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Abstract. The design of railway systems has become a non-trivial task
which more and more demands for efficient design automation meth-
ods. Modern railway systems based on standards such as the European
Train Control System (ETCS) Level 3, the Chinese Train Control System
(CTCS) Level 3+/4, or the Indian Train Protection and Warning System
(TPWS) introduce new concepts such as virtual subsections which allow
for a much higher degree of freedom and provide significant potential
for increasing the efficiency in today’s railway schedules. At the same
time, this substantially increases the complexity of determining efficient
solutions. The current state of the art addresses this complexity by dis-
cretizing the problem. In this work, we show that this, however, leads to
substantial problems, namely infeasible configurations, rounding errors,
and oversimplifications, that either harm the efficiency of the solving pro-
cess or yield results which are significantly off from the actual optimum.
Motivated by that, we propose an alternative design automation method
that avoids discretization at all, overcomes the resulting problems, and
additionally allows to solve the problem magnitudes faster than before.

1 Introduction

Railways are an important part of today’s infrastructure, whether it is for deliv-
ering goods and resources or as a part of the public traffic system. They prove to
be an environmentally friendly alternative to air traffic, road transport, and ship
traffic. It is therefore vital to increase the usage of railways in the future – a goal
which a huge number of societies has made one of their top priorities recently.
But expanding railway infrastructures is costly, difficult, and time-consuming.
The alternative is to increase the efficiency of existing railway infrastructure by
increasing its throughput.

This can be achieved by putting more trains on the tracks. But to ensure
the safe operation of them, railway networks are divided into blocks. A block
can only be occupied by one train at any given time, thus, preventing collisions.
To register trains moving in and out of blocks Trackside Train Detection (TTD)
hardware, e. g., axle-counters, are employed. The blocks connected by TTD hard-
ware are often also called TTDs and we will follow this convention in this paper.



A consequence of the resulting block signaling is that the throughput of a railway
network is limited by the size of the blocks. Until a train has completely left a
TTD, no other trains can enter the TTD. It is therefore sensible to decrease the
size of TTDs in order to increase throughput. This entails installing new TTD
hardware which requires maintenance and is not flexible when new layouts are
required.

A solution to this problem is provided by the introduction of so-called Virtual
Subsections (VSS). They are specified in modern railway traffic management
systems such as the European Train Control System (ETCS) Level 3 [1, 2] by
the European Railway Traffic Management System (ERTMS) [3,4], the Chinese
Train Control System (CTCS) Level 3+/4 [5], or the Indian Train Protection
and Warning System (TPWS) [6]. VSS essentially are blocks, just as TTDs.
But in contrast to TTDs, these blocks do not require hardware. Instead, the
occupation of a VSS is tracked by a radio control center which exchanges position
information with trains in the network. Because these blocks are purely virtual,
layouts are easy to adapt if changing schedules or demands necessitate it.

However, the implementation and utilization of such schemes and, hence, of
virtual subsections, is just at the beginning. In fact, researchers started formal-
izing the underlying concepts (using, e. g., iUML-B [7,8], Electrum [9], SysML/
KAOS [10], Event-B [11,12], or SPIN [13]), conducted corresponding case stud-
ies [14,15], or even presented first simulations [16,17]. But the main task, namely
designing corresponding railway routings that exploit the extended degree of
freedom provided by VSS in order to improve the travel times, remained an en-
deavor mostly tackled by manual labor thus far. Obviously, such a state of the
art is not sufficient in order to address the upcoming challenges in extending
the throughput of today’s railway systems and, hence, automatic methods for
railway routing using virtual subsections are urgently needed1.

To the best of our knowledge, our previous approach recently introduced
in [25] constitutes the first solution that generates (optimal) railway routings
while, at the same time, using virtual subsections in order to minimize the sum
of the travel times. To this end, we formulated the problem in terms of a satis-
fiability problem and, afterwards, used corresponding SAT solvers to determine
a solution. This, however, requires a discretization of the problem which, on
the one hand, makes the problem manageable for the solving engine, but also
frequently leads to infeasible configurations, rounding errors, and oversimplifi-
cations. Hence, while providing a first solution towards design automation for

1 Please note that, due to the long history of railway systems, approaches for routing
trains through networks are of course not new and research into determining optimal
schedules and verifying their correctness with respect to block signaling constraints
has been conducted for a long time (see, e. g., [18–24]). Such solutions are inadequate
when dealing with VSS because these approaches assume a fixed block layout to
begin with. Simply partitioning the network into many VSS is also not practical
because that puts a lot of workload on the radio control center communicating VSS
occupations with the trains on the network. Solutions taking virtual subsections
under consideration hardly exist.



modern railway routing, this approach still has severe shortcomings (something
which is discussed and illustrated in more detail later in Section 3).

In this work, we propose an alternative solution for the railway routing prob-
lem using virtual subsections that overcomes these drawbacks. To this end, an
A*-based search scheme is proposed which works without discretization but still
is capable of efficiently determining optimal railway routings. Experiments con-
firm that the proposed scheme spares the user the need to determine a proper
discrete formulation, generates results of much higher precision, and additionally
is orders of magnitudes faster than the currently available solution.

The remainder of this paper is structured as follows: Section 2 briefly reviews
the railway routing problem with VSS and Section 3 discusses the shortcomings
of the currently available solution – motivating our work. Afterwards, the pro-
posed solution is described in Section 4. Experimental evidence for the efficacy
of the proposed solutions and comparisons to the state of the art is presented in
Section 5. Section 6 concludes this paper.

2 Railway Routing in ETCS Level 3

This section briefly reviews and illustrates the considered problem as well as
the used notation. We start with the concept of a rail network which can be
modeled as an undirected edge-labeled graph G = (V,E, L), where the edges E
describe track sections that are connected via vertices V . The vertices v ∈ V
represent Trackside Train Detection (TTD) hardware like axle-counters (also
called TDD points). The blocks separated by this hardware are often called
TTDs themselves and we follow this convention in this work, i. e., we refer to
edges E of G as TTDs2. Finally, every TTD e ∈ E has a label L(e) = le defining
the length le of this TDD.

Example 1. Fig. 1 shows an example of a railway network with 4 TDD points
and, hence, 7 TDDs labelled e1, e2, . . . , e7. The lengths le for all TDDs e ∈ E
are given by the labels annotated onto the respective blocks in Fig. 1.

To properly define train positions and train movements, we use the following
terms: A TTD interval is a triple (e, a, b) with e ∈ E and 0 ≤ a < b ≤ le.
A range is a sequence of TDD intervals ((e1, a1, b1), . . . , (en, an, bn)) such that,
for all 1 ≤ i < n, ei is connected to ei+1 via a TTD point in G and, for
all 1 < i < n, ai = 0 and bi = lei . The length of a range rg is given by

lrg =
∑n

i=1(bi − ai) = (b1 − a1) +
∑n−1

i=2 lei + (bn − an). Then, a train tr is
described by the tuple tr = (ltr , str , start tr , dest tr ), where ltr is the length of the
train, str its maximum speed, start tr its start position, and dest tr its destination
position. A position p of a train tr is a range such that lp = ltr . Intuitively a
train’s position is the part of the track in the network that the train is standing
on. The set of trains is denoted as Tr .

2 We implicitly assumed here that the entire rail network being modelled is covered
by TTDs. This is a reasonable assumption for modern rail network, however.
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Example 2. The railway network shown in Fig. 1 is used by three trains: The
train denoted tr1 occupies a part of TTD e2, i. e., its position is described by
the range containing a single TTD interval ((e2, 200 m, 800 m)). The position
of tr2 is ((e1, 100 m, 400 m)). The position of tr3 is ((e6, 650m, 950 m)). Note
that the length of the positions is the same as the lengths of the trains. The
respective maximum speeds str1 , str2 , str3 are given above the trains in Fig. 1.
The start positions are depicted by the trains with solid lines and the destination
positions are depicted by trains with dashed lines. Train tr1 has destination
position ((e5, 200 m, 800 m)), tr2 has destination position ((e7, 500 m, 800 m)),
and tr3 has destination position ((e1, 0 m, 300 m)).

The movement m of a train tr is described by a range such that ltr ≤ lm ≤
ltr + str . Intuitively, a single movement is described by the parts of the track in
the network the train moves over in one time step. Because of that, a movement
of a train is at least as long as the train itself (even if a train stands still in one
time step, it still covers the part of the network its standing on). Furthermore,
a movement covers the train’s position before and after the movement. The
direction of a movement is implicitly given by the sequence of TTD intervals.
Then, a route Rtr of a train tr can be described by a sequence of movements
(m1, . . . ,mn) such that m1 starts at start tr and mn ends at end tr . The travel
time |Rtr | = n of Rtr is the number of time steps it takes for train tr to reach
its goal. The problem considered in this work is to determine routes of all trains
tr ∈ Tr in the given railway network G such that, e. g., the sum of travel times
of all trains is minimal.



Note that there might be additional constraints on movements and routes
imposed by the underlying railway network. Because TTD points may represent
hardware such as switches, a train might not be able to move from one edge to
another even if they are connected via a TTD point. In Figure 1, for example,
trains cannot move from e3 to e6. Also trains can of course not just change
directions during a route.

Example 3. Consider again the layout and specification of trains given in Fig. 1.
Figure 2 shows example movements for all trains in the network if we assume
a time step of 15 s. The movement m1 of train tr1 is given by the range con-
sisting of two TTD intervals m1 = ((e2, 200 m, 100 m), (e6, 0 m, 600 m)). Simi-
larly the movement m2 is given by the range consisting of two TTD intervals
m2 = ((e1, 100 m, 500 m), (e2, 0 m, 400 m)). Train tr3 remains at the same posi-
tion. This is still considered to be a movement which is simply the position of
the train (therefore, m3 is set to ((e6, 650 m, 950 m))). Note that the lengths of
the movements might be smaller than the length of the respective train.

Solving this problem for a single train is relatively simple (as reviewed later
in Section 4.1). However, determining the fastest routes becomes significantly
harder if multiple trains need to be considered because, then, collisions have to
be avoided. More precisely, there are two types of collisions: (1) a move collision
occurs if two movements overlap and (2) a TTD collision occurs if two move-
ments contain the same TTD and no move collision occurs. Two routes R1 and
R2 are then in collision if any of its movements are in collision.

Example 4. Consider again the movements depicted in Fig. 2. A move collision
occurs between movements m1 and m2 since both movements overlap on the
range ((e2, 20 m, 40 m)). A TTD collision occurs between movements m1 and m3

since both movements contain a TTD interval on TTD e6.

Collisions substantially harden the railway routing problem and frequently
lead to solutions with overly long travel times. Thus far, move collisions have
been avoided by re-routing trains until no more move collisions occur. But using
modern railway systems such as ETCS Level 3, CTCS Level 3+/4, or TPWS,
TTD collision can also be resolved by introducing virtual subsections, i. e., VSS.
Recall that a TTD collision only occurs when two trains occupy the same TTD,
but would not occur if there would be a TTD point between the two trains. VSS
basically introduces such (virtual) TDD points and, by this, can help resolving
these TTD collisions without the need to re-route trains3.

Based on all that, the railway routing problem considered in this work can
be succinctly described as: Given a railway network G = (V,E,L) as well as a

3 Note that, for our purposes, blocks defined by TTDs and blocks defined by VSS are
indistinguishable. We can therefore interpret a VSS layout of a railway network G
as a graph G′ that is obtained from G by splitting TTDs into VSS. This partitioned
graph then simply defines a new railway network. There are in general an infinite
number of VSS layouts for a given railway network. We will see in Section 4 how to
handle this search space.
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set of trains Tr with start and destination positions, determine a VSS layout
G′ = (V ′, E′, L′) and a set of routes {Rtr | tr ∈ Tr} on G′ such that the objective∑

tr∈Tr |Rtr | (i. e., the sum of travel times) is minimized.

Example 5. Let’s consider the layout specified in Fig. 1 again and assume time
steps of 15 s as in Example 3. Possible routes for the three trains are shown in
Fig. 3. Train tr1 reaches its destination in time step t3, trains tr2 and tr3 reach
their destinations in time step 6. The sum of travel times is therefore 15 time
steps, i. e., 225 s. In time steps t1 and t2, a TTD collision occurs between tr1 and
tr2. These are repaired by introducing a VSS in TTD e2 and e3. Without these
VSS, tr2 would have to wait until tr1 has left e2 completely before it can enter.
This would delay the route of tr2 and tr3 (because it has to wait until tr2 has
left e2) by one time step. Hence, the introduced VSS indeed improved the train
movements.

3 Motivation: The Problem of Discretization

Virtual subsections as introduced above provide a huge degree of freedom that
allow for a more efficient railway routing. At the same time, they make the task
of determining the best possible routes substantially harder. Because TTDs can
be split up into VSS at arbitrary positions in the network, the resulting VSS
layouts can be very complex. Techniques to solve the routing problem while si-
multaneously generating VSS layouts are still in its infancy. An existing solution
tackling this problem is proposed in [25] where the problem is defined as a satis-
fiability problem and handed over to a reasoning engine. In that work, we model
the search space of VSS layouts by discretizing the network. This is needed to



model the possible positions of the trains on the network. While there are in the-
ory an infinite number of positions, the discretization narrows this search space
down such that it can be modelled using a finite number of Boolean variables.

To this end, a spatial resolution rs is defined. Every TTD is then split into
segments of length rs. That is, with a spatial resolution of rs = 100 m, a TTD
of length 1 km would be split into 10 smaller segments. Such a discretized TTD
can then no longer give rise to arbitrarily many VSS, rather VSS can only be
composed of these segments.

Discretizing the network like this does not only simplify the search space for
VSS layouts, but also the train movements. Similarly to VSS, train positions are
described by the segments that are occupied by a train. For example, the trains
in Fig. 4 occupy one and two segments, respectively. The trains might actually be
much shorter than rs but they are still considered to occupy an entire segment.
Train speeds are therefore defined in terms of segments traversed per time step,
i. e., a train tr with speed str has a discretized speed of str · rtrs , where rt is the
so-called temporal resolution, the duration of one time step. For example, with
rt = 10 s and rs = 100 m a train with a speed of 200 km/h would have discrete
speed of about 5.556.

Although this discretization yields a smaller search space, it also causes sev-
eral problems.

– Infeasible configurations: Because train movement is described in terms of
segments traversed per time step, the choice of temporal resolution depends
on the spatial resolution. A fine temporal resolution combined with a coarse
spatial resolution can lead to situations where trains can seemingly not move
at all or move faster than they should be able to.

– Rounding Errors: An improper discretization can lead to incorrect solutions.
Because the simulation proceeds in discrete steps, train speeds can only be
integral values. Therefore sub-optimal routes may be found when speeds
are rounded down; or impossible solutions may be found when speeds are
rounded up. Even if constraints are added enforcing that resolutions must
be chosen such that train speeds can be modelled accurately, this constraint
becomes harder and harder to satisfy the more trains are to be considered.

– Oversimplifications: Imposing a spatial resolution leads to difficulties when
finer details of the network should be accurately portrayed. This can be
mitigated by choosing different resolutions for different parts of the network
but opting to do this again increases the complexity of the network.

In addition to these issues the approach from [25] also requires the definition
of the maximum number of time steps the trains can take to ensure a finite
search space. All of the above combined makes it very hard for a designer to
choose correct configurations in order to obtain a good solution. Controlling for
all issues at the same time is highly non-trivial or might even be infeasible. It is
also difficult to judge the quality of a found solution. Infeasible configurations and
oversimplifications can lead to solutions that are better than what is possible in
reality, whereas rounding errors lead to solutions that are worse than the “real”
optimum.
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Example 6. Consider the simple layout shown in Fig. 4 consisting of a single
TTD with a length of 10 km and 2 trains tr1 and tr2 moving from left to right
with maximal speeds of 200 km/h and 180 km/h as well as lengths of 430 m and
250 m, respectively. Now, the following problems may emerge when trying to
choose proper values for rs and rt.

Choosing rt = 10 s and rs = 1000 m leads to tr1 having a discretized speed
of 0.556. If we round down, then tr1 would not be able to move at all. If we
round up, tr1 takes 10 time steps to reach the other end of the track. Converting
this speed back to real units gives a speed of 360 km/h which does not remotely
reflect the actual speed of tr1.

Choosing rt = 10 s and rs = 100 m leads to discretized speeds 5.556 and 5 for
tr1 and tr2, respectively. Here, speeds are rounded down and, thus, tr1 is treated
as having an actual speed of 180 km/h. It is easy to see that, with the chosen
temporal resolution, the optimal number of time steps for tr1 to reach the right
end of the TTD is 18 time steps. But with the rounded speed, the best solution
that can be found takes 20 time steps. Moreover, since both trains are treated
as having the same speed, more VSS have to be placed than necessary. Since the
lengths of the trains are not multiples of 100 m, they take up more space of the
network than necessary. More specifically, tr1 would occupy 5 segments at any
time step. This prevents tr2 from moving as close to tr1 as possible, yielding a
suboptimal route for tr2.

All these problems may be avoided by choosing rt = 10 s and rs = 5 m. Then,
the trains have discretized speeds of 100 and 111 respectively, thus avoiding the
impact of rounding errors as much as possible. But this would partition the TTD
into 2000 segments, an unreasonably fine grained discretization.

These examples show that the problems described above already occur in very
simple scenarios. Motivated by that, this work proposes an alternative approach
that overcomes these problems by avoiding discretizing the network at all – while
still being able to determine optimal railways routings.



4 Proposed Solution

This section describes the proposed alternative solution to the optimal railway
routing problem described above. Its main approach rests on an A*-based search
scheme which is described first. Afterwards, we explicitly describe how virtual
subsections are utilized to resolve collisions. Using both, A* and the extended de-
gree of freedom through those VSS eventually allow to generate optimal railway
layouts.

4.1 Main Approach Based on A* Search

A* Search is a state-space search algorithm. That is, the search space is defined
over states s ∈ S (with S being the set of all possible states) and transitions
between them. Starting from an initial state, the goal is to determine a route
towards a goal state within that search space which satisfies a certain goal condi-
tion. By dedicated functions, the total costs of the current state are tracked while
the remaining costs towards the goal state are estimated. By this, A* Search tra-
verses through the search space – ideally only expanding towards states with the
lowest cost and, by this, avoiding traversing parts of the search space that lead
to no or overly expensive solutions.

In order to solve the problem reviewed in Section 2, we use the main concept
of A* Search as a basis. More precisely, given a set of trains Tr , we model
a state s ∈ S at time step t as the set of positions of all trains, i. e., s =
{posttrtr | tr ∈ Tr}, where ttr is the time step at which train tr has reached its
destination or t if tr has not reached its destination yet. Two states s and s′

are then connected if all trains can make a movement from their position in s to
their position in s′ within one time step and without causing any collisions. The
initial state is then sinit = {start0tr | tr ∈ Tr} and the goal states are defined by
sgoal = {dest ttrtr | tr ∈ Tr}.

Because trains do not move in discrete steps, there is an enormous number of
successors for each state. While this is true in principle, most of these positions
are redundant. The only branching points in the network are at TTD points. It
is therefore superfluous to consider every possible position a train might have
within a TTD and consider only movements that transport a train as far as
possible within a TTD.

Example 7. Let’s consider the start positions in Fig. 1 as an example for an
initial state sinit . The successor states of sinit are derived by considering all
possible combinations of movements the three trains in this example can make.
As discussed previously, only those movements are considered that move the
trains as far as possible within one TTD. In this example, there are 6 potential
successor states si, 1 ≤ i ≤ 6, as shown in Fig. 5.

However, states s3 and s6 are not valid, because the movements of tr1 and
tr3 are in collision (as indicated by E in Fig. 5). Similarly, s4 and s5 are not valid,
because tr1 and tr2 are in collision. Therefore, sinit has only two real successor
states, namely s1 and s2.
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Fig. 5: A* search

Recursively or iteratively searching through all possible states eventually
would lead to several goal states. Out of those, we are then interested in the one
with the smallest costs. These are provided by means of a function g(s) which
gives, for a state s, the costs up to this state. In our case, the costs are defined
by the sum of total travel times4, i. e., for state s = {posttrtr | tr ∈ Tr} we have
g(s) =

∑
tr∈Tr ttr .

However, to avoid expanding towards non-promising states (i. e., states that
will not lead to a goal state or only through substantially longer paths), a heuris-
tic function h(s) is additionally employed. This heuristic function assigns to each
state s an estimation of the costs from s towards a goal state. If we knew the
distances dstr from the position of each train tr in state s to its destination posi-

tion dest tr , those costs can be estimated by h(s) =
∑

tr∈Tr
ds
tr

str
. These distances

can easily be obtained for a train tr by precomputing a lookup table of distances
from each TTD to the destination of tr via breadth-first search. To get the true
distance from this lookup table, the offset of the train within the TTD has to
be subtracted. Overall, this leads to a total costs of a state s ∈ S defined as
f(s) = g(s) + h(s).

An important property of A* Search is that an optimal solution is guaranteed
to be found if the heuristic function is admissible. A heuristic function is admis-
sible if the heuristic function never overestimates the true cost to a goal state.
It is easy to see that the heuristic function defined for our problem is admissible
since trains can never arrive at their respective destinations faster than if they
were traveling with maximum speed for the entire route.

Example 8. Consider again the example in Fig. 5. There are two possible suc-
cessors of sinit , s1, and s2. In s2, all trains are closer to their goal than in s1.
Therefore, the estimated sum of travel times is smaller in s2 and, hence, s2 would
be expanded next by the search.

4 Note that the cost function can, of course, accordingly be adjusted if the focus is
put on other aspects such as the overall travel time.
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4.2 Resolving Collisions with VSS

Using A* Search as proposed above, we are looking for a path in the search space
from the initial state sinit to one of the goal states sgoal with the smallest costs.
But, thus far, possible paths are severely restricted since states are connected
only if trains can reach them without causing any collisions. Using VSS, however,
many collisions can be prevented – likely leading to faster routes. Recall from
Section 2 that there are two types of collisions: move collisions and TTD colli-
sions. Let’s consider TTD collision first because resolving them is conceptually
easier. A TTD collision occurs when two movements contain the same TTD but
are not in a move collision. This kind of collision can be resolved by splitting the
TTD into two separate VSS.

Example 9. Consider the situation in Fig. 6 involving two trains moving on a
straight track. Movements m1 and m2 are in a TTD collision on TTD e2. By
splitting e2 into two VSS at the point shown in the figure, the TTD collision is
resolved.

For move collisions, we can identify three different cases:

– A head-on-collision occurs when two movements go in opposite directions in
a TTD.

– An overlap collision occurs when two movements go in the same direction
in a TTD that is not the start of either movement.

– A rear-end-collision occurs when the end of a movement collides with the
start of another movement.

Head-on-collisions and overlap collisions can not be resolved. In these two cases,
corresponding states cannot be connected and, hence, the A* Search needs to
determine alternative routes. But rear-end-collisions can be resolved: If move-
ment m1 rear-end-collides with movement m2, then a new movement m′1 can
be obtained by truncating m1 in such a way that no collision with m2 occurs
anymore. The movements m′1 and m2 are then in a TTD collision. But as we
have seen previously, these can be resolved.

Example 10. The three different types of movement collisions are depicted in
Fig. 7. Figure 7a is an example of a head-on-collision. It is apparent that this
situation cannot be rectified by introducing further VSS.
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Figure 7b is an example of an overlap collision. As it was in the case of a
head-on-collision, the collision cannot be resolved by splitting TTDs into VSS.
The conflict can only be avoided if one of the trains waits with their movement,
possibly leading to a longer route.

Figure 7c is an example of a rear-end-collision. Movement m1 and m2 are in
collision on TTD e2. But by moving tr2 with movement m′2 instead of m2 the
collision is avoided.

5 Experiments

The A*-based approach as described above has been implemented in C++ and
was subjected to several benchmarks to evaluate its performance. Additionally,
we also considered the solution described in [25] in order to compare the proposed
solution to the current state of the art. Both implementations are part of the
DA-ETCS toolkit available at https://iic.jku.at/eda/research/etcs/. All
those experiments have been conducted on an Intel(R) Core(TM) i7-7700K ma-
chine using a 4.20 GHz processor with 32 GB of main memory running Ubuntu
18.04.4. In this section, the obtained results are summarized and discussed.



As benchmarks, we considered the railway layouts and tasks which have been
used in the evaluations in [25] (namely, Running Example, Simple Example, Com-
plex Example, and Nordlandsbanen) as well as further instances of representative
use cases (namely, Bottleneck, Bidirectional, and Train Station). Here, Bottle-
neck refers to a track layout where all trains have to be funneled through a
single TTD before their paths diverge again, while Bidirectional refers to a lay-
out where trains are moving in both directions on a main track with occasional
sidings to pass each other. Finally, Train Station refers to a track layout with
several interconnected and branching paths for the trains to reach their goals. All
these benchmarks represent frequent use cases that usually have many potential
collisions to be avoided through the use of virtual subsections.

The obtained results are shown in Tab. 1. Here, for each considered bench-
mark, the generated results for both methods (as indicated in the first column)
are provided in the respective lines of the table. As described in Section 3, the
approach from [25] always needs a configuration in terms of the spatial reso-
lution rs and the maximum number of time steps tmax in order to generate a
discrete formulation; these values are provided in the second and third column.
Afterwards, the respectively obtained results are presented, i. e., the number
blocks (both, TDDs and VSS combined), the number of Time Steps until all
trains have reached their goal, and the sum of travel times of all trains

∑
t

(the actual optimization objective which has been optimized). Finally, the re-
quired runtime is provided (note that, in case of the approach from [25], only the
solving time is listed, even though also the runtime for generating the discrete
formulation often is substantial).

The obtained results clearly confirm the shortcomings of the previously pro-
posed approach as discussed in Section 3 and show how the approach proposed
in this work addresses them. More precisely:

First, since the approach from [25] always requires a discrete formulation,
the designers are urged to provide a configuration in terms of spatial resolu-
tion rs and maximal number of timesteps tmax . This frequently pushes him/her
to trade-off between accuracy (demanding a finer resolution) and performance
(demanding a coarser resolution). These values require prior knowledge about
the benchmark like an estimation of the time steps a solution might have. If no
proper estimation can be made, multiple configurations have to be tried such
that a satisfactory solution can be obtained in an iterative fashion (which is why,
we present several configurations in Tab. 1). In contrast to all that, the proposed
approach does not require a configuration and does not rely on a discrete for-
mulation, which is why all these problems do not occur here.

Second, the precision of the approach from [25] highly depends on the re-
spectively chosen configuration (and, hence, discretization). This explains the
huge differences in the obtained results. In the worst case, choosing an improper
configuration may yield a formulation out of which no solution can be gener-
ated at all. This is the case in the two instances marked Unsatisfiable where the
maximum number of time steps is too small to allow a solution to be found with
the given discretization (although the optimum from the A* Search shows that



a solution indeed is possible). But even if solutions are determined, they are of-
ten significantly off and, hence, imprecise compared to the actual optimal value
(obtained by the A* Search without discretization). All this basically confirms
the discussions from Section 3 about the shortcomings of the discretization and
shows that the A* Search proposed in this work nicely addresses these problems.

Finally, the runtime performance of both approaches confirms what could
be expected. The coarser the resolution and, hence, discretization of the ap-
proach from [25], the better its runtime. In order to get precise results, however,
this frequently leads to timeouts (in our evaluations of 1 hour). In contrast, the
proposed method’s main drawback is an increased memory requirement – in par-
ticular in cases where the A* Search expansion leads to a huge number of possible
states to consider (as in the case of the last instance in Tab. 1). These cases,
however, usually also cannot be handled by the approach from [25] (at least,
not with proper precision) and most likely constitute instances, where optimal
railway routing probably reaches its limits due to the underlying complexity (in
the worst case, both methods exhibit exponential time or space complexity). In
all other cases, the A* Search clearly outperforms the state of the art and often
yields magnitudes of better runtime – in particular compared to instances with
proper precision.

6 Conclusion

In this work, we considered the automatic generation of optimal railway rout-
ings for modern railway systems such as the ETCS Level 3, CTCS Level 3+/4,
or TPWS, which allow for virtual subsections. To this end, we first analyzed
the major shortcomings, namely infeasible configurations, rounding errors, and
oversimplifications, of the current state of the art which are mainly caused by
discretization. We proposed an approach which addresses all these problems and,
at the same time, even led to substantial runtime improvements (reaching several
orders of magnitudes). Experiments and detailed comparisons confirmed these
benefits.
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Table 1: Obtained results

Method
Configuration
rs [m] tmax

TTD/VSS Time Steps
∑

t Runtime [s]

Running Example (with 4 trains an total travel length of 7 km)

Approach
from [25]

500 11 5 7 23 0.1

A* Search - 9 7 21 < 0.1

Simple Example (with 4 trains and total travel length of 27 km)

Approach
from [25]

500 20 14 15 53 29.2

A* Search - 26 15 50 < 0.1

Complex Example (with 6 trains and total travel length of 148 km)

Approach
from [25]

1000 18 25 16 71 124.9

A* Search - 42 14 58 138.3

Nordlandsbanen (with 3 trains and total travel length of 819.6 km)

Approach
from [25]

1000 140 - - - > 3600

A* Search - 519 135 286 45.713

Bottleneck (with 4 trains and total travel length of 10 km)

Approach
from [25]

1000 20 13 18 60 0.6
500 20 13 18 60 2.3
100 20 16 15 54 84.9
50 20 16 15 54 777.9
50 15 16 15 54 866.5

A* Search - 39 15 50 < 0.1

Bottleneck (with 10 trains and total travel lengh of 2.6 km)

Approach
from [25]

1000 20 Unsatisfiable 1185.9
1000 30 - - - > 3600
100 15 - - - > 3600

A* Search - 30 12 65 11.1

Bottleneck (with 12 trains and total travel length of 3 km)

Approach
from [25]

1000 20 Unsatisfiable 1275.1

A* Search - 34 15 92 371.0

Bidirectional (with 6 trains and total travel length of 14.6 km)

Approach
from [25]

1000 30 16 30 124 50.6
500 30 18 21 112 698.2
100 30 - - - > 3600
100 23 - - - > 3600

A* Search - 53 22 105 1.6

Train Station (with 6 trains and total travel length of 7.1 km)

Approach
from [25]

1000 30 19 9 39 1.1
500 30 19 9 39 1.1
100 30 31 21 114 64.1
50 30 31 22 117 1381.3

A* Search - 58 22 110 17.7

Train Station (with 8 trains and total travel length of 7.3 km)

Approach
from [25]

1000 30 21 11 59 9.6
500 30 21 11 59 9.6
100 30 - - - > 3600
100 23 33 23 159 564.1

A* Search - Out of Memory -


