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ABSTRACT
The exponential growth of transistor density in integrated circuits
is doomed to fail at the limits of physics in the foreseeable future.
Quantum-dot Cellular Automata (QCA) is a post-CMOS contestant
from the emerging Field-coupled Nanocomputing (FCN) paradigm
which offers computations with tremendously low power dissipa-
tion. Recent physical accomplishments in this area also motivated the
developments of corresponding design automation methods. However,
although the higher integration density of QCAmakes this technology
a promising candidate for stacked, i. e. cuboid-like, chip architectures,
all design automation solutions proposed thus far are limited to 2-
dimensional architectures only. This work showcases the potential
when the third dimension is additionally utilized. To this end, we must
overcome certain obstacles for which corresponding solutions are pro-
posed. Case studies on important regular structures such as bitwise
AND/OR, binary adders, or multiplexers—for which we provide auto-
matic generation scripts—confirm that exploiting the third dimension
in this fashion yields a prodigious reduction in area occupation and
cell count, differing by several orders of magnitude compared to the
state of the art.

CCS CONCEPTS
•Hardware→Quantumdots and cellular automata;Wire routing;
Physical synthesis; Placement; Clock-network synthesis; Software
tools for EDA.

1 INTRODUCTION & MOTIVATION
The contemporary semiconductor chip technology reduces transis-
tor sizes at a rate that is asymptotic; a direct consequence of the
increasing effect of the uncertainty principle that plays at the quan-
tum scale. Exactly this effect enables the formation of Quantum-dot
Cellular Automata (QCA): a technology concept from the emerging
Field-coupled Nanocomputing (FCN) paradigm that operates on the
Coulombic repulsion between individual charges [1].

Correspondingly, QCA performs computation with extremely low
energy dissipation, which allows it to be integrated much denser than
current CMOS technology nodes allow for.

The task to generate a QCA circuit layout from a specification,
which is usually given by the means of a logic network, is called phys-
ical design. It involves considerations of gate placement, wire routing,
clock zone assignment, and timing awareness. The problem is known
to be computationally intractable, even under various relaxations [26].

Nevertheless, a handful of automatic approaches that tackle the
physical design of QCA systems exist; e. g., [3, 23–25, 27]. However,
these algorithms suffer from greedy layout consumption by long wire
segments for routing or do not scale on large input networks. Main
reasons for these shortcomings are stricter technology-specific con-
straints that render the application of established VLSI approaches
unsuitable.

Overcoming this major roadblock in the process of developing
a complete design automation flow for QCA systems is the goal of
current scientific endeavors in the community. Currently, all composed
circuits have to be obtained either manually or via the aforementioned
placement and routing techniques.

∗Also with Software Competence Center Hagenberg (SCCH).

Additionally, to the best of the authors’ knowledge, all existing
automatic methods target 2-dimensional QCA technologies—with only
short wire segment crossovers—even though QCA’s intrinsic property
of operating with radial fields as well as its higher possible integration
density make it a prime candidate for 3-dimensional, i. e., stacked
architectures. These architectures have in fact been introduced in the
literature with the potential physical implementation of 2D electron
gases [4], and their benefits are known from similar technologies like
perpendicular nanomagnetic logic (pNML) [17].

However, certain obstacles need to be overcome when exploring
the third dimension for QCA layout generation. Unwanted signal
inversions must be handled, and an inconsistent cell spacing needs
to be adopted to facilitate equal strength signal transmission in each
dimension.

This work investigates these physical issues and proposes solutions
that enable the exploitation of the third dimension in QCA layout gen-
eration. Furthermore, it introduces novel QCA circuit classes, namely
linearly and arboreally stackable designs, that can be stacked in the
third dimension to increase their bitwidth without costly placement
and routing. Additionally, since these circuits expand in the third di-
mension, they only require modest chip area in the plane; in fact, an im-
provement of several orders of magnitude in comparison to the state of
the art is achieved. Thereby, they can be used as extensible 3D building
blocks for cuboid chip architectures. Alongside the initial definition of
these circuit classes, this work also proposes a programmatic solution
in Haskell to the automatic obtainment of 𝑛-bit QCA circuitry formed
from said classes. The code and all obtained design files are made pub-
licly available at https://www.github.com/wlambooy/QCA-STACK.

The remainder of the paper is structured as follows: Section 2 dis-
cusses select background on QCA. Section 3 introduces the notion
of stackable QCA layouts, discusses their potential as well as physi-
cal issues that come with the approach, and proposes corresponding
solutions. Section 4 introduces two methods for creating seamlessly
stackable QCA layouts from base designs with the help of running
examples. Section 5 showcases results obtained from the proposed
methods and compares them against the state of the art. Finally, Sec-
tion 6 concludes the paper.

2 PRELIMINARIES
There exist a variety of physical implementations that build upon
the QCA concept of which 2D electron gases and pNML are just two
particularly well suited ones for 3D architectures [4, 17]. This work
shall, however, not favor any particular QCA technology.

At the core of a quantum-dot cellular automaton is the QCA cell, a 2-
dimensional plane with sides of equal length. Inside are four quantum-
dots that are both evenly spaced apart from each other and from the
center and the nearest corner of the cell [13]. Each quantum-dot is a
nanoscopic (molecular) structure that functions as a site that can be
occupied by at most one electron [10]. When exactly two electrons
are put into a single cell, the repelling Coulomb forces between them
will always push them into opposite corners. From this, two possible
stable states emerge that are denoted as 𝑃 = −1 and 𝑃 = +1, and can
be read as logical 0 and logical 1 respectively [12, 13].

Example 2.1. Figure 1 depicts eight QCA cells aligned adjacently,
where each square represents the outline of a cell, each circle rep-
resents a quantum dot, and each bullet represents a charge located
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Figure 1: A clocked QCA cell wire

at such a dot. The green and orange cells are polarized to logical 1,
while the purple cells are polarized to logical 0. The blue cells are
unpolarized and represent a null state without retrievable information.
This makes QCA a binary, but not a ternary technology.

While it is possible for electrons to tunnel to nearby unoccupied
quantum dots in the same cell, they cannot tunnel to quantum dots in
adjacent cells [13]. Nevertheless, their charge influences the behavior
of neighboring cells so that they align their polarizations accordingly.
A line of QCA cells thus forms a wire through which information
is transferred by Coulomb interaction alone—without the flow of
electric current [9]. The cells in Figure 1 are aligned as such a binary
wire segment. It can be seen that the first four cells aligned their
polarizations. However, a cell’s influence rapidly decays over distance.
As the number of cells and the temperature of a QCA system increase,
cells occasionally assume incorrect polarizations with an increasing
probability. The energy difference between the ground state (the state
of lowest energy) and the first excited state (a state with incorrect
polarization) is referred to as kink energy [9, 13]. This notion can be
used to calculate cell polarizations given external parameters.

To address this problem, a larger QCA system is usually divided into
smaller segments and provided with an electric field generator that
controls the tunneling characteristics of the cells; a concept known as
clocking [5, 11]. Intuitively, a clock field applied in this way ensures
that the affected cells assume a fixed polarization and cannot change
their state until the field is turned down again. If four repeating field
signals are distributed across a QCA system (each of them shifted
clockwise by 90◦), a pipeline-like information flow of affected cells is
achieved.

Example 2.2. Consider again Figure 1. Here, the color code repre-
sents the different clocks fields employed to the cell. Green cells are
in a fixed state of stable information (hold), and are therefore depicted
with a slightly thicker cell wall. Conversely, the orange cells are cur-
rently switching to this state (switch). At the same time, the blue cells
are depolarized (relax) and the purple cells are reverting from their
previous polarization (release).

Clocking is one of the most fundamental concepts of information
propagation in QCA. The de-facto state-of-the-art QCA design rules
utilize a tile-based scheme that tiles the circuit into uniformly sized
clock zones, e. g., 5 × 5 cells, and assigns clock numbers to these
blocks [6]. For the ease of depiction, the QCA systems investigated
in this work use clock zone sizes that are smaller than commonly
used ones. However, they can easily be translated into feasible layouts
by duplicating their cells to obtain respectively sized blocks. Using
those clock zones and additionally arranging QCA cells in specific
topological structures, their Coulombic influence can yield compu-
tational properties, i. e., can be utilized to implement combinational
logic [9, 22].

Example 2.3. Figure 2a depicts aMAJ gate that implements ⟨𝑎, 𝑏, 𝑐⟩ B
𝑎𝑏 +𝑎𝑐 +𝑏𝑐 [22]. Figure 2b showcases an XOR gate [18]. In both gates,
the Coulombic pressure exerted by the inputs on the center cell causes
it to assume a polarization in accordance to the strongest forces act-
ing upon it—eventually yielding the output value that realizes the
respective function.

The composition of cells into larger computational structures is
called physical design and is usually performed on an abstraction level
that is independent of concrete cell positions [3, 23, 25, 27]. Instead,
gates or components are utilized whose internal cell structures are
known beforehand [16]. A sufficiently large composition of cells is
called a (circuit) layout. In the past, QCA circuit layouts presented in
the literature were almost exclusively semi-planar, i. e., all their logic

(a) Majority [22] (b) XOR [18]

Figure 2: Planar 3-input QCA gates

elements were placed in the plane with only short wire-crossings in a
second layer [3, 23, 25, 27].1

The automatic obtainment of layouts from specifications is one of
the most crucial tasks in QCA design automation and is known to
be NP-complete [26]. Due to its peculiar constraints, conventional
algorithms for transistor logic cannot be applied to the QCA domain.

3 INTRODUCING STACKABLE QCA LAYOUTS
A major problem in today’s physical design of QCA layouts—even for
regular structures such as 𝑛-bit logical operations, 𝑛-bit binary adders,
or multiplexers—is that the correspondingly needed routing requires
a substantial overhead in terms of area. In this work, we propose to
overcome this shortcoming by exploiting the third dimension of QCA,
and introducing what we coin stackable QCA layouts. These denote
designs that can be seamlessly extended in the third dimension to
increase their bitwidth. This section provides a corresponding motiva-
tion and also discusses the obstacles that come with 3D QCA design.
Based on that, the remainder of this work then provides solutions that
exploit this potential and concurrently overcome the obstacles.

3.1 Potential of 3-Dimensional QCA
Using the basic concepts reviewed in the previous section allows to
realize arbitrary functionality in QCA by composing corresponding
gates together as discussed in Example 2.3 and illustrated in Figure 2.
Similarly, strictly regular circuit components such as 𝑛-bit AND/OR
operations,𝑛-bit binary adders, or multiplexers can be realized by com-
posing the single building blocks (i. e., the AND/OR gates, full adders,
or MUX gates) together. However, while the underlying concepts
are rather simple, realizing those layouts in QCA requires a substan-
tial area overhead due to its 2-dimensional architecture. This makes
routing, i. e., connecting the single building blocks, rather tedious as
illustrated by the following example.

Example 3.1. Figure 3 shows the QCA layout of a 4-bit Ripple Carry
Adder (RCA) as it was proposed in [16]. While the layout is defined by
a diagonal composition of four full adders in the plane, the figure also
clearly shows that connecting wires consume a substantial amount of
the layout area.

The main reason for this circumstance is that only one layer is
available for wire routing, which causes a need for long detours. An-
other reason is the compensation of delay differences. Due to QCA’s
pipeline-like clocking behavior, circuits propagate information in dis-
crete time steps, and meticulous care must be taken to ensure that
all signal transmission times in the layout are identical. This is of-
ten solved by long and convoluted wires, as depicted in the figure.
Consequently, a lot of chip area is wasted.

This obstacle is known by the term routing congestion. Such prob-
lems can be found all over the literature, e. g., [14, 20]. In all these
cases, designers have to handle this severe drawback that comes with
the 2-dimensionality of QCA layouts.
1Furthermore, coplanar wire-crossings allowed the construction of crossover segments
in the plane by rotating the crossing cells by 45◦ [22]. However, this technique requires
additional area for converting a non-rotated signal to a rotated one and vice versa.
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Figure 3: Recreation of the planar 4-bit QCA RCA proposed
in [16]. Long wire detours have been created for routing and
delay compensation.

At the same time, however, the underlying Coulomb interaction
that provides the basis for QCA is by no means a 2-dimensional phe-
nomena. Its force does not only act between cells in the plane but
naturally extends in all directions—including the third dimension.
Physically, this idea has already been considered in [4] where a 3D
QCA architecture was proposed, which acts as justification for this
work to explore it for layout generation.

Conceptually, using interactions of QCA cells not exclusively in
2-dimensional directions, but additionally exploiting the third dimen-
sion, suddenly offers plenty of further opportunities to connect build-
ing blocks and, hence, avoids the routing congestion problem illus-
trated above. At the same time, simply using the Coulomb interaction
in the third dimension is not straightforward, as it imposes some
obstacles to overcome. Those are discussed next.

3.2 Resulting Obstacles
In order to avoid the routing congestion problem illustrated above,
we propose to exploit the third dimension, i. e., to stack QCA cells on
top of each other—leading to the stackable QCA layouts proposed in
this work. However, to really utilize this concept, two major obstacles
have to be considered:

(1) In contrast to adjacent cells in 2-dimensional layouts, stacking
QCA cells causes unwanted signal inversions that need to be
given particular attention.

(2) The physical spacing of stacked cells has to be adjusted so that
the Coulombic interaction acts on adjacent cells with the same
force regardless if they are in the 2-dimensional plane or in a
stack.

More precisely, the unwanted signal inversions are illustrated in
the following example.

Example 3.2. Figure 4a depicts three stacked QCA cells. Assuming
the bottom cell to have a fixed polarization of 𝑃 = −1, i. e., logical 0,
its signal is propagated upwards via Coulombic forces as discussed
in Section 2. The tendency of charges to occupy quantum-dots that
are farthest from each other yields a logical inversion per cell in the
third dimension. Thus, the middle cell assumes polarization 𝑃 = +1
(logical 1), and the top one again resolves to 𝑃 = −1 (logical 0). As
shown by this, an odd number of cells is required in each stack to
obtain unaltered signals at the target level.

Without loss of generality, we propose to address this obstacle
by stipulating that the addition of another QCA layer in the third
dimension always requires exactly one additional via layer, i. e., a

layer that merely contains propagating cells but no logic. To this end,
for propagating information up or downwards, QCA cell stacks of
height 3 are used, but can easily be extended to 5, 7, etc. if needed
for, e. g., technology constraint reasons. This restriction is used in the
remainder to construct multi-layered QCA, functionally consisting of
layer pairs connected by one conducting via layer.

The obstacle concerning the dedicated spacing in between cells is
rooted in the fact that, naturally, the Coulomb interactions between
cells should be the same in all dimensions (e. g., an interaction in the
second dimension must not be stronger or weaker than an interaction
in the third dimension). Since these forces are stronger the closer
the cells are placed together, this needs to be properly adjusted. For
the second dimension, established standard values for the spacing of
cells already exist (and are, e. g., also preset in physical simulators
such as QCADesigner [29]). For the third dimension, those values still
have to be determined. The following example illustrates how this
can be accomplished by utilizing the kink energy as touched upon in
Section 2.2

Example 3.3. When horizontal and vertical spacing are set to be
equivalent, the absolute kink energy |𝐸𝑘 | between some adjacent cells
𝑐0 and 𝑐1 in the plane evaluates as follows: |𝐸𝑘𝑐0,𝑐1 | ≈ 0.82. This factor
is largely decided by the shortest distances between the quantum-dots
in 𝑐0 and the ones in 𝑐1. A cell 𝑐2 that is adjacent to 𝑐1 in the third
dimension, i. e., one that is directly above or below it, does not share
the shortest distances of the previously considered coplanar adjacency.
Hence, their mutual absolute kink energy differs: |𝐸𝑘𝑐0,𝑐2 | ≈ 0.11.

Based on that, the required layer spacing can be determined by set-
ting the kink energy between a cell and its directly adjacent coplanar
neighbor equivalent to the negated kink energy between said cell and
its vertical (non-coplanar) neighbor. This pragmatical layer spacing
was calculated to be approximately 0.581215 · 𝐻 , where 𝐻 denotes
the horizontal distance between the centers of two directly adjacent
coplanar cells. Evaluating the absolute kink energy equations from
Example 3.3 again with said layer spacing set, the following results:
𝐸𝑘𝑐0,𝑐1 ≈ −𝐸𝑘𝑐0,𝑐2 . Hence, intuitively speaking, the cell spacing in the
third dimension must be set to ≈ 58 % of the cell spacing in the plane
to facilitate that signal transmission in each spatial dimension is of
equal strength.3 Thus, applying this method allows for the proposed
stackable QCA designs.

4 METHODOLOGIES FOR STACKING QCA
Having the concept of stackable QCAs and solutions for the corre-
spondingly resulting obstacles, this section now proposes correspond-
ing design methodologies that exploit the additional potential of the
third dimension. This potential substantially depends on the respec-
tively given layout to be realized, and on the needed routing of the
corresponding building blocks. If employed in a smart fashion, stack-
able QCAsmay not require any or only small overhead and, hence, may
overcome the routing congestion problem illustrated in Example 3.1
and Figure 3. In this section, we are proposing two corresponding
methodologies that accomplish that: one leading to linearly stackable
layouts and another leading to arboreally stackable layouts. Both of
them are described by means of representative examples, while further
cases are considered and summarized later in Section 5.

4.1 Linearly Stackable Layouts
Input sizes for most logical and arithmetical functions grow uniformly
linearly with an increase in dimensionality. Unmissable functions
that fall under this characterization are the bitwise 𝑛-bit AND/OR as
well as the 𝑛-bit binary adder. This section demonstrates a method of
designing QCA layouts for elementary building blocks of such linear

2Kink energy factors were obtained using the adapted bistable approximation method
found in [8].
3It is to be noted that the precise values might change with the establishment of novel
QCA implementations. However, the general concept preserves validity.
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(a) Three QCA cells stacked
on top of each other. The sig-
nal from the bottom cell is
retained in the top cell due
to the double signal inver-
sion.

(b) The proposed stackable bitwise
AND/OR gate showing both the base
design (non-gray cells) and the once-
stacked layout. The fixed polariza-
tion cell toggles the gate function
(𝑃 = +1 for OR and 𝑃 = −1 for AND).

Figure 4: Basic stacked QCA

functions, in a manner that allows for linear stacking to achieve an
increase in bitwidth. In the following, this is described and illustrated
by using a bitwise 𝑛-bit AND/OR as a simple and intuitive example to
get familiar with the concept, and a 𝑛-bit RCA as a more sophisticated
representative.

4.1.1 Bitwise 𝑛-bit AND/OR. A main basic logic gate in QCA is the 3-
input MAJ voter as reviewed in Section 2. From that, 2-input AND/OR
gates are created by assigning a fixed polarization of logical 0/1 to
one of the inputs. Consequently, 𝑛-bit AND/OR gates are then derived
from the 2-input primitives, e. g., via costly placement and routing.

Instead of having all non-constant AND/OR inputs in the same
plane, the linearly stackable QCA scheme utilizes one layer per in-
put and propagates the resulting signal upwards. By this, a 2𝑛-bit
design can be obtained by stacking the 2𝑛−1-bit design on top of itself.
Figure 4b shows the resulting (once-stacked) bitwise AND/OR gate
(it is to be noted that the only difference between the AND and OR
functionality is the polarization of the fixed cells). Here, the grayed
out cells represent the new stack, which introduces a new input cell
such that the once-stacked design outputs 𝑎0 ⊙ 𝑎1, with ⊙ ∈ {·, +}.
Each added 1-bit stack moves the output cell up by two layers (one
via layer and one regular layer).

By polarizing the input cell 𝑎0 to logical 1, the output cell 𝑓0 is
polarized to logical 1 as well. When stacked once with input cell 𝑎1
set to logical 1 as shown, the new output cell 𝑓1 is also assuming a
logical 1 state. Thereby, the output signal is eventually continuously
propagated upwards through the individual AND/OR-gates, and is
ultimately leading to 𝑓𝑛−1 ⊙ 𝑎𝑛 at the 𝑛th AND/OR-gate, where 𝑓𝑛 is
the value of the output signal after the 𝑛th AND/OR-gate.4

Note that, at a first glance, it may seem impractical that the output
is located at height 𝑛 (not counting via layers)—in particular, if the
output of an 𝑛-bit 3D design is to be used as input to subsequent
circuitry. However, the subsequent circuitry can simply be turned
upside down to have its first input at the top instead. Hence, the
stackable solution certainly offers a substantial area improvement
compared to the approach by [16] depicted in Figure 3.

4.1.2 𝑛-bit RCA. As a more complex representative of the proposed
linear stacking method, a stackable RCA is presented whose base
design is inspired by [18].

The concept of an RCAwas briefly touched upon in Example 3.1. As
already mentioned, it is usually implemented as a chain of full adder
circuits that each perform the following two three-input functions of

4There are methods to compute the bitwise AND/OR in log(𝑛) steps, hence, this linear
method of scaling does not produce an optimal realization but is supposed to serve as a
simple representative of a linearly stackable design. Given the right scaling algorithm,
the design—be it with minor tweaks—can be scaled arboreally to produce a more efficient
circuit. This can be derived from the fact that each two branches,𝐵1 and𝐵2 , can be merged
to one branch 𝑅 with the same operation: 𝑅 = 𝐵1 ⊙ 𝐵2 , for example. A realization of this
concept is explored later in this paper in Table 1.

Figure 5: The proposed full adder. The bottom layer implements
𝑐out0 = ⟨𝑎0, 𝑏0, 𝑐in0 ⟩, which is propagated upwards on the right.
The upper layer implements sum0 = 𝑎0 ⊕𝑏0 ⊕𝑐in0 with its output
in the center.

the shared variables 𝑎, 𝑏, 𝑐in:

sum B 𝑎 ⊕ 𝑏 ⊕ 𝑐in,

𝑐out B ⟨𝑎, 𝑏, 𝑐in⟩,

i. e., the respective XOR and MAJ of the three input variables.
For the proposed stackable design, the MAJ and XOR gate from Fig-

ure 2 are located above one another (with the MAJ gate in the bottom
layer), so that the input cells in the lower layer propagate upwards
to serve as inputs to upper plane. This constitutes a single full adder,
which is depicted in Figure 5. While the 𝑐out0 output propagates up-
wards (as it must feed into the next stage), sum0 can be passed out of
the stack as primary output. There has been left sufficient space to do
so by inserting extra wire cells.

A full adder can be considered a 1-bit RCA. We propose to utilize a
2-bit RCA as the base design for the stackable 𝑛-bit RCA. Said 2-bit
RCA is obtained by duplicating the 1-bit design, rotating it by −90◦,
mirroring it, and then stacking it on top of itself; thereby feeding 𝑐out0
as input to 𝑐in1 and exhibiting two new inputs: 𝑎1 and 𝑏1. This 2-bit
RCA is depicted in Figure 6a. Having this building block, no more
rotation and mirroring is necessary to increase its bitwidth arbitrarily
further. Instead, it can be seamlessly stacked, doubling its input width
with every step. Figure 6b showcases the 4-bit RCA that results from
stacking the base design once.

Most arithmetical and logical circuits can be realized in this way.
However, there are also special cases which do not allow linear stack-
ing despite a certain regularity. These are circuits whose inputs do
not all grow linearly with increasing bitwidth such as the multiplexer,
whose select input grows only logarithmically in size. A stacking
solution for such circuits is presented in the following section.

4.2 Arboreally Stackable Layouts
Having introduced the linearly stackable circuits and, thus, the general
idea of stackable QCA, this section is dedicated to stacking designs
arboreally. As mentioned in the previous section, certain function
classes possess inputs that do not grow linearly but logarithmically
with a linear increase in overall bitwidth. In this section, the 𝑛-to-1
multiplexer (𝑛:1-MUX) is used as a representative of said circuit class.

The 𝑛:1-MUX is categorized by 𝑛 data inputs 𝑑0, . . . , 𝑑𝑛−1 plus
⌈log(𝑛)⌉ select inputs 𝑠0, . . . , 𝑠⌈log(𝑛) ⌉−1, as well as 1 primary output
MUX B 𝑑𝑖 , where 𝑖 is the decimal representation of the binary string
[𝑠⌈log(𝑛) ⌉−1 . . . 𝑠0]2. Intuitively, the 𝑠 inputs select a 𝑑 input to pass
through by encoding its index in unsigned binary notation.

The logarithmic growth of the 𝑛:1-MUX imposes a challenge for
the proposed stacking method since a linear stacking would introduce
a linear amount of both new data and select inputs. It can, however,
be observed that the 𝑛:1-MUX grows similarly to a binary tree where
the number of leaves is equivalent to the number of data inputs and
the number of levels is equivalent to the number of select inputs.

It is therefore proposed to create a base design that is arboreally
stackable, i. e., that can be used as nodes of a binary tree. This means
that two base designs are always combined by one in the next higher
layer. This requires an additional routing layer (plus two via layers)
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(a) 2-bit RCA (base design) (b) 4-bit RCA (stacked once)

Figure 6: The 2-bit RCA base design and the respectively obtained once-stacked 4-bit RCA.

on which the corresponding inputs and outputs are connected. The
routing differs slightly depending on the base design’s topology, but is
generally straightforward and can be determined by a linear algorithm.

Similar to the previous section, where a 2-bit RCA was constructed
as the base design, a 4:2-MUX is used here. The layout consists of two
2:1-MUX that were inspired by [19] and fused together in one layer
where the select inputs were merged into one common input. For the
root node of the resulting binary tree, a third 2:1-MUX is stacked on
top to bundle the 2-bit output signal into a single 1-bit signal. The
resulting 4:1-MUX root design is visualized in Figure 7a, and the once
arboreally stacked 8:1-MUX in Figure 7b. The emerging binary tree
structure is provided in the latter.

When stacking, the inputs 𝑎0, 𝑎1, 𝑏0 and 𝑏1 are fed in from the
bottom, while the output feeds its signal to the top. Level 𝑛 of the
resulting binary tree (assuming the root to be in level 0) then consists
of 𝑛 + 1 4:2-MUXs placed in the same plane with regular spacing
which allows for seamless stacking. Additionally, each level must be
connected by a supplementary routing layer (which yields a total of
three added layers because of the obligatory extra two via layers).5

5 EXPERIMENTAL EVALUATION
The proposed procedures for the obtainment of arbitrary linearly
and arboreally stackable QCA circuits from base designs were imple-
mented in Haskell. They receive a base design as input and stack it
an arbitrary amount of times by applying their respective strategy.
These algorithms were used to generate 3D QCA 𝑛-bit layouts of the
proposed AND/OR, RCA, and MUX. While the 𝑛-bit RCA can only be
obtained from linear stacking and the 𝑛:1-MUX only from arboreal
stacking, the AND/OR gate operates with both algorithms, resulting
in either a linear implementation or a logarithmic one.

Table 1 provides a quick comparison of the linearly and the arbore-
ally stackable AND/OR gate for increasing bitwidths. The column 𝑉
lists the resulting layout volume, i. e., 𝑥 · 𝑦 · 𝑧. Column Cells denotes
the total number of QCA cells present in the designs, and column nm2

shows the resulting layout footprint in nm2, using default values for
cell sizes established by QCADesigner: 18 nm × 18 nm with a spacing
of 2 nm in both 𝑥 and𝑦 direction. The column Delay denotes the signal
delay from primary inputs to primary outputs in clock phases (fourths

5It can be observed that the information flow in the arboreally stackable 𝑛:1-MUX follows
the general form of an upwards traveling pulse wave. Presumably, when physically
implementing this structure, it is clockable via a 3D adaptation of the Columnar clocking
scheme [11], where the respective non-via layers alternate between the two clocking
directions, and additional clock generators are added for the via layers to enable upward
signal propagation.

Table 1: Proposed linearly vs. arboreally stackable AND/OR
design characteristics

Bits 𝑥 𝑦 𝑧 V Cells nm2 D

2-bit lin. 3 1 5 15 8 1044 2
arb. 3 2 3 18 8 2204 1

4-bit lin. 3 1 9 27 16 1044 4
arb. 7 2 7 98 28 5244 3

8-bit lin. 3 1 17 51 32 1044 8
arb. 15 4 11 660 88 23244 5

16-bit lin. 3 1 33 99 64 1044 16
arb. 31 8 14 3472 280 97644 9

𝑥, 𝑦, 𝑧 Volumetric aspect ratio V Layout volume in cells
Cells Number of QCA cells nm2 Layout area in nm2
D Delay in clock phases

of full clock cycles). Signal delay and cell count are proxy criteria for
technology-dependent speed and power consumption respectively.

In addition, Table 2 summarizes some layout characteristics for the
RCA and MUX and compares them to various designs found in the
literature where applicable. The columns 𝑥 , 𝑦, and 𝑧 list the layout
dimensions in cells in width, depth and height respectively. All other
columns are analogous to Table 1. As can be seen in both tables,
the footprint of linearly stackable designs does not increase with
an increase in bitwidth; the layouts are merely growing in the third
dimension, thus avoiding large layout consumption in the plane.

This benefit becomes especially apparent when comparing the 3D
layouts of the RCA and the MUX against the state of the art. While
the footprints of a 16-bit RCA already approaches 30 billion nm2, our
proposed design stays at constant 19 044 nm2. A similar trend can be
observed for the MUX, where a 8:1-MUX from the literature consumed
580 000 nm2, while our proposed one consumes merely 41 124 nm2.

Furthermore, the regularity and straightforward stackability allows
generating designs in bitwidths that could not be found in the litera-
ture, e. g., a 1024-bit RCA and a 1024:1-MUX. This clearly showcases
the benefits of our proposed methods.

Although the proposed proof-of-concept designs utilize single-cell
clocking which has been shown to be unrealistic in [2, 5], the designs
can be made realistic through tiling using the technology-independent
framework fiction [28]. This calls for the development of 3D clocking
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(a) 4:1-MUX (root design) consisting of
two fused 2:1-MUX in the bottom layer
and one 2:1-MUX stacked on top.

(b) Resulting 8:1-MUX consisting of two 4:2-MUX base designs
in the bottom layer and one 2:1-MUX root design in the top
layer.

Figure 7: The 4:1-MUX root design and the respectively once-arboreally stacked 8:1-MUX.

Table 2: Proposed stackable RCA and MUX design characteris-
tics and comparison against state of the art

Proposed Stackable Layouts State of the art
Name Bits 𝑥 𝑦 𝑧 V Cells nm2 Ref. Cells nm2

RCA

2 7 7 9 441 61 19044 [30] 85 70924
4 7 7 17 833 121 19044 [16] 2616 4.31 · 105
8 7 7 33 1617 241 19044 [16] ≈ 144000 4.22 · 107
16 7 7 65 3185 481 19044 [7] 17278 2.91 · 107
.
.
.

1024 7 7 4097 200753 30721 19044 — — —

MUX

4:1 7 6 7 294 61 16284 [21] 73 66564
8:1 15 7 11 1155 165 41124 [15] 293 5.8 · 105
16:1 31 11 15 5115 449 134724 — — —
32:1 63 20 19 23940 1359 500684 — — —
.
.
.

1024:1 2047 521 39 4.16 · 107 896627 4.26 · 108 — — —

𝑥, 𝑦, 𝑧 Volumetric aspect ratio V Layout volume in cells
Cells Number of QCA cells nm2 Layout area in nm2

schemes, which currently do not exist.6 Analyses on the absolute kink
energy can be performed to assess local stability.

Obtained layouts were simulated and found to behave as expected.
The Haskell code as well as the generated design files and example
output simulations are made publicly available at https://www.github.
com/wlambooy/QCA-STACK.

6 CONCLUSIONS
Established physical design algorithms for QCA circuit layouts almost
exclusively consider a 2-dimensional architecture. However, this re-
sults in large area requirements due to routing congestion and delay
compensation. In this work, two methods were presented that allow
realizing regular QCA circuit structures by seamless stacking in the
third dimension. For this purpose, corresponding base designs for
AND/OR, RCA, and MUX were presented. These do not only imple-
ment relevant building blocks for ALUs, but, in the case of MUX, also
look-up tables, which implement arbitrary Boolean functions. In fact,
the methods and base designs proposed here represent the first steps
towards cuboid QCA CPUs and FPGAs.

Furthermore, in comparison to state-of-the-art designs, the pro-
posed approaches consume several orders of magnitude less layout
area due to the exploitation of the third dimension. Additionally, cir-
cuit bitwidths could be achieved that were not found in the literature
before. Thereby, the presented theoretical consideration might inspire
future advancement of technological implementations of the QCA
concept.

6By extending via layers, space is created for vertical clocking electrodes used for propa-
gating information up or down, besides the conventional horizontal ones that drive planar
computation.
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