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ABSTRACT

Quantum computers are reaching a level where interactions be-
tween classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits:
dynamic quantum circuits. They offer a broader range of avail-
able computing primitives that lead to new challenges for design
tasks such as simulation, compilation, and verification. Due to the
non-unitary nature of dynamic circuit primitives, most existing
techniques and tools for these tasks are no longer applicable in an
out-of-the-box fashion. In this work, we discuss the resulting con-
sequences for quantum circuit verification, specifically equivalence
checking, and propose two different schemes that eventually allow
to treat the involved circuits as if they did not contain non-unitaries
at all. As a result, we demonstrate methodically, as well as, experi-
mentally that existing techniques for verifying the equivalence of
quantum circuits can be kept applicable for this broader class of
circuits.

1 INTRODUCTION

Capabilities of quantum computers built today are steadily grow-
ing. New devices do not only feature more and more qubits which
are less prone to errors, but also allow for a much tighter classical
control loop. This is witnessed by the OpenQASM 3.0 specification
recently published by IBM [1] and the ability to perform conditional
resets on IBM’s quantum computers [2]. Through the interaction
of classical computation with the gates and measurements of a
quantum circuit, new computing primitives such as mid-circuit
measurements and resets as well as classically-controlled opera-
tions become possible within the coherence time for a single circuit
execution. We adopt the naming established by IBM and call this
new, broader class of circuits dynamic quantum circuits.

With these rapid advances in physical realizations comes the
need for quantum software that aids developers and users to keep
up with this pace. Otherwise, we might end up in a situation where
we have powerful quantum computers available, but no efficient
means to use them. Besides challenges, e.g., for classical/quantum
design and compilation in general, this also poses new challenges
for quantum circuit verification.

Verification of quantum circuits (more specifically, equivalence
checking) is an essential part in the modern quantum design flow.
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To this end, the goal is to check whether two supposedly equivalent
quantum circuits G and G’ indeed realize the same functionality. Im-
portant use cases include (1) ensuring that the originally intended
functionality of a quantum algorithm is preserved throughout the
whole compilation process that the algorithm’s circuit representa-
tion undergoes in order to be executable on an actual device, or
(2) ensuring that alternative (e.g., optimized) realizations of certain
building blocks in quantum circuits are functionally equivalent to
their original implementation.

In the past, several complementary approaches have been pro-
posed for tackling this problem [3]-[11]. However, practically all of
these approaches expect the underlying functionality to be unitary—
which circuits containing dynamic circuit primitives no longer are.
As such, existing techniques for verifying conventional quantum
circuits are not directly applicable in an out-of-the-box fashion.
In this work, we discuss the resulting consequences for quantum
circuit equivalence checking and show that reinventing the wheel
is not necessary in order to use existing tools for verifying this
broader class of circuits. To this end, we propose two different
schemes targeted at two slightly different verification scenarios.

First, we consider the question whether two circuits G and G’
which might contain dynamic circuit primitives are functionally
equivalent as a whole. We show that, by combining well known
results from quantum information, any such circuit can be trans-
formed to a circuit only containing unitary operations. By trans-
forming the dynamic circuit primitives in this fashion, existing
techniques for checking the equivalence of quantum circuits can
be employed for the broader class of dynamic circuits.

Second, we consider the question whether two circuits G and G’
produce the same distribution of measurement outcomes given a
fixed input state, i.e., whether they behave the same when executed
on a quantum computer. We show how to extract the complete
measurement probabilities of a dynamic circuit, as if it did not con-
tain non-unitaries, by cleverly applying classical quantum circuit
simulation.

Experimental evaluations confirm that the proposed schemes
indeed allow to handle the non-unitaries introduced by dynamic
circuit primitives in an efficient fashion. Overall, these schemes
form a generic solution for handling non-unitaries in verifying the
equivalence of quantum circuits that is applicable to any existing
verification framework.

The rest of this work is structured as follows. Section 2 pro-
vides the necessary background and motivation. Then, Section 3
introduces dynamic circuits and explains the resulting problem for
equivalence checking in detail, along with the general idea for solv-
ing this problem. Section 4 and Section 5 elaborate on the proposed
schemes and provide some discussion, while Section 6 summarizes
our experimental evaluations. Finally, we conclude in Section 7.
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Figure 1: 3-bit precision QPE circuit for U = p(%”) and |) = |1), resulting in estimate 6 = 0.c2c1c0

2 BACKGROUND AND MOTIVATION

This section establishes the notation used in the remainder of this
work and provides the necessary background information on quan-
tum circuits. We also review the Quantum Phase Estimation al-
gorithm (which is used as a running example) and motivate the
importance of verifying quantum circuits. While the descriptions
are kept brief, we refer the unacquainted reader to the provided
references for further details.

2.1 Quantum Circuits

In the traditional quantum circuit model [12], [13], a quantum cir-
cuit G, acting on n qubits, is specified by a sequence of |G| quantum
gates go, . . ., g|G|-1- Each quantum gate g;, acting on k < n qubits

(most frequently k = 1 or k = 2), can be described by a 2k x 2k-
dimensional unitary matrix U;.

Given an initial state |) (represented as a 2"-dimensional state
vector), the evolution of this initial state under the quantum cir-
cuit can be described by successively multiplying the individual
gate matrices with the current state vector. Eventually, performing
all multiplications results in a final state vector that encodes the
probabilities of measuring the individual computational basis states.
When conducted on a classical computer, this is typically called
(classical) quantum circuit simulation.

2.2 Quantum Phase Estimation

The key ideas of this work will be illustrated by means of a particular
quantum algorithm, namely Quantum Phase Estimation (QPE, [12]),
which represents one of the key subroutines in important quantum
algorithms such as Shor’s algorithm [14] for factoring numbers, the
HHL algorithm [15] for solving linear systems, or quantum principal
component analysis [16] for machine learning. It solves the problem
of determining the phase of a unitary operator U given an eigenstate
[¢), i.e., determining 6 € [0, 1) such that U |¢) = e2mif [).

To this end, the QPE algorithm determines an m-bit estimate
6 =0.cm_1...co of 0. First, controlled-U?* operations (0 < k < m)
are used to write the m-bit Fourier basis representation of U’s phase
to an m-qubit register. Afterwards, the inverse Quantum Fourier
Transform (QFTT, [12]) is applied to transform the result to the
computational basis. Whenever 0 is representable using m fractional
bits, the algorithm succeeds with certainty, while otherwise, it yields
a suitably high chance for success (with a probability larger than
4~ 0.405).
T

ExAMPLE 1. Assume U is given byp(%”) = diag(1, ezm%) and
|y = |1). Then, Fig. 1a shows the quantum circuit realizing the 3-bit
precision QPE algorithm. It applies three rounds of controlled-phase
rotations and then uses the three-qubit inverse Fourier transform to
obtain the desired estimate 0 = 0.cac1co from the measurement results.
Since § = % = 0.00113 cannot be exactly represented using three
fractional bits, running the algorithm yields |001) and [010) as the
most probable output states.

2.3 Verification of Compilation Results

Executing a quantum algorithm on an actual quantum computer
requires compiling the algorithm’s description G to a representation
G’ that adheres to all constraints imposed by the targeted device.
This typically involves several steps such as synthesis [17]-[19],
mapping [20]-[24], and optimizations [25]-[27].

EXAMPLE 2. Quantum computers manufactured by IBM natively
support arbitrary single-qubit operations and the two-qubit controlled-
NOT (or CNOT) operation. A possible realization of the QPE circuit
from Fig. 1a on the five-qubit, T-shaped IBMQ London architecture is
shown in Fig. 1b.

Verifying that the original circuit’s functionality is preserved
throughout the individual stages of the compilation process is a
vital task in the quantum computing design flow. In general, the
functionality of a quantum circuit G = go, . . ., g|g|-1 is represented
by the 2" X 2" system matrix U = U|g|-1 - - - Up. Thus, comparing
the functionality of two quantum circuits G and G’ reduces to the
comparison of the respective system matrices U and U’. While con-
ceptually simple, this quickly amounts to a non-trivial task due to
the fact that the involved matrices grow exponentially with respect
to the number of qubits. Equivalence checking of quantum cir-
cuits has even been shown to be QMA-complete [28]. Nevertheless,
several methods for this problem have been proposed [3]-[11].

3 DYNAMIC CIRCUITS
AND RESULTING PROBLEM

The circuit model of quantum computing, as discussed in the previ-
ous section, has been the de-facto standard for designing quantum
circuits to be executed on current generation quantum computers.
However, this describes quantum circuits in a static fashion—with
no opportunity to steer the computation in a direction based on
outcomes of intermediate results. Recently, IBM announced that
their quantum computers now allow for interactions with classical
computing instructions within the runtime of a quantum circuit—
enabling what IBM refers to as dynamic quantum circuits [2]. In the
following, we describe what constitutes these new kind of circuits
and discuss the resulting challenges for checking the equivalence
of quantum circuits that might contain dynamic circuit primitives.

3.1 Dynamic Quantum Circuits
and Their Benefits

By allowing the interaction of real-time classical computations
with the gates and measurements of traditional quantum circuits,
the quantum circuit model reviewed in Section 2.1 is extended
by non-unitary primitives such as mid-circuit measurements and
resets as well as classically-controlled quantum operations. As a
consequence, circuits are no longer static, but rather dynamic.
Eventually, these primitives will be necessary for quantum com-
puters to achieve fault-tolerance by realizing quantum error cor-
rection schemes. However, already in the near term, interesting
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Figure 2: Dynamic version of the QPE circuit from Fig. 1a

use cases for teleportation [29] and algorithms like Iterative QPE
(IQPE, [30]) arise that employ dynamic circuit primitives in order
to, e.g., reduce the required number of qubits—a limited resource
thus far.

For example, our running example, i.e., the QPE algorithm re-
viewed in Section 2.2, may exploit non-unitaries to reduce the
number of qubits: Instead of an m-qubit register for computing the
Fourier base representation of the unitary’s phase, a single qubit is
used and repeatedly measured. Starting from the least significant
bit of the resulting estimate 0= 0.¢m—1 - - . €9, each measurement
adds one bit of information to the estimated phase. The result of
each measurement then influences the rotation angles applied to
the working qubit in the next iteration. This requires the availability
of the measurement results and application of quantum operations
based on them within the coherence time of the quantum com-
puter’s qubits. One of the first realizations of the IQPE algorithm
on an actual system has recently been demonstrated by researchers
from IBM Quantum on one of their devices [31].

ExXAMPLE 3. Assume again that, as in Example 1, we want to it-
eratively estimate the phase 6 of the unitary operator U = p(%’r)
corresponding to the eigenvector state |y) = |1) up to a precision
of three bits. Fig. 2 shows an alternative quantum circuit utilizing
dynamic circuit primitives. Instead of the 3-qubit register consid-
ered before in Fig. 1a, a single working qubit in combination with
mid-circuit measurements, resets, and classically-controlled single-
qubit rotations is used to iteratively compute individual bits of the
phase estimate. Compiling this circuit to an actual device requires no
mapping at all, since only two qubits interact with each other. As a
consequence, the quantum cost of the resulting circuit is considerably
reduced—significantly improving the expected fidelity when executing
the circuit on an actual device.

3.2 Resulting Problem

Existing frameworks for verifying quantum circuits such as [3]-
[11] generally assume the circuit to only contain unitary operations.
Ultimately, only then it is possible to characterize the functionality
of a quantum circuit as a unitary matrix. With the availability of dy-
namic circuit primitives for conducting quantum computations, the
question arises how circuits using these primitives can be verified.
After all, resets, measurements, and classically-controlled opera-
tions are all non-unitary operations. As such, existing techniques
cannot be applied in an out-of-the-box fashion.

Several theoretical works on quantum program and protocol ver-
ification exist that deal with dynamic quantum circuits, e.g., [32],
[33]. However, their goal is to prove the correctness of an algo-
rithm, i.e., proving that it “works”, rather than to check the equiva-
lence of two circuits. Recent works on the equivalence of dynamic
quantum circuits based on quantum Mealy machines [34] and en-
sembles of linear operators [35] show promise, but have only been
evaluated on toy examples (= 10 qubits) and have not led to avail-
able software packages for equivalence checking yet. In this work,
we show that reinventing the wheel is not necessary to allow the
usage of existing techniques and tools in combination with dynamic

circuits. To this end, we propose two different schemes targeted at
two slightly different verification scenarios.

First, we consider the question whether two circuits G and G’
which might contain non-unitaries are functionally equivalent as
a whole—an important question when, e.g., evaluating alternative
realizations of certain building blocks in large quantum algorithms.
Here, it has to be ensured that the alternative realization has the
exact same functionality given any input. As already shown in
Section 2.3, given two circuits G and G’ which only contain unitary
operations, this reduces to the comparison between the correspond-
ing unitary matrices U and U’. We will show in Section 4 that any
circuit containing non-unitary operations can be transformed to
a circuit only containing unitary operations and no intermediate
measurements by combining well known results from quantum
information theory. This way, all existing techniques for verifying
the equivalence of two (static) quantum circuits are kept applicable
for the broader class of dynamic circuits.

While the above technique conceptually allows to verify circuits
containing non-unitaries, it requires to extend a circuits descrip-
tion by as many qubits as it contains mid-circuit resets. Due to
the exponential scaling of the resulting unitary functionality, the
complexity of verifying such instances may prove too much to
handle for existing tools. The following observation helps to derive
an alternative for these cases: In most quantum algorithms, the
initial state of the computation can be assumed to be a fixed state
(e.g., |0...0)). Hence, it might not be necessary at all to ensure that
two circuits are fully functionally-equivalent, but rather that they
produce the same distribution of measurement outcomes for the
fixed input state, i.e., that they behave the same when executed on
a quantum computer. In Section 5, we show that the probability
distribution of a circuit containing non-unitaries can be iteratively
extracted from classically simulating the circuit using any available
classical quantum circuit simulator.

4 UNITARY RECONSTRUCTION
THROUGH CIRCUIT TRANSFORMATION

Dynamic circuit primitives allow to re-use qubits over the course
of a quantum computation and to influence the execution based
on classical measurement outcomes. In order to employ existing
verification tools for verifying circuits using these primitives, the
circuit descriptions G and G’ have to be transformed to facilitate
comparisons of the form U =7 U”. This is accomplished by trans-
forming the dynamic circuit primitives to unveil the underlying
unitary functionality.

Reset operations pose the first hurdle to overcome in this endeav-
our. Algorithmically, a reset can be interpreted as measuring a qubit,
applying an X operation conditioned on the measurement result be-
ing |1) and, then, discarding the measurement result. Theoretically,
any reset operation can be replaced by introducing a new qubit and
applying all subsequent operations involving the qubit to be reset
to the new qubit. In this fashion, any n-qubit circuit containing r
reset instructions can be transformed to a circuit acting on n +r
qubits containing no reset primitives.

ExaMmPLE 4. Consider again the circuit for the 3-bit precision IQPE
algorithm from Example 3 shown in Fig. 2. By iteratively replacing
each of the reset operations with a new qubit and translating all
subsequent gates to the newly introduced qubits, a circuit acting on
four qubits results, as shown in Fig. 3a.
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Figure 3: Unitary reconstruction for IQPE circuit from Fig. 2

Once qubit re-use is eliminated from a dynamic circuit, the only
potentially non-unitary primitives remaining are mid-circuit mea-
surements and classically-controlled operations conditioned on
their result. In order to get rid of these operations, we resort to
one of the most fundamental results in quantum computing: the
deferred measurement principle [12]. This principle states that delay-
ing measurements until the end of a quantum computation does not
affect the probability distribution of outcomes. As a consequence,
it follows that measurement and classical-conditioning on its re-
sult commute. Thus, any mid-circuit measurement can be delayed
until the very end of the quantum circuit—replacing any classically-
controlled operations along the way by proper quantum operations
controlled by the respective qubit.

EXAMPLE 5. Assume that all reset operations of the IQPE circuit
from Example 3 have been eliminated, e.g., by transforming the circuit
as described in Example 4. Then, applying the deferred measurement
principle in order to delay all measurements to the end of the circuit
and replacing the phase rotations controlled by the measurement
outcomes with phase gates controlled on the respective qubits, results
in a circuit as shown in Fig. 3b—free of dynamic circuit primitives.

By combining both aforementioned steps, i.e., substituting re-
set operations with “fresh” qubits and applying the deferred mea-
surement principle, any dynamic quantum circuit (including non-
unitaries) can be transformed to a representation composed of
unitary descriptions only. For one, this allows to verify that a dy-
namic circuit actually realizes the intended functionality of its static
counterpart.

ExAMPLE 6. Compare the transformed circuit obtained in Exam-
ple 5 (shown in Fig. 3b) to the original QPE algorithm shown in Fig. 1a.
Due to them actually being the same, it is easy to conclude that both
circuits are indeed equivalent.

Note that it might seem that the proposed approach merely
reverses the circuit construction or compilation process. As wit-
nessed in Example 6, there is a one-to-one relation between the
transformed version of the IQPE circuit shown in Fig. 3b and the
original QPE circuit shown in Fig. 1a. As such, it could be argued
that there is nothing to be gained from using the technique. How-
ever, this is not the case, as almost no assumptions are made about
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the relation between G and G’ in general. Indeed, the only require-
ment is that the transformed versions of both circuits have the
same number of primary inputs and outputs. The proposed trans-
formation scheme “touches” nothing but reset, measurement, and
classically-controlled operations—which are “reversed”.

Conceptually, this approach allows to verify circuits containing
non-unitaries, at the cost of extending a circuit’s description by
as many qubits as it contains mid-circuit resets. Since the result-
ing unitary functionality scales exponentially with the number of
qubits, the complexity of verifying such instances increases quickly.
However, this is an inevitable increase whenever verifying whether
a dynamic implementation (acting on n 4, qubits and using r resets)
still realizes the same functionally as a static counterpart (acting
on nggric qubits). Since in that case, Ngyn + T = Nstatics the proposed
scheme augments the dynamic circuit just enough to facilitate com-
parisons of the form U =7 U”.

5 EXTRACTING THE MEASUREMENT
OUTCOME DISTRIBUTION BY SIMULATION

Although verification methodologies such as [3]-[5] frequently
allow to reduce the complexity of the verification by exploiting
the reversibility of quantum operations, they might not be able to
handle this immense complexity in the worst case. Motivated by
the fact that most high-level quantum algorithms assume a fixed
input state, we argue that it might be sufficient to show that two
realizations of such an algorithm produce the same distribution of
measurement probabilities given the fixed input state. Verifying
that two circuits G and G’, which only contain unitary operations,
produce equivalent probability distributions given a particular in-
put state [/) amounts to classically simulating both computations
with |/) as input and computing the overlap between the measure-
ment probabilities described by the resulting state vectors.
However, in the presence of dynamic circuit primitives, the con-
cept of a state vector responsible for producing the circuit’s measure-
ment outcome distribution (e.g., the probabilities of the individual
bitstrings in the IQPE algorithm) does no longer make sense. This
is due to the non-unitary nature of the dynamic circuit primitives,
that no longer allow to deterministically simulate the quantum
circuit in one go using quantum circuit simulators such as [36]-
[38]. For example, each time a reset operation is encountered this
would technically require the calculation of the partial trace of
the system over the particular qubit (and reinitializing it to |0)).
However, the partial trace is an operation that maps pure states
to mixed states. One possible approach for solving this problem
would be to repeatedly simulate the dynamic circuit and stochas-
tically realize dynamic circuit primitives such as measurements
and resets. However, one would have to perform huge amounts of
individual runs in order to reason about the output distribution in
a statistically significant way. Another approach requires leaving
the pure state picture and using a density matrix simulator (such as,
e.g., [39]-[41]). Although these simulators can naturally handle re-
sets, mid-circuit measurements, and classic-controlled operations,
they also do not allow to determine the complete distribution of
(intermediate) measurement outcomes via a single simulation run,
but only the density matrix for a particular set of measurements.
In the following, we propose a technique that allows to extract
the complete set of measurement probabilities for a dynamic cir-
cuit given a particular input state. To this end, consider a quantum
circuit G involving m measurements. Then, each measurement dur-
ing the circuit simulation constitutes a branching point where the
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Figure 4: Measurement outcome distribution extraction for
the IQPE circuit with § = %’T. Red and arrows denote the
|0)- and |1)-successor, respectively.

probabilities of the qubit to be measured are check-pointed and
the simulation splits into two independent simulations: one assum-
ing the measurement outcome is |0) and the other one assuming
the outcome is |1). Depending on the outcome being |0) or |1), a
subsequent reset operation is translated to a no-op or an X gate,
while any classically-controlled operation is ignored or applied,
respectively. The probability of observing a particular basis state
|i) = |(im=1--..i0)2) can then be reconstructed from the product
of the check-pointed probabilities along the path of simulations
corresponding to the outcomes iy to ip—1.

ExAMPLE 7. Consider again the IQPE algorithm for estimating the
phase 0 of U = p(%”) corresponding to the eigenstate |) = |1) up
to a precision of three bits, as shown in Fig. 2. The circuit contains
a total of m = 3 measurements (necessary for the 3-bit precisison)
and uses the fixed input state |000) ® |) = |0001). Iteratively sim-
ulating the circuit, check-pointing the probabilities at each of the
measurements, and adjusting the subsequent circuit parts to be sim-
ulated accordingly, results in a computational flow as illustrated in
Fig. 4. There, red arrows denote the |0)-successor, while arrows
denote the |1)-successor, i.e., the subsequent computations upon mea-
suring |0) or |1), respectively. The path indicated in bold represents
the extraction of the probability for the |001) basis state—resulting in
1085 % 0.96 ~ 0.408.

Extracting the distribution of measurement outcomes of a dy-
namic circuit in this fashion naturally requires a total of 2™ in-
dividual simulations, where m is the number of mid-circuit mea-
surements. However, large parts of the simulations can be shared
in between simulation runs. For example, the circuit up until the
first checkpoint only needs to be simulated once, while two sim-
ulations are necessary up until the second checkpoint, and so on.
In general, the k" sub-circuit needs to be simulated in at most 2%
variations. If any measurement along a path produces a probability
of zero, further simulations along that path need not be started at
all. In addition, the individual simulations in between checkpoints
are completely independent from another and, hence, are embar-
rassingly parallelizable. On top of that, each of these sub-circuits
consists of a much smaller number of gates and acts on far fewer
qubits than the whole dynamic circuit’s static counterpart. As a
consequence, the complete measurement outcome distribution can
be efficiently extracted in many cases, even though exponentially
many simulations might be required in the worst case.

Table 1: Experimental Evaluations

Static Dynamic  Full Functional Verification Fixed Input State
n |Gl n |Gl tianss] toer [s] tevract [s]  toim [s]
Bernstein-Vazirani
121 300 2 539 0.0003 0.028 0.0003 0.011
122 303 2 544 0.0003 0.028 0.0003 0.011
123 305 2 548 0.0003 0.026 0.0003 0.011
124 307 2 552 0.0003 0.028 0.0003 0.012
125 310 2 557 0.0003 0.027 0.0003 0.012
126 312 2 561 0.0004 0.028 0.0003 0.012
127 314 2 565 0.0003 0.027 0.0003 0.013
128 317 2 570 0.0003 0.030 0.0004 0.012
Quantum Fourier Transform
23 276 1 321 0.0002 0.003 24.8242 0.001
24 300 1 347 0.0002 0.003 52.4281 0.001
25 325 1 374 0.0002 0.004 107.3160 0.001
26 351 1 402 0.0002 0.004 223.4190 0.002
125 5664 1 8124 0.0432 0.366 - 0.150
126 5723 1 8252 0.0440 0.364 — 0.150
127 5782 1 8381 0.0454 0.380 - 0.156
128 5841 1 8511 0.0465 0.380 — 0.158
Quantum Phase Estimation
43 988 2 1071 0.0011 0.101 0.0004 0.011
44 1033 2 1118 0.0012 0.252 0.0004 0.012
45 1079 2 1166 0.0013 0.674 0.0005 0.013
46 1125 2 1215 0.0014 3.045 0.0005 0.013
47 1173 2 1265 0.0015 8.306 0.0005 0.014
48 1220 2 1316 0.0016 19.720 0.0006 0.016
49 1266 2 1368 0.0016 71.937 0.0006 0.016
50 1314 2 1421 0.0017 173.294 0.0006 0.017

n: Number of qubits |G |: Number of gates
ttrans: Runtime of the transformation scheme from Section 4
tyer: Runtime of the subsequent equivalence check
textract: Runtime of the scheme from Section 5 for dynamic circuit
tsim: Runtime of classical simulation for static circuit

6 EXPERIMENTAL EVALUATION

The methods proposed above can be implemented on top of any
existing verification or simulation tool, respectively. In order to
demonstrate that the proposed schemes indeed allow to efficiently
handle non-unitaries in equivalence checking flows, we exemplar-
ily implemented them on top of the open-source quantum circuit
equivalence checking tool QCEC [42] that is publicly available at
https://github.com/iic-jku/qcec. The tool supports complete func-
tional verification (as considered in Section 4) as well as simulative
verification (as considered in Section 5).

As benchmarks we consider various instances of the famous
Bernstein-Vazirani algorithm [43], the Quantum Fourier Trans-
form, and the QPE algorithm, which was used as running example
throughout this work. For each static algorithm, a dynamic realiza-
tion has been derived [30], [44], [45]. These algorithms are a good
fit for evaluating the overhead of the proposed schemes, as they
feature all the hurdles of dynamic quantum circuits that have to be
overcome for verifying their equivalence. All evaluations have been
conducted on a machine equipped with an AMD Ryzen 9 5950X
CPU and 64 GiB RAM running Ubuntu 20.04. Table 1 summarizes
the obtained results. To this end, it first lists the number of qubits
n as well as the number of gates |G| of the original (static) and
the dynamic circuit, respectively. Then, the runtime t;4ns of the
transformation scheme (as proposed in Section 4) is listed along the
time t,,r it took to verify the equivalence of both circuits. Finally,
textract denotes the runtime of the extraction scheme (proposed in
Section 5) applied to the dynamic circuit, while tg;, denotes the
runtime of the classical simulation of the original (static) circuit.

In a first series of evaluations, we employ the scheme proposed
in Section 4 to eliminate the non-unitaries from the dynamic cir-
cuit and, afterwards, apply the generic “proportional” strategy of
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QCEC for checking the equivalence of the resulting circuit with
the corresponding original circuit. As can be seen from the results,
transforming the dynamic circuit using the proposed scheme in-
curs practically no overhead (t;4ps is on the order of 1 ms for all
tested instances) and allows to successfully verify the full functional
equivalence of the Bernstein-Vazirani and QFT algorithms with up
to 128 qubits in a fraction of a second. Even the QPE instances with
up to 50 qubits can be verified in less than 3 min.

In a second series of evaluations, we use the iterative simulation
scheme proposed in Section 5 (without employing paralellization) to
extract the distribution of measurement outcomes from the dynamic
circuits. In addition, we classically simulate the static counterpart
in order to judge the runtime overhead of the proposed scheme.
As expected from the discussion at the beginning of Section 5,
only checking the equivalence for a fixed input is an easier task
compared to checking the full functional equivalence, in general.
The results for the Bernstein-Vazirani and QPE algorithm show, that
extracting the complete measurement probabilities of a dynamic
circuit can, in fact, be faster than classically simulating the static
counterpart by more than an order of magnitude. This is in line
with the discussions at the end of Section 5 and can be attributed to
the fact, that the respectively resulting state vectors are sparse, i.e.,
feature only few non-zero amplitudes. In contrast, the state vector
resulting from the Quantum Fourier Transform is dense, which
immediately reflects in the runtime of the extraction scheme, i.e.,
it roughly doubles with every added qubit. Thus, the scheme from
Section 4 should be preferred in this case.

7 CONCLUSIONS

In this work, we discussed the upcoming challenges that are cur-
rently emerging with the introduction of dynamic quantum circuits.
We showed that, due to their non-unitary nature, most existing solu-
tions cannot be used for these circuits anymore in an out-of-the-box
fashion. Afterwards, we presented dedicated schemes that eventu-
ally allow to treat the involved circuits as if they did not contain
non-unitaries at all. More precisely, the usage of established ver-
ification techniques for dynamic quantum circuits is enabled by
handling non-unitaries either through

(1) transforming the dynamic circuit primitives by substitut-
ing reset operations with “fresh” qubits and applying the
deferred measurement principle (see Section 4), or

(2) using classical simulation techniques to extract the distri-
bution of measurement outcomes from a dynamic quantum
circuit—given a fixed input (see Section 5).

These schemes form a generic solution for handling non-unitaries
in verifying the equivalence of quantum circuits that, as demon-
strated in our evaluations, is applicable to any existing verification
framework.
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