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Abstract—Quantum computing benefits from collective features
of quantum states, such as superposition and entanglement, to
efficiently address problems that are very hard to be solved on
classical systems. The Scalable Architecture for Quantum Infor-
mation Processor (SAQIP) architecture is a promising technology
that is based on ion-traps and realizes a hybrid composed of
a large number of full-custom building blocks (supposed to
realize so-called Elementary Logic Units; ELUs) connected by a
reconfigurable optical switch network. As with every architecture,
corresponding design methods are required in order to properly
map a given quantum functionality onto the respective device.
However, since the corresponding complexity frequently made
exact solutions for this task infeasible for past architectures,
most of the existing mapping methods rely on heuristics and,
hence, do not provide exact/optimal results. Considering the
SAQIP architecture, however, this problem can be prevented. In
fact, due to the building blocks of this architecture, any circuit
to be mapped has to be partitioned into ELUs anyway. Since
those are usually of moderate size, exact/optimal solutions for
them are possible. In this work, we sketch an exact mapping
method that can generate such optimal results. To this end,
we propose a corresponding formulation in mixed-integer linear
programming (MILP) that allows to cope with the (smaller, but
still not non-trivial) complexity.

I. INTRODUCTION

All of DiVincenzo’s requirements for a universal quantum
computer and quantum algorithms have been demonstrated with
the ion-trap technology [1]: Monroe et al. [2] demonstrated a
hybrid distributed architecture for ion-trap quantum processors
to conquer the serious scalability issues of Quantum Charged-
Coupled Device architecture [3]. It is composed of Elementary
Logic Units (ELUs) including a string of 50–100 ion-qubits
connected through an photonic network. Ahsan et al. [4]
improved this architecture by replacing the string structure
of ELUs with a Quantum Logic Array (QLA, [5]). Recently,
[6] proposed the Scalable Architecture for Quantum Informa-
tion Processors (SAQIP) architecture to address the issues of
Ahsan’s architecture. They used the same hybrid system but
utilized ion-trap technology capabilities and designed ELUs in
the full-custom style to alleviate the issues. Its performance
evaluation showed that, thus far, it is the best and most
promising architecture.

However, all those architectures can only succeed for
practically-relevant applications, if corresponding design meth-
ods exist that map a given quantum functionality onto the

respective device. Accordingly, several methods have been
proposed for this purpose (see, e.g., [4–8]). But, due to the
complexity of the problem (which is NP-hard [5]), most of
these methods are heuristic in nature, i.e., they cannot provide
exact/optimal results. Exceptions are, e.g., the work proposed
in [8, 9] which, in turn, are not very scalable and, hence, only
applicable for rather small quantum functionality.

Because of this, it remained hard to obtain optimal results
for ion-trap architectures. Considering SAQIP, this problem
could be prevented. In fact, having the full-custom structure,
accommodating more than two qubits in each gate location, and
adding a three-qubit Toffoli gate to the gate library cause that
SAQIP requires substantially smaller ELUs compared to other
architectures [6] – providing the potential to actually address
the design task in an exact/optimal fashion at least for ELUs.

In this work, we are aiming to use this potential. We propose
a method that maps quantum circuit partitions to SAQIP while,
at the same time, keeps the costs, i.e., the number of required
time steps, minimal for each ELU. In order to cope with
the resulting complexity, we are proposing a corresponding
formulation in mixed-integer linear programming (MILP) and
use corresponding solvers for the following reasoning. This
allows to efficiently generate mappings for the considered
ELUs, while guaranteeing minimality. The resulting (minimal)
ELUs can then be used by the existing SAQIP design flow to
realize the entire functionality.

II. BACKGROUND AND CONSIDERED PROBLEM

A. Quantum Circuits

The quantum circuit model is the most widely-used and
developed model for quantum computation. In a quantum
circuit, times goes from left to right and each line represents
the evolution of each qubit through time.

Example 1. Fig. 1 provides an example of a quantum circuit
composed of fifteen qubits q1 to q15, fourteen two-qubit gates,
and fourteen three-qubit gates.

B. SAQIP Architecture

The SAQIP architecture [6] (as sketched in Fig. 2) relaxed
some assumptions based on the recent advancements in ion-trap
technology [1]. It is composed of a large number of full-custom
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Fig. 1: A sample circuit and its netlist including fifteen qubits, fourteen
two-qubit gates, and fourteen three-qubit gates.
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Fig. 2: Overview of the SAQIP architecture [6]. Cq7 and Cq14 are the
commination qubits taking the states of qubits q7 and q14 respectively.

blocks connected by a reconfigurable optical switch network.
Its blocks are designed in the full-custom style based on the
multiplexed ion-trap structure [10]. Each block is composed
of some interaction zones and each zone confines a few ions.
Quantum data is transferred between zones of a block by
ballistically shuttling ions and between blocks by photons via
the optical switch network.

Example 2. Fig. 2 shows a sample SAQIP architecture gen-
erated for the circuit depicted in Fig. 1 including two ELUs,
ELU 1 and ELU 2. As can be seen, the state of q7 located firstly
in ELU 1 is transferred to a communication qubit, namely Cq7,
in ELU 2. Correspondingly, the state of q14 located firstly in
ELU 2 is transferred to a communication qbit, namely Cq14
in ELU 1. The arrows between the sub-circuits show the qubit
state transfers between ELUs.

C. Considered Design Problem

Fig. 3 shows the Computer-Aided Design flow proposed for
SAQIP as well as the detailed steps for mapping one partition
onto physical layout. In the first step, the k-way hMETIS
partitioning algorithm [11] breaks up qubits among blocks
such that the number of communications between blocks is
minimized. To map a resulting quantum circuit partition onto
an ELU, three separate main processes are performed, i.e.,

Technology-dependent 
fault-tolerant netlist

Partition (K-way hMETIS)

Place (Cluster growth) 

Route (Maze) 

Schedule (List-scheduling)

M
ap

pi
ng

Schedule the whole circuit

Scheduled final layout

 Sort the qubits (Linear arrangement)

 Partition the string of qubits  (Min-cut)

Insert channel (Greedy)

Placement 

Place gate macroblocks with 
proportional size

Layout structure generation

Partition i

Fig. 3: The SAQIP architecture design flow [6].

placement, routing, and scheduling. To place one partition, first
the linear arrangement method sorts the qubits of each ELU as
a single sorted string. This string subsequently is partitioned by
the min-cut algorithm into substrings. Then, the cluster growth
placement approach determines the initial position of qubits
(substrings). Meanwhile, a modified version of the algorithm
proposed in [12] generates the layout structure with placing
gate macroblocks with the proportional size to substrings size
and inserting channels to connect the gate locations. After
the layout is generated, the Maze routing method determines
the movement paths of qubits. Afterwards, the list scheduling
method step determines the instruction execution sequence as
well as the order of qubit movements across channels. Finally,
a simple greedy scheduling method schedules the whole circuit
and generates the final layout.

Within this flow, mapping partitions onto the ELUs appar-
ently is a key step that is the main focus of this paper.

Example 3. Fig. 4 sketches the optimal mapping of the
partition of the considered quantum circuit assigned to ELU 1
depicted in Fig. 2 onto the generated layout. Fig. 4a sketches
the list assigned to each gate location that determines the initial
location of each qubit and the gates that are to be performed in
that gate location. Fig. 4b sketches the schedule for the gates
running on the layout. This circuit needs 5657 time steps to be
run on the layout. Fig. 4c sketches the schedule for the qubits.

III. PROPOSED SOLUTION

A. General Idea

A substantial amount of work has been tried to develop meth-
ods that map a quantum circuit onto corresponding ion-trap ar-
chitectures. For SAQIP, similar solutions than those are needed,
too, which might tempt researchers and engineers to simply re-
use them. However, most of the existing approaches either have
been developed for grid ion-trap layouts confining only two
qubits in each gate location or have been developed for linear-
trap ion-trap architectures that are not scalable. Moreover, most
of the existing solutions are not exact, thus cannot guarantee
minimality. Some few of them can guarantee minimal solutions,
but then, they are hardly scalable.

However, considering the SAQIP architecture, an alternative
approach becomes possible that allows for a solution that can
guarantee minimality (at least for the quantum circuit partitions
to be mapped to ELUs) while still remains applicable. This is,
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Fig. 4: Optimal mapping of the circuit assigned to ELU 1 onto the layout
generated by the SAQIPSim toolset that is obtained by our approach.

because the SAQIP architecture provides building blocks (i.e.,
entities for ELUs) that will not exceed a certain size. Because
of this, scalability might be less an issue.

Nevertheless, determining exact/optimal results still requires
an efficient solution. We propose to address this by providing
a MILP formulation of the problem.

B. Sketch of the Resulting Formulation

In this section, the proposed formulation is described, which
precisely takes into account the SAQIP architecture features
introduced in Section II-B. The MILP model is presented for
the quantum mapping problem which takes two inputs: the
partition of a quantum circuit assigned to an ELU in the
partitioning step and a corresponding layout to be mapped to.
Then, the formulation is supposed to describe the problem of
mapping the circuit partition onto the layout. The formulation is
defined to determine the best scheduling, initial qubit placement
and gate placement, as well as qubit routing for each partition
in terms of number of time steps.

The proposed model is summarized as follows: The critical
path delay l is considered as the main objective in Formula (1):

Minimize l (1)

Formula (2) defines the critical path as the maximum comple-
tion time of gates and Formula (3) calculates the end time of
gates, i.e.,

l ≥ eg ∀g ∈ G, (2)
sg + og = eg ∀g ∈ G, (3)

where sg and eg define the start time variable and the end time
variable of performing gate g, respectively and og is the delay
parameter of performing gate g. G is the set of gates.

Formula (4) is defined to keep the order of execution of
dependent gates, i.e.,

eg′ + dtt′ + (pqt
′

g′ + pqtg − 2)M ≤ sg ∀(g, g′, q) ∈ F,

(t, t′) ∈ P, (4)

where dtt′ is the time that a qubit needs to traverse from trap
t to t′ (pre-computed by the Dijkstra algorithm) and pqtg is a
variable that is set to 1 if qubit q from gate g is placed in trap
t, otherwise, it is set to 0. Set F includes qubit dependencies
between gates. The set P is the set of all possible pairs of traps
in the layout. Finally, M is a very big number.

To handle gate placement, Formulas (5)–(9) are defined to
map the qubits of gates to traps according to the clusters that
the gates belong to. A cluster is defined as a group of adjacent
traps in an interaction zone that may consist of one trap up
to three traps. The set C indicates the set of clusters. More
precisely: The mapping of the qubit of each one-qubit gate to
a trap is constrained in Formula (5), i.e.,

pcg ≤ pqtg ∀g ∈ G1, (g, q) ∈ R, (c, t) ∈ S1, (5)

where pcg is a variable that is set to 1 if gate g is assigned
to cluster c ∈ C, and otherwise is set to 0. G1 is the set of
one-qubit gates (G1 ⊂ G). R is the set of (g, q) that gate
g ∈ G needs qubit q for execution. S1 is the set of (c, t) that
the cluster c ∈ C1 contains trap t, where C1 is the set of clusters
containing only one trap (C1 ⊂ C).

For each two-qubit and three-qubit gates, all the involving
qubits in that gate should be placed in adjacent traps included
in the cluster. In order to place and execute a two-qubit or
three-qubit gates, the following constraints should be satisfied:

1) Each qubit must be assigned to only one trap of the
cluster assigned to a gate.

2) Each trap of a cluster assigned to a gate must belong to
only one qubit.

These conditions are checked for two-qubit gate in Formulas (6)
and (7), and for three-qubit gates in Formula (8) and (9), i.e.,

(1− pcg)m ≤ 1− (pqtg + pqt
′

g ) ≤ (1− pcg)M

∀g ∈ G2, (g, q) ∈ R, (c, t, t′) ∈ S2 (6)

(1− pcg)m ≤ 1− (pqtg + pq
′
t

g ) ≤ (1− pcg)M

∀(g, q, q′) ∈ R2, c ∈ C2, (c, t) ∈ S (7)

(1− pcg)m ≤ 1− (pqtg + pqt
′

g + pqt
′′

g ) ≤ (1− pcg)M

∀g ∈ G3, (g, q) ∈ R, (c, t, t′, t′′) ∈ S3 (8)

(1− pcg)m ≤ 1− (pqtg + pq
′
t

g + pq
′′
t

g ) ≤ (1− pcg)M

∀(g, q, q′, q′′) ∈ R3, c ∈ C3, (c, t) ∈ S (9)



where G2 and G3 are the sets of two- and three-qubit gates,
respectively. S2 is the set of (c, t, t′), where cluster c ∈ C2

contains adjacent traps t and t′. C2 is the set of clusters
that contain two adjacent traps (C2 ⊂ C). S3 is the set of
(c, t, t′, t′′), where cluster c ∈ C3 contains adjacent traps t, t′

and t′′. C3 is the set of clusters that contain three adjacent traps
(C3 ⊂ C). R2 is the set of (g, q, q′), where gate g ∈ G2 needs
qubits q and q′ for execution. R3 is the set of (g, q, q′, q′′),
where gate g ∈ G3 needs qubits q, q′, and q′′ for execution. M
and m are a sufficiently large number and a sufficiently small
number respectively. S is the set of (c, t) that cluster c ∈ C
contains trap t.

The initial qubit placement in each ELU is enforced in
Formulas (10) and (11), i.e.,∑

(q,g)∈D

pqtg = 1 ∀t ∈ T, (10)

∑
t∈T

pqtg = 1 ∀(q, g) ∈ D, (11)

where D is the set of (q, g) that qubit q debuts in gate g in the
netlist and T is the set of traps.

Rules for assigning gates to clusters are satisfied in Formu-
las (12) to (17). Since, in any type of gates, the number of gates
could normally exceed the number of relevant clusters available
due to the SAQIP architecture, each cluster might hold several
gates. Although we did not consider congestion in the model,
we try to fairly distribute gates over the layout. Therefore, we
apply lower bounds in Formulas (13), (15), and (17) which are
related to one-, two- and three-qubit gates, respectively. These
bounds are achieved by distributing gates over possible clusters
aiming to give equal shares to clusters. More precisely:

∑
c∈C1

pcg = 1 ∀g ∈ G1 (12)

⌊ |G1|
|C1|

⌋
≤

∑
g∈G1

pcg ∀c ∈ C1 (13)∑
c∈C2

pcg = 1 ∀g ∈ G2 (14)

⌊ |G2|
|C2|

⌋
≤

∑
g∈G2

pcg ∀c ∈ C2 (15)∑
c∈C3

pcg = 1 ∀g ∈ G3 (16)

⌊ |G3|
|C3|

⌋
≤

∑
g∈G3

pcg ∀c ∈ C3 (17)

Finally, Formulas (18) to (21) restrict variables to valid
values.

pqtg ∈ {0, 1} ∀g ∈ G, q ∈ Q, t ∈ T (18)

pcg ∈ {0, 1} ∀g ∈ G, c ∈ C (19)

sg ≥ 0 ∀g ∈ G (20)
eg ≥ 0 ∀g ∈ G (21)

Passing the formulation from above to a reasoning engine,
assignments to all used variables are obtained out of which an
optimal mapping of a quantum circuit partition for an ELU
can be derived. By this, optimal results for ELUs are obtained
which, afterwards, can be combined to realize a mapping for
the entire circuit (note that the combination is not necessarily
minimal anymore, but still can improve a heuristic solution).

IV. CONCLUSIONS AND FUTURE WORK
In this work, we proposed an exact approach for mapping

partitions of a quantum circuit onto building blocks of the
SAQIP architecture. This became possible, since the small size
of ELUs in the SAQIP architecture allowed to generate optimal
results for its ELUs without scalability issues. To address the
(still non-trivial) complexity, a MILP formulation has been
proposed which can efficiently been solved using a reasoning
engine. In future work, detailed evaluations will be conducted
to evaluate the performance of the proposed approach.
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