
Our world is permeated by electronic
systems: from personal computers to
smartphones, from cars to industrial
machines. The groundwork for this
has been laid down by engineers and
scientists several decades ago who
built the first electronic circuits. Over
time, those circuits became smaller
and more powerful – eventually leading
to their ubiquitous presence in all
areas of our lives. Today, those systems
are made out of millions (often billions)
of components which is why we need
computer scientists and efficient tools
to properly design them. Without
dedicated programming languages,
compilers, synthesis tools, verification
and testing methods, as well as
debuggers, the development of
your next smartphone or the next
AI solution would not be possible.

The power of
quantum computing
At the same time, we are currently at
the dawn of a new computing age. With
a long history of theoretical consider-
ations and underpinning, physicists
and engineers are making leaps in
actually building physical quantum
computers. These machines exploit
quantum mechanics to solve many

important problems faster than any
conventional computer ever could.
Since the physical realisation of quan-
tum computers are currently in the
noisy intermediate-scale quantum
regime, not all conceivable algorithms
are executable (yet). Nonetheless,
many promising near-term applica-
tions exist, for example, in chemistry,
finance, and machine learning. In the
long-term, further applications in
cryptography, database search, and
more will become viable.

“We need design tools for quantum
computing. Otherwise we may have
powerful physical quantum computers,
but no proper automated means to
exploit their potential.”

The power of these machines comes
from the exploitation of quantum
mechanical effects such as superposi-
tion (different configurations can be
represented at the same time) as well
as entanglement (configurations of
different parts in a system can influ-
ence one another). While these effects
are the main reasons for the superiority
of quantum computing in many fields,
they also create new challenges in the
design. This affects how we currently

conduct design automation for quan-
tum computing or, more accurately,
how we do not.

Established approaches and solutions
for conventional design, such as
programming languages, compilers
and verification tools, are not applica-
ble to quantum computers. Often, the
design is still done manually, in tedious
and error-prone processes thus far.
Continuing this way will lead us to a
situation in which we have powerful
physical quantum computers, but
no proper automated means to
exploit their potential – the dreaded
design gap.

Design tools to utilise
quantum power
The research teams at the Johannes
Kepler University Linz, Technical
University Munich and Software Com-
petence Center Hagenberg develop
design automation methods and soft-
ware tools to help keep the design
gap as small as possible. They get
their inspiration from design automa-
tion of conventional systems in which
corresponding tools and methods
proved hugely successful. A similar
success story is anticipated for design

254

Robert Wille, Professor at the Johannes Kepler
University Linz and Software Competence Center
Hagenberg, walks us through design tools for
quantum computing

Design tools for
quantum computing

automation for quantum computing.
However, merely adapting existing
(conventional) methods will not cut it
for quantum computers. Instead, the
different computational primitives,
limitations and gains have to be
addressed. How this can be accom-
plished is briefly sketched by the
following typical design tasks:

Simulation is one of the core tasks in
design automation, especially in the
early development of quantum algo-
rithms. While comparatively easy for
conventional digital systems, the
description of quantum states or
quantum operations require vectors
and matrices, respectively, that scale
exponentially with the number of con-
sidered quantum bits – leading to a
memory complexity that brings even
today’s biggest supercomputers to its
limits. Sophisticated data structures
such as decision diagrams drastically
reduce the required memory, in many
cases by exploiting redundancies
in those descriptions. Experiments
showed that, for certain experiments,
this can cut the required memory
by multiple orders of magnitude –
including instances in which a
simulation could be optimised from
requiring 32 gigabytes of memory to
just 50 megabytes.

Compilation aims at translating a
high-level description of a quantum
algorithm into a sequence of commands
the quantum computer understands
and can execute. This is similar to the
compilation of high-level programming
languages into machine code in the
conventional world. But while we
have decades of experience with

conventional compilation, available
solutions for the quantum realm are
still in their infancy and have lots of
room for improvement. Again, design
automation techniques can draw
inspiration from the conventional
world (for example, solutions to
scheduling, placement and routing
problems), to provide efficient
approaches for the compilation of
quantum circuits.

Finally, verification, or more precisely,
the subtask of checking whether two
quantum circuits realise the same
functionality is commonly required to
check whether the result of a compi-
lation step is realising the same
functionality as the originally provided
circuit – a crucial requirement ensuring
correctness of a design flow. Again,
suitable data structures such as
decision diagrams help to reduce the
memory complexity, since the repre-
sentation is similar to quantum
operations in the simulation task.
However, by additionally exploiting
characteristics of quantum computing
(in particular, its inherent reversibility)
the problem can even be tackled with-
out ever building up a representation
of their entire functionality – avoiding
the requirement of an exponential
amount of memory in many cases.
The long-term vision is to have soft-
ware for integrated development
where the result of a compilation step
is automatically checked for equiva-
lence, ensuring a correct result.

This is only the beginning
Promising preliminary results have
been attained and incorporated into
several open-source tools available to

all researchers and engineers in the
field (see box below). But corresponding
evaluations and case studies also
unveiled further challenges and
obstacles to overcome – motivating to
continue the work towards utilising
design automation for quantum
computing. The final goal is to get a
comprehensive software stack to aid
designers in efficiently realising their
quantum application. At the same
time, we are aiming to build bridges
between the design automation
community and the quantum
computing community to establish a
common language and facilitate
exchange between both communities.
We hope to lay the foundation today,
so we can avoid the design gap in
the future.

Robert Wille
Professor
Johannes Kepler University Linz and
Software Competence Center Hagenberg
Tel: +49 176 23 44 09 64
mail@rwille.de
www.rwille.de
www.twitter.com/rbrtwll

255

This project has received
funding from the European
Union’s HORIZON 2020
Research programme under
the Grant Agreement no.
101001318.

The tools described in this article are publicly available under an open-source
license at https://github.com/iic-jku/. Furthermore, a web-based (installation-
free) graphical interface showcasing decision diagrams can be accessed at
https://iic.jku.at/eda/research/quantum_dd/tool/.

mailto:mail@rwille.de
http://www.rwille.de
https://twitter.com/rbrtwll
https://github.com/iic-jku/
https://iic.jku.at/eda/research/quantum_dd/tool/

