
Utilizing Explainable AI for improving the
Performance of Neural Networks

Huawei Sun1,3, Lorenzo Servadei1,3, Hao Feng1,3, Michael Stephan1,2, Robert Wille3, Avik Santra1
1Infineon Technologies AG, Neubiberg, Germany

2Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
3Technical University of Munich, Munich, Germany

E-mail: {huawei.sun, lorenzo.servadei, avik.santra}@infineon.com
{hao.feng, robert.wille}@tum.de

{michael.stephan}@fau.de

Abstract—Nowadays, deep neural networks are widely used in
a variety of fields that have a direct impact on society. Although
those models typically show outstanding performance, they have
been used for a long time as black boxes. To address this,
Explainable Artificial Intelligence (XAI) has been developing as
a field that aims to improve the transparency of the model and
increase their trustworthiness. We propose a retraining pipeline
that consistently improves the model predictions starting from
XAI and utilizing state-of-the-art techniques. To do that, we use
the XAI results, namely SHapley Additive exPlanations (SHAP)
values, to give specific training weights to the data samples. This
leads to an improved training of the model and, consequently,
better performance. In order to benchmark our method, we
evaluate it on both real-life and public datasets. First, we
perform the method on a radar-based people counting scenario.
Afterward, we test it on the CIFAR-10, a public Computer Vision
dataset. Experiments using the SHAP-based retraining approach
achieve a 4% more accuracy w.r.t. the standard equal weight
retraining for people counting tasks. Moreover, on the CIFAR-10,
our SHAP-based weighting strategy ends up with a 3% accuracy
rate than the training procedure with equal weighted samples.

Index Terms—Radar Sensors, Explainable AI, Deep Learning,
SHapley additive exPlanations

I. INTRODUCTION

Various application areas have been positively affected by
the recent advances of Artificial Intelligence (AI) and Machine
Learning (ML). Among them, fields such as autonomous
driving [1], [2], health tech [3], [4] and robotics [5], [6]
heavily rely on the processing of ML algorithms onto a set
of different sensors. These approaches are typically based
on computationally intensive Deep Learning (DL) strategies,
which involve training millions, or even billions of parameters
to perform a specific task. Although the out-coming results
show high performance, a major problem occurs: As a neural
network gets deeper and deeper, it is also becoming more
complex and thus challenging to be interpreted. To this end,
a neural network is often considered a black box: Even if the
model correctly predicts the given specific input, it is difficult
to explain what causes the correct prediction. This property,
in turn, reduces the trustworthiness of the outcome.

In order to improve a DL system, it is necessary to under-
stand its weaknesses and shortcomings [7]. Approaching this,
XAI focuses on improving the transparency of ML technolo-

gies and increasing their trust. When a model’s predictions
are incorrect, explanatory algorithms can aid in tracing the
underlying reasons and phenomenon. XAI has been researched
for several years, and lots of work has been done in fields
such as Computer Vision (CV) [8], [9], [10] and Natural
Language Processing (NLP) [11], [12]. These algorithms
mainly generate attention maps, which help to highlight the
critical area/words in classifying images or during language
translation. Nevertheless, nowadays DL is widely applied in
less conventional application fields: For example, radar-based
solutions for tasks such as counting people [13], identifying
gestures [14], and tracking [15], as shown in this contribution
[16]. Although the advancements mentioned above success-
fully solve radar-based problems, explaining DL models for
radar signals is still a challenging topic. Additionally, most
XAI algorithms analyze the predictions from a well-trained
model, thus focusing only on the explanatory part. To this end,
a few research contributions move forward by utilizing the
results from XAI for secondary tasks. Layer-wise Relevance
Propagation (LRP), for example, is used for adaptive learning
rate during training in [17], and in [18] the authors prune Deep
Neural Networks (DNNs) and quantize the weights mainly by
Deep Learning Important FeaTures (DeepLIFT). However, to
the best of our knowledge, XAI has not yet been used to
process the dataset and improve the network performance. In
this paper, we first adapt our method to a real-life use case:
Radar-based people counting. Afterward, we show promising
results on the CIFAR-10 dataset [19] to further underlying the
approach’s generality.

Radar-based people counting is a significant application
with high privacy preservation and weather condition indepen-
dence compared to camera-based people counting. However,
the algorithms often underperform the state-of-the-art com-
puter vision methods, and radar data often has the limitation
of low-resolution and room dependency [20], [21]. To this end,
many solutions have been implemented which use DL for this
task in different scenarios [13], [22]. Although performant,
those solutions do not consider how the network obtains the
prediction and which features are essential to explain the
outcome of the task.

This paper introduces a retraining pipeline, which adopts

the SHAP values for improving the model performance. The
proposed approach shows convincing outcomes in both public
and real-life datasets. In the radar-based people counting
scenario, on the one hand, we explain the neural network’s
prediction of radar signals. This is the first time in the
literature that XAI algorithms are applied to radar-based input
neural networks. On the other hand, we propose a retraining
pipeline that adds sample weights generated from the SHAP
[23] results. This further improves the performance of the
people counting network. To show this, we execute several
experiments highlighting our method’s benefit. We first apply
our weighting strategy to our radar-based people counting task.
Compared with the equal weighting method, our SHAP-based
method ends up with an increase of 4%. When we apply the
method to CIFAR-10, our approach outperforms default equal
weighting retraining with a 3% more accuracy.

II. BACKGROUND AND MOTIVATION

This section first describes the status of explainable AI
and its application fields. Afterward, we introduce the funda-
mentals of mmWave Frequency-Modulated Continuous-Wave
(FMCW) radar.

A. Explainable Artificial Intelligence

Several class activation mapping (CAM) based XAI algo-
rithms such as CAM [8] and gradient class activation mapping
(Grad-CAM) [9] are used, in the literature, to explain well-
trained CNN architecture in image classification tasks. They
typically work by generating saliency maps through a linear
combination of activation maps that highlight the model’s
attention area. Although those methods are widely-spread,
there is still a lack of research on using XAI algorithms to
explain models with radar signals as input. In fact, on the one
hand, features in radar signals are more difficult to understand
for humans than in images. On the other hand, unlike image
RGB channels, radar signals are typically represented by
distinct information, such as Macro- and Micro-Doppler maps
which cannot be stacked and treated as one single image. This
contrasts with the usual practice in CV, where methods such as
CAM-based approaches only generate a single saliency map
for features of each input sample. Therefore, a major question
is: how to utilize an efficient XAI method adaptable to the
heterogeneous information contained in the input. Recently,
SHAP[23] has been used in domains such as text classification
[24] or analysis of time-series data [25], as an additive feature
attribution approach, which can explain multiple information
in the input at the same time. This exactly adapts to the
problem at hand.
Additive feature attribution method Additive feature attri-
bution method follows:

g (z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (1)

where z′ ∈ {0, 1} is a binary vector whose entries are the exis-
tence of the corresponding input feature and M is the number
of simplified input features. ϕi indicates the importance of

the ith feature and ϕ0 is the baseline explanation. In order
to explain a complex model f , such as a neural network, we
can use a more straightforward explanation model g instead.
For a given input x, f(x) denotes the prediction output. A
simplified input x′ can be restored to the input x through a
mapping function x = hx(x

′). When the binary vector z′ ≈ x′,
additive feature attribution methods ensure g(z′) ≈ f c(hx(x

′))
where c is the target class of given input x.
SHAP values SHAP values are the feature attributions of the
explanation model, which obeys Eq. 1 and are formulated as
follows:

ϕi =
∑
z′⊂x′

(M − |z′|)!(z′ − 1)!

M !
[f c(hx(z

′))− f c(hx(z
′\i))]

(2)
where |z′| denotes the number of non-zero entries in z′ and
z′ ⊂ x′ represents all z′ vectors where the non-zero entries
are a subset of the non-zero entries in x′. Additionally, z′\i
denotes setting zi to zero. In this way, taking image-based
input as an example, for every single model input, it can
generate one SHAP map in the same shape as the input sample,
where the pixel value denotes attribution of the corresponding
pixel from the input.

B. Introduction of mmWave FMCW Radar Sensor

FMCW radar sensors typically operate by transmitting a
sequence of modulated frequency chirp signals with a short
ramp time and delays between them. A chirp sequence with
a fixed number of chirps is usually defined as one frame
and repeated with the frame repetition time [13]. The chirp
signals reflected by the targets are received, mixed with the
transmitted signal, and filtered, to generate the Intermedi-
ate Frequency (IF) signal, which is then digitized by the
Analog to Digital Converter (ADC) for task-dependent pre-
processing. For example, range and Doppler information can
be acquired by taking the Fast Fourier Transform (FFT) along
the respective axes of the data in one frame. Using multiple
receiving or transmitting antennas also allows the estimation
of the Direction Of Arrival (DOA) from the DOA-dependent
time delay of the received signal across the antennas. This
makes FMCW radar the most commonly used since it avoids
complicated pre-processing and saves energy at the same time.
Therefore, it is an ideal sensor for many simple tasks, such
as people counting and activity classification, without losing
users’ data privacy.

III. APPROACH

In this section, we first describe the radar data preprocessing
method. Then, we illustrate the radar data augmentation meth-
ods. We also introduce a stabilized architecture for learning
robust embedding vectors and label predictions. Ultimately,
we focus on our retraining procedure with different weighting
methods calculated from SHAP values and probability vector
predictions.

Rx

PN

NTS

ADC
data

MTI
2D-FFT with

hamming
window

Stack mean
of chirps over

frame

Separate real
and complex

value

Macro

M
ic

ro

Network

Figure 1: Radar Pre-processing.

A. Radar Data Preprocessing

The radar signal preprocessing pipeline is illustrated in
Fig.1. The acquired IF signals form a raw data frame in the
shape of PN × NTS in each Rx antenna channel, where
PN and NTS are the number of chirps per frame and
number of samples per chirp, respectively. It is first passed
through a Moving Target Indication (MTI) filter to remove
static objects and Tx-Rx leakage effects by subtracting the
mean value along the chirp axis (slow time). Then, range-FFT
and doppler-FFT are applied along fast time (sample axis) and
slow time respectively to generate 2D Range Doppler Images
(RDIs). Additionally, before the respective FFTs, we multiply
the data with the hamming window of the corresponding sizes
to suppress side lobes that cause leakage into the adjacent
FFT bins. Meanwhile, to obtain Micro Doppler information
in higher Doppler resolution, the observation time is extended
by stacking the mean of chirps in each frame across PN
consecutive frames to compute an additional RDI with the
same shape as the previous Macro-RDI. Afterward, we divide
each acquired RDI into real and imaginary values and stack
them together. We finally get a 3D matrix in the shape of
PN × NTS/2 × 4 for each antenna’s data in each frame,
including Macro- and Micro- real and imaginary values.

B. Radar Data Augmentation

The robustness of the model benefits from training with
augmented data. However, we must ensure that the augmented
radar data maintains its kinematic properties. This paper
proposes two data augmentation methods, as shown in Fig.
2.

1) Frequency Shift: As mentioned in Sec. III-A, after
applying FFT twice to the raw data, we get RDI as input
data. Precisely, the horizontal axis measures the range between
the moving target and the radar, and the vertical axis is the
target velocity. Here, the RDI denotes x, and the pixel on the
RDI is indicated as x(r, d). Considering the kinematic property
of RDI, we apply two kinds of frequency shift augmentation
methods to the original RDI:
Flip along Doppler As shown in Fig. 2, moving targets can
have positive or negative velocity. Assuming the target is
moving towards the radar in the people counting scenario, the
velocity is negative. Flip the RDI along the doppler axis also
keeps its kinematic property when we assume that the target
is moving away from the radar after flipping.

xaug(r, d) = x(r,
NTS

2
− d) (3)

0 2 4 6 8
range(m)

3

2

1

0

1

2

3

do
pp

le
r(m

/s
)

(a) Original RDI.

0 2 4 6 8
range(m)

3

2

1

0

1

2

3

do
pp

le
r(m

/s
)

(b) Flipped RDI.

0 2 4 6 8
range(m)

3

2

1

0

1

2

3

do
pp

le
r(m

/s
)

(c) Shifted RDI.

0 2 4 6 8
range(m)

3

2

1

0

1

2

3

do
pp

le
r(m

/s
)

(d) Add Gaussian noise (σ = 0.01).

Figure 2: Data augmentation methods.

Shift along Range The horizontal axis measures the distance
between the radar and the moving object. Since, during
recording, several people are moving in the room, we need
to consider the minimum distance from the one closest to the
radar to specify the maximum moving distance parameter as
R. We randomly choose a shifting range Rs for each frame
from 0 to R. The range bin within Rs of the RDI remains
unchanged.

xaug(r, d) =

{
x(r, d) for r < Rs

x(r −Rs, d) for Rs ≤ r ≤ NTS
2

(4)

2) Adding Gaussian Noise: Adding noise can help prevent
the network from overfitting and protect the network from
adversarial attacks [26]. Since radar data are more sensitive to
noise, if the variance of the Gaussian noise is too high, the
intensity value in the RDI changes a lot. An example of the
RDI with noise shows in Fig. 2d. On the other hand, directly
training the network by adding noisy inputs takes longer to
converge and leads to underfitting if the hyperparameters are
not chosen appropriately. That is why we introduce a Stability
Training Architecture which is explained in detail in the next
section.

C. Stabilized Architecture

As DL is used in more and more areas, there is a growing
demand for model robustness. Recently, researchers have
found that a small perturbation added to the input in image
classification tasks can lead to a highly wrong prediction
from the well-trained model, such as studies of adversarial
attack in [27], [28]. Even state-of-the-art neural networks
have trouble avoiding this, so model-robustness becomes a
hot and challenging topic. However, in using DL to analyze
radar signals, little research has been done to improve the
robustness [29], [30]. Similar to the contribution of [31] for
Computer Vision, we introduce training with the stability loss,
which we name stability training, for the radar application.
The architecture is shown in Fig. 3.

Range-Doppler
Image (x)

DNN

Embedding Vector
f(x)

Embedding Vector
f'(x)

Final Output for
Classification P(yj|x)

Final Output for
Classification P(yj|x')

L0_emb L0_class

Lstable_emb Lstable_class
(Batch, 64, 64, 4)

(Batch, 64, 64, 4)

(2*Batch,
64, 64, 4) (Batch, 32)

(Batch, # Class)

(Batch, # Class)

Range-Doppler
Image (x)Range-Doppler

Image (x)

Range-Doppler
Image +

Guassian Noise (x')

(Batch, 32)

Figure 3: Stability Training Architecture.

While doing the stability training, the original RDIs are
used as input x with batch size NB . Afterward, we create a
perturbed version of x as x′ by adding pixel-wise uncorrelated
Gaussian noise ϵ. If xi is the ith pixel of x, then x′

i is described
in the following:

x′
i = xi + ϵi, ϵi ∼ N (0, σi), σi > 0 (5)

where σ2
i is the variance of the Gaussian noise, which we add

manually to the kth pixel of x.
After creating the noisy version of the input x and adding

it to the input data, the batch size becomes 2NB . Passing
the concatenated input through the DNN block, we get an
embedding vector with size (2NB , 32) and a final output
vector with size (2NB , L), where L is the number of different
labels.

1) Stability for embedding vectors: We apply Deep Met-
ric Learning (DML) on embedding vectors f(x), aiming to
cluster samples from the same class, and dissimilar pairs from
different classes should fall far apart in the embedding space.
Here, we use Label-Aware Ranked (LAR) loss [22] instead of
the hinge loss between triplets since the LAR loss is a more
precise DML loss for the people counting task, which ranks
the embedding space by its label number, as shown in the
following equation:

L0 emb =
1
N

∑N
i=1 log(1 +

∑
j ̸=i exp(log(∆l)fi(a)fj(n)

T − fi(a)
T fj(p)))

(6)
where

∆l = min (|la − ln|, |L− |la − ln||) (7)

In Eq. 6, we select triplet pairs [32] f(a), f(p), f(n) from
embedding vectors where f(a) and f(p) have the same label
la and f(n) has a different label ln.

In addition, we also require the noisy embedding vector
f(x′) to be as close as possible to the original embedding
vector f(x) to ignore the impact by adding noise. This
helps to decrease the distance between f(x) and f(x′) in
the embedding space by minimizing the L2-distance between
these two vectors:

Lstable emb = ∥f(x)− f(x′)∥2 (8)

2) Stability for classification: In the classification stage, we
also need to minimize two losses. Here, P (ŷ|x) denotes the
output probability vector for a given input x, and y represents
the ground truth binary label vector. We train the network by

minimizing standard cross-entropy loss for the original input
x:

L0 class = −
∑
j

yj logP (ŷj |x). (9)

To use the stability training for classification, we need
P (yj |x′) to be similar to P (yj |x). In this case, we use KL-
divergence to realize the requirement:

Lstable class = −
∑
j

P (ŷj |x) logP (ŷj |x′) (10)

Finally, we sum up these four above losses with equal
weight as stability loss.

Loss = L0 emb+Lstable emb+L0 class+Lstable class (11)

and is used for stability training.

D. Retraining Methodology
In this paper, we introduce our retraining pipeline to im-

prove model performance. The retraining procedure is shown
in Alg. 1. In the baseline training procedure, we are given a
set of data Dm for training the baseline network, a validation
set Dv for validating during training, and an untouched test
set Dt for evaluating the network performance when the
training session is completed. After the baseline network
training session, we create several evaluation sets Dvi . . . Dvs ,
in order to explore the impact of new data on the network
performance. In our framework, to generate new data, we
select the wrong predicted samples out of the evaluation
sets, and create incremental datasets DI1 . . . DIs for the next
retraining session. As an example, in the 1st retraining session,
the training dataset becomes Dm∪DI1 . We continue to retrain
the network s times by using datasets Dm∪DI1∪. . . DIs with
the unchanged weighting parameter w.

Algorithm 1 Retraining Procedure

Require: Dm, Dv, Dt

Baseline Training :
1: Initialize model θ0

2: θm = train(Dm, θ0, Dv)
3: Accm = eval(θm, Dt)

Generate SHAP Value
4: for Dvi in [Dv1 , . . . , Dvs] do
5: DIi = {(d, y) ∈ Dvi |pred(θm, d) ̸= y}
6: SHAP Ii = shap(θm, DIi)
7: wIi = Weight Cal(SHAP Ii)
8: end for

Incremental Training
9: Initialize D = Dm, θ0 = θm, w = 1

10: for DIi in [DI1 , . . . , DIs] do
11: Add new data: D = D ∪DIi , w = w ∪ wIi

12: θi = train(θi−1, D,w,Dv)
13: Acci = eval(θi, Dt)
14: end for

As an example, let (x, y) be an input-target pair with batch
size NB , and xi ∈ RW×H×C denotes the ith sample of

width W , height H and channel C. Let Φ(x, θ) be our
neural network with parameters θ, and L(ŷ, y) is the loss
function to minimize during the training step. Here, ŷ is the
output of the model and y is the ground truth label. Without
any weighting parameters, we aim to minimize the expected
loss: 1

NB

∑NB

i=1 L(ŷi, yi), where each input sample has equal
weight. The intuition of our retrain framework is the following:
as the correct prediction on some data sample is more difficult
to learn than for others (i.e., leads to incorrect estimations),
weighting each input sample helps to focus on the most
difficult predictions. As a consequence, we incorporate this
principle in the following weighted loss:

θ∗(w) = argmin
θ

NB∑
i=1

wiL(ŷi, yi). (12)

In the equation, a higher weighting parameter wi gives higher
importance to a specific input sample xi in backpropagation
during the training session. In order to generate those weights,
we introduce different methods for obtaining those parameters.

1) Calculate from probability vector of prediction: The
most straightforward idea of giving weight to the input
sample is that the wrong-predicted data would be assigned
with a higher weight. P (y|xi) denotes the prediction’s prob-
ability vector for data classified incorrectly. Further, p =
argmaxP (y|xi) and l are the wrong prediction label and
ground-truth label, respectively. Hence, during the retraining
session, we set the weighting parameter wi as:

wi =

{
1 if p = l

1 + P (yp|xi)− P (yl|xi) if p ̸= l
(13)

Next, we show how SHAP values can help determine proper
sample weighting parameters.

2) Calculate from SHAP value: SHAP values show how
pixels contribute to the specific prediction class of a well-
trained model. An example of SHAP value map (SM) is shown
in Fig. 4. Take the nth SHAP value map Mn as an example,
Mn ∈ RW×H has the same shape as the input, and the pixels
of SM correspond to the pixels of the input image, respectively.
The red part has a positive contribution for predicting as label
n, and the negative value pixels contribute adversely to this
prediction class. Each input channel generates L SMs. For
a C channels input image, it generates C × L SMs for the
explanation.

During the baseline training stage, the training set has
already overfitted to a 99% accuracy rate, and incremental
datasets contain only incorrect predicted data. So that in the
retraining stage, we focus more on the incremental datasets
and set the sample weighting parameter to 1 if the data
comes from Dm. Assume now we are at the 1st retraining
stage and xi ⊂ DI1 . More specifically, xik is the kth input
channel where k ∈ [0, C]. Here, we introduce two methods
for calculating the sample weight by SMs which focus on a
different perspective of incorrect predictions. Mik denotes the
SM for predicting xik as ground truth label yi and M̂ik rep-
resents the SM for predicting xik as incorrect prediction label

ŷi. Furthermore, Mpw,ph

ik is the SHAP value at the position
(pw, ph) on the specific SM Mik where 0 ≤ pw ≤ W − 1,
0 ≤ ph ≤ H − 1.
Masked difference In this method, we concentrate on the
ground truth label. Since the sample xi leads to the wrong
prediction ŷi, a higher positive value in M̂ik stands for a higher
contribution of the specific pixel for predicting incorrectly.
Although a negative value in M̂ik means that this pixel
is against predicting as label ŷi, it does not imply that it
positively contributes to predicting the correct label. In this
case, if we want the algorithm to concentrate more on pulling
the input in the direction of a correct prediction, we mask
those pixels. Here, Aik denotes the subset which includes the
position pairs (pw, ph) that satisfy ˆMpw,ph

ik > 0. We define
Aik as:

Aik = {(pw, ph)| ˆMpw,ph

ik > 0} (14)

Moreover, we set the additional weighting parameter of input
sample xi as:

∆wi =
∑
k

1

| Aik |
(

∑
(pw,ph)∈Aik

(ˆMpw,ph

ik −Mpw,ph

ik)) (15)

Localize difference On the contrary, in this method, we focus
on the prediction map. The goal here is to pull the prediction
of this data sample out of the previous prediction ŷi. After
calculating the pixel-wise difference between M̂ik and Mik,
we sum those up to create a distance map. The higher is the
distance between the two maps, the more difficult it is for
the network to classify the input data sample. Thus, a higher
additional weighting parameter needs to be assigned. We set
∆wi in the following:

∆wi =
∑
k

(
∑

pw∈[0,W−1]
ph∈[0,H−1]

(ˆMpw,ph

ik −Mpw,ph

ik)) (16)

To summarize, we assign higher importance to the data
samples of the wrongly predicted instances in the incremental
dataset. This is done by increasing the weight so that it is in
accordance with the obtained SHAP value distances.

Thus, the weighting parameter wi of the sample xi is:

wi =

{
1 if xi ∈ Dm

1 + ∆wi if xi ∈ DI1 ∪ . . . DIs (17)

IV. EXPERIMENTS

In this section, we first show the results of our method on a
radar-based, real-life dataset. Afterward, to show the general
purpose of our approach, we show how our approach work on
the public computer vision dataset CIFAR-10.

A. Experiments on Radar-based People Counting Dataset

1) Implementation Settings: In the implementation step, we
utilize mmWave FMCW radar chipsets with one transmitter
and three receiver units.

We record zero to eight people moving around or standing
still in an office environment using two radars. The recorded
data was split into training, validation, and test sets. The

0 1 2 3 4 5 6 7 8

0.006 0.004 0.002 0.000 0.002 0.004 0.006
SHAP Value

Figure 4: SHAP value example of radar image. This is the Macro-real map M of one input sample xi which has the ground truth label
2 (yi = 2) and incorrectly classified as label 3 (ŷi = 3). Features on map Myi pushing the prediction as label yi higher are shown in red,
those pushing the prediction lower are in blue.

training set consists of around 1.5M frames and 450K per
validation and test set. We train the baseline network using
the cross-entropy loss and the LAR loss without any data
augmentation methods, with NB = 18 to align with the
requirement from [22]. After training the baseline network,
we start retraining the model by randomly shifting each
frame from 0 to 5 ranges. Meanwhile, we select uniformly
at randomly a subset of them (i.e., 10%) and flip them along
the doppler axis. The retraining sessions are repeated for ten
consecutive incremental datasets. In each of these sessions,
the model is trained in a stabilized manner and with a regular
training strategy, with different weighting scenarios mentioned
in Sec. III-D. After each session, we record more data to evalu-
ate the network’s performance and take the wrongly predicted
data to create a new incremental dataset. Each incremental
dataset contains around 15k frames. In the meanwhile, SHAP
values of these data are calculated.

2) Model Architecture: Since the RDI contains complex
values, we can extract a real and imaginary part from it. In
order to process Macro- and Micro-information separately, we
treat them as four different input channels: Macro-real map,
Macro-imaginary map, Micro-real map, and Micro-imaginary
map. As shown in Fig. 5, we have two different pipelines
for processing Macro- and Micro-chain. Each part consists of
three blocks. The kernel size of convolution layers in each
block is 5 × 5 with stride 1. After that, we also use Batch
Normalization (BN) to increase the training speed and prevent
overfitting. Immediately following a Max Pooling (MP) layer
with stride two can decrease the activation map size. After
each block, we also concatenate Macro- and Micro-chains and
further use Cross-Convolution to learn the connection between
Macro- and Micro-information.

In the Cross-Convolution stages, the kernel sizes are 2×2 to
reduce computational costs. After the last Cross-Convolution
stage, the size of the activation map is 8×8×1024. We further
use a Global Average Pooling (GAP) layer [33] to reduce the
3-dimensional map to a vector. At last, after Dense layers,
we get 32-dimensional embedding vectors and 9-dimensional
outputs for further prediction. The embedding vectors are used
for DML [34], which aims to reduce the distance between
samples from the same class and increase the distance between
samples from different classes.

3) Results: First, we compare our stability training archi-
tecture with [31]. Afterward, we show the result of retraining

the network by giving weighting parameters to the data.
a) Stability Training: In order to minimize the influence

brought by parameter initialization of the network, we train
the two different stabilized architectures ten times each, with
the same network settings, by augmenting the data from the
training set Dm. Afterward, we evaluate the networks using
the test set. The result is shown in Fig. 6. When we use LAR
loss to stabilize the embedding vectors, the Top-1 accuracy
reaches 66.96% ± 0.56%, which is 2% more than hinge loss
for deep metric learning.

Hinge_loss LAR_loss
0.640

0.645

0.650

0.655

0.660

0.665

0.670

0.675

0.680

To
p1

 A
cc

ur
ac

y

Figure 6: Stability Training Comparison.

b) Retraining Procedure: We first train the baseline
network with the original training set, and the Top-1 accuracy
rate of the test set is 65.81%. We then split our retraining
experiments into two parts: regular and stability training. We
first retrain the network only with frequency-shifted methods
in the regular training session. Then, we add Gaussian noise
with a variance of 0.01 to the data and retrain the network
with a stabilized architecture. The Gaussian variance is a
hyper-parameter retrieved by using grid-search methods on
the validation set. This defines the stability of the training
procedure. Afterward, we combine our weighting approaches
with each one of the retraining experiments. This shows for
the first time that XAI methods substantially improve the
network performance by aligning the weighting parameter
with the data sample. In order to establish a benchmark,
we compare our weighting approaches to the non-weighted
parameter retraining. This benchmark leads to eight different
experiment combinations. In each experiment, we retrain the
network incrementally ten sessions. In each of those sessions,
we repeat the training for five runs to minimize the initializa-
tion randomness. The results are shown in Fig. 7.

macro
real

macro
imaginary

micro
real

micro
imaginary

+

+

64×64×2

32×32×32

+
Conv 1 +

Max Pooling

Cross
Conv

32×32×64

Conv 2 +
Max Pooling

32×32×32
16×16×64

+

16×16×128
Cross
Conv

16×16×64

Conv 3 +
Max Pooling

8×8×128

+

Cross
Conv

8×8×256
Cross
Conv

8×8×1024

GAP

1024×1

256×1
32×1

9×1

64×64×2
32×32×32

32×32×32
16×16×64 16×16×64 8×8×128

Block 1 Block 2 Block 3

Figure 5: Network Architecture.

Compared with no weight (i.e. equal weights of 1) and
prediction-based weight retraining methods, our SHAP-based
weighting methods improve the accuracy in both regular
and stability training sessions. Overall, in the last retraining
session, SHAP-based methods have a Top-1 accuracy rate of
3% more than non-weighting retraining. Additionally, stability
retraining with SHAP-based weighting parameters also helps
to improve the network performance. However, calculating
weights from the probability vector of predictions leads to
an accuracy drop in the stability training scenario.

B. Experiments on CIFAR-10

In order to determine the generality of the proposed algo-
rithm, we test it on CIFAR-10 [19], including 50k training
samples and 10k test samples. We utilize 20k training data
for the initial baseline training. The remaining 30k training
data samples are further divided into four parts, creating the
incremental datasets. To benchmark our approach, we use
ResNet-18 [35] structure. The baseline model has an 73.32%
accuracy rate on the test set. After retraining the baseline
network four times by gradually adding new training samples,
our methods end up with a more than 81.6% accuracy rate,
which is 3% more than retraining with equal weight. The more
detailed results are shown in Tab. I.

In addition, we also train the same structured network with
all 50k SHAP-based weighted training samples. It achieves
an 80.6% accuracy rate on the test set, nearly 2% less than
retraining incrementally. Further shows that the model benefits
from both SHAP-based weighting strategy and the proposed
incremental retraining procedure.

V. CONCLUSION

This paper proposes a retraining pipeline that assigns
weights to misclassified samples by their SHAP values. We
conducted several experiments on data retrieved via short-
range radar sensors as well as on a public dataset. In order
to establish the importance of the proposed approach, we
first train a baseline network and successively start retraining
sessions with different weighting methods. As a result, on
the radar-based people counting dataset, we show that our
SHAP-based weighting methods outperform retraining with

2 4 6 8 10
Iterations

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

Regular Training

Masked Difference
Localize Difference
No Weight
Softmax Weight

(a) Regular Training.

2 4 6 8 10
Iterations

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

Stability Training

Masked Difference
Localize Difference
No Weight
Softmax Weight

(b) Stability Training.

Figure 7: Experiments Comparison.

standard equal weights of up to 4%. On the CIFAR-10, after
four retraining sessions, the SHAP-based weighting method
has an 3% improved accuracy rate compared to the retraining
procedure with equal weight and 2% more than training from
scratch using all the weighted data at once.

REFERENCES

[1] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning,” Robotics and Autonomous Systems, vol. 114,
pp. 1–18, 2019.

Masked Difference Localize difference No Weight Softmax Weight
Baseline 73.32%

1st session 76.69%± 0.43% 76.65%± 0.32% 76.02%± 0.22% 76.31%± 0.36%
2nd session 78.36%± 0.39% 78.28%± 0.42% 77.12%± 0.45% 77.09%± 0.54%
3rd session 79.74%± 0.36% 79.53%± 0.43% 77.95%± 0.56% 77.68%± 0.38%
4th session 81.94%± 0.44% 81.86%± 0.37% 79.02%± 0.36% 78.99%± 0.39%

Table I: Results Comparison of retraining the baseline network four times with different methods on CIFAR-10.

[2] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[3] A. D. Torres, H. Yan, A. H. Aboutalebi, A. Das, L. Duan, and P. Rad,
“Patient facial emotion recognition and sentiment analysis using secure
cloud with hardware acceleration,” in Computational Intelligence for
Multimedia Big Data on the Cloud with Engineering Applications.
Elsevier, 2018, pp. 61–89.

[4] R. Chen, L. Yang, S. Goodison, and Y. Sun, “Deep-learning approach
to identifying cancer subtypes using high-dimensional genomic data,”
Bioinformatics, vol. 36, no. 5, pp. 1476–1483, 2020.

[5] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford et al., “The limits and
potentials of deep learning for robotics,” The International journal of
robotics research, vol. 37, no. 4-5, pp. 405–420, 2018.

[6] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[7] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial in-
telligence: Understanding, visualizing and interpreting deep learning
models,” 2017.

[8] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[9] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-cam: Visual explanations from deep networks
via gradient-based localization,” International Journal of Computer
Vision, vol. 128, no. 2, p. 336–359, Oct 2019. [Online]. Available:
http://dx.doi.org/10.1007/s11263-019-01228-7

[10] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” 2016.

[11] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein,
“Explainable prediction of medical codes from clinical text,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 1101–1111.
[Online]. Available: https://aclanthology.org/N18-1100

[12] A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi, and
H. Hajishirzi, “MathQA: Towards interpretable math word problem
solving with operation-based formalisms,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 2357–2367. [Online].
Available: https://aclanthology.org/N19-1245

[13] M. Stephan, S. Hazra, A. Santra, R. Weigel, and G. Fischer, “People
counting solution using an fmcw radar with knowledge distillation from
camera data,” in 2021 IEEE Sensors, 2021, pp. 1–4.

[14] S. Hazra, H. Feng, G. N. Kiprit, M. Stephan, L. Servadei, R. Wille,
R. Weigel, and A. Santra, “Cross-modal learning of graph representa-
tions using radar point cloud for long-range gesture recognition,” arXiv
preprint arXiv:2203.17066, 2022.

[15] M. Stephan, L. Servadei, J. Arjona-Medina, A. Santra, R. Wille, and
G. Fischer, “Scene-adaptive radar tracking with deep reinforcement
learning,” Machine Learning with Applications, vol. 8, p. 100284, 2022.

[16] A. Santra and S. Hazra, Deep learning applications of short-range
radars. Artech House, 2020.

[17] J. h. Lee, I. h. Shin, S. g. Jeong, S.-I. Lee, M. Z. Zaheer, and B.-S.
Seo, “Improvement in deep networks for optimization using explainable
artificial intelligence,” in 2019 International Conference on Information

and Communication Technology Convergence (ICTC), 2019, pp. 525–
530.

[18] M. Sabih, F. Hannig, and J. Teich, “Utilizing explainable ai for
quantization and pruning of deep neural networks,” 2020. [Online].
Available: https://arxiv.org/abs/2008.09072

[19] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[20] C. Y. Aydogdu, S. Hazra, A. Santra, and R. Weigel, “Multi-modal cross
learning for improved people counting using short-range fmcw radar,”
in 2020 IEEE International Radar Conference (RADAR). IEEE, 2020,
pp. 250–255.

[21] J.-H. Choi, J.-E. Kim, N.-H. Jeong, K.-T. Kim, and S.-H. Jin, “Accurate
people counting based on radar: Deep learning approach,” in 2020 IEEE
Radar Conference (RadarConf20), 2020, pp. 1–5.

[22] L. Servadei, H. Sun, J. Ott, M. Stephan, S. Hazra, T. Stadelmayer,
D. S. Lopera, R. Wille, and A. Santra, “Label-aware ranked loss
for robust people counting using automotive in-cabin radar,” 2021.
[Online]. Available: https://arxiv.org/abs/2110.05876

[23] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” CoRR, vol. abs/1705.07874, 2017. [Online]. Available:
http://arxiv.org/abs/1705.07874

[24] W. Zhao, T. Joshi, V. N. Nair, and A. Sudjianto, “SHAP values
for explaining cnn-based text classification models,” CoRR, vol.
abs/2008.11825, 2020. [Online]. Available: https://arxiv.org/abs/2008.
11825

[25] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting financial time
series with shap values,” in Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering, 2019, pp.
166–172.

[26] S. Dodge and L. Karam, “Understanding how image quality affects deep
neural networks,” in 2016 eighth international conference on quality of
multimedia experience (QoMEX). IEEE, 2016, pp. 1–6.

[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[28] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[29] T. Huang, Y. Chen, B. Yao, B. Yang, X. Wang, and Y. Li, “Adversarial
attacks on deep-learning-based radar range profile target recognition,”
Information Sciences, vol. 531, pp. 159–176, 2020.

[30] L. Wang, X. Wang, S. Ma, and Y. Zhang, “Universal adversarial
perturbation of sar images for deep learning based target classification,”
in 2021 IEEE 4th International Conference on Electronics Technology
(ICET), 2021, pp. 1272–1276.

[31] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proceedings
of the ieee conference on computer vision and pattern recognition, 2016,
pp. 4480–4488.

[32] K. Q. Weinberger, J. Blitzer, and L. Saul, “Distance metric learning
for large margin nearest neighbor classification,” Advances in neural
information processing systems, vol. 18, 2005.

[33] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[34] M. Kaya and H. Ş. Bilge, “Deep metric learning: A survey,” Symmetry,
vol. 11, no. 9, p. 1066, 2019.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

http://dx.doi.org/10.1007/s11263-019-01228-7
https://aclanthology.org/N18-1100
https://aclanthology.org/N19-1245
https://arxiv.org/abs/2008.09072
https://arxiv.org/abs/2110.05876
http://arxiv.org/abs/1705.07874
https://arxiv.org/abs/2008.11825
https://arxiv.org/abs/2008.11825
http://arxiv.org/abs/1512.03385

	Introduction
	Background and Motivation
	Explainable Artificial Intelligence
	Introduction of mmWave fmcw Radar Sensor

	Approach
	Radar Data Preprocessing
	Radar Data Augmentation
	Frequency Shift
	Adding Gaussian Noise

	Stabilized Architecture
	Stability for embedding vectors
	Stability for classification

	Retraining Methodology
	Calculate from probability vector of prediction
	Calculate from shap value

	Experiments
	Experiments on Radar-based People Counting Dataset
	Implementation Settings
	Model Architecture
	Results

	Experiments on CIFAR-10

	Conclusion
	References

