.

[44] H. M. Le, D. Grose, N. Bruns, and R. Drechsler, “Detection of hard-
ware trojans in SystemC HLS designs via coverage-guided fuzzing,”
in Design, Automation and Test in Europe, 2019, pp. 602–605.

[45] D. Miller and M. Thornton, “QMDD: A decision diagram structure
for reversible and quantum circuits,” in Int’l Symp. on Multi-Valued
Logic, 2006.

[46] A. Zulehner and R. Wille, “Advanced simulation of quantum com-
putations,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 38, no. 5, pp. 848–859, 2019.

[47] A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently handle
complex values? Implementing decision diagrams for quantum com-
puting,” in Int’l Conf. on CAD, 2019.

[48] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” Proc. of the ACM, pp. 212–219, 1996.

[49] D. Janzing, P. Wocjan, and T. Beth, “"Non-identity check" is QMA-
complete,” Int. J. Quantum Inform., vol. 03, no. 03, pp. 463–473, 2005.

[50] L. Burgholzer, R. Kueng, and R. Wille, “Random stimuli generation
for the verification of quantum circuits,” in Asia and South Pacific
Design Automation Conf., 2021.

[51] R. Wille, S. Hillmich, and L. Burgholzer, “JKQ: JKU tools for quantum
computing,” in Int’l Conf. on CAD, 2020.

[52] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler,
“RevLib: An online resource for reversible functions and reversible
circuits,” in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225.

[53] G. Aleksandrowicz et al., “Qiskit: An open-source framework for
quantum computing,” 2019.

[54] O. Tange, GNU Parallel 2018. Ole Tange, 2018.
[55] L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the

IBM Qiskit quantum circuit compilation flow,” in Int’l Conf. on
Quantum Computing and Engineering, 2020.

Lukas Burgholzer Lukas Burgholzer (S’19) re-
ceived his Master’s degree in industrial mathematics
(2018) and Bachelor’s degree in computer science
(2019) from the Johannes Kepler University Linz,
Austria. He is currently a Ph.D. student at the
Institute for Integrated Circuits at the Johannes Ke-
pler University Linz, Austria. His research interests
include design automation for quantum computing—
currently focusing on efficient and correct com-
pilation. In these areas, he has published several
papers on international conferences such as ASP-

DAC, DAC, ICCAD, and QCE.

Robert Wille Robert Wille (M’06–SM’09) is Full
Professor at the Johannes Kepler University Linz,
Austria, and Chief Scientific Officer at the Software
Competence Center Hagenberg, Austria. He received
the Diploma and Dr.-Ing. degrees in Computer Sci-
ence from the University of Bremen, Germany, in
2006 and 2009, respectively. Since then, he worked
at the University of Bremen, the German Research
Center for Artificial Intelligence (DFKI), the Univer-
sity of Applied Science of Bremen, the University
of Potsdam, and the Technical University Dresden.

Since 2015, he is working in Linz/Hagenberg. His research interests are
in the design of circuits and systems for both conventional and emerging
technologies. In these areas, he published more than 300 papers in journals
and conferences and served in editorial boards and program committees of
numerous journals/conferences such as TCAD, ASP-DAC, DAC, DATE, and
ICCAD. For his research, he was awarded, e.g., with a Best Paper Award at
ICCAD, a DAC Under-40 Innovator Award, a Google Research Award, and
more.

