
1

Channel Routing for Microfluidic Devices:
A Comprehensive and Accessible Design Tool

Philipp Ebner∗, Gerold Fink∗ and Robert Wille†‡
∗Johannes Kepler University - Institute for Integrated Circuits, Linz, Austria

†Technical University of Munich - Chair for Design Automation, Munich, Germany
‡Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria

{philipp.ebner, gerold.fink}@jku.at, robert.wille@tum.de
https://www.cda.cit.tum.de/research/microfluidics/

Abstract—Microfluidics is a technology that enables moving
analytic processes from expensive and bulky laboratory equip-
ment to small-scale devices. Microfluidic devices, usually in
the form of Labs-on-a-Chip (LoCs), have found many great
applications in medicine, biology, and chemistry. In particular,
LoCs that utilize channels to transport fluids or droplets between
different components on the chip are a promising technology.
However, the design process of such channel-based LoCs is in
need of further automation efforts since the underlying design
steps are still rather complex and conducted mainly by hand. An
important task in microfluidic design automation is the so-called
channel routing, where components on LoCs are connected by
microfluidic channels. Methods that aim to automate this routing
task must factor in the specific demands of microfluidic devices.
Common requirements for microfluidic routing layouts are to
prevent sharp channel bends and to realize a particular length of
channels. Unfortunately, most of the available routing algorithms
address these requirements only partly and insufficiently. In this
work, we propose a router that is able to overcome these short-
comings and allows automatic channel routing with a minimal
bending radius as well as a desired length. In order to make
the router accessible to users with little to no design automation
expertise, the solution is implemented as an online tool with
a user-friendly and intuitive interface. The resulting tool can
be accessed at https://www.cda.cit.tum.de/research/microfluidics/
channel router/.

Index Terms—microfluidics, routing, channel-based, matching-
length, rubber-band

I. INTRODUCTION

M ICROFLUIDICS is an emerging field that studies
the behavior and manipulation of fluids at small

scales – typically ranging from micro to picoliters [1]. The
resulting devices are able to replace bulky and expensive
laboratory equipment by minimizing, integrating, and automat-
ing processes on a single chip. Corresponding systems are
therefore called Labs-on-a-Chip (LoCs), which enable users
to perform a broad range of biochemical experiments and
have thus found great applications in medicine, biology, and
chemistry [2]–[4]. As such, microfluidic devices are ideal
prospects for point-of-care assays and similar diagnostics due
to their small feature size and their ability to process small
volumes of reagents [5].

Given their widespread applicability, the design process
for LoCs is still in its infancy – with the majority of the
work being done by hand and depending on assumptions,

simplifications, as well as the designer’s knowledge. The
fact that the design process is rather complex frequently
leads to error-prone designs and expensive iteration cycles
for re-designs, which is a significant disadvantage. In order
to provide an alternative to this manual approach, a variety
of Electronic Design Automation (EDA) approaches and tools
have been developed to assist designers with various tasks
throughout the design process [6]–[12].

Routing is one of these design tasks, in which components
and their respective input and output ports must be connected
by channels inside a microfluidic chip while also taking into
account several constraints. There are various platforms for mi-
crofluidic applications, but most require some sort of routing in
their design cycle. For instance, flow-based devices controlled
by micro-valves have a two-layer design, which necessitates
routing both the control-layer (regulating the valves) and the
flow-layer (consisting of the actual channels to transport the
samples) [13]–[16]. Other microfluidic systems with a single
flow layer, such as droplet-based [17], paper-based [18], or
capillary-based [19] devices, have equivalent routing issues1.

Taking inspiration from approaches developed for the elec-
trical domain is a straightforward way to automate this task.
Wire routing is a well-known procedure in EDA, with several
methods available, e.g., for Printed Circuit Boards (PCBs) [26]
and Integrated Circuits (ICs) [27]. On the other hand, these ap-
proaches usually produce designs with sharp-cornered channel
bends (90◦), which are – under certain circumstances such as
non-laminar flow or high Reynolds numbers – not optimal for
fluid transportation because they disturb the flow within the
channel [28], [29]. Furthermore, such routers [13], [30], [31]
are often designed to determine the shortest possible length of
the associated links. In microfluidics, however, the channels
are typically subject to additional requirements, such as the
length of the channel to provide a specified hydrodynamic
resistance, a maximum or minimum flow rate, the amount of
time a fluid or droplet must travel through the channel, etc.

Hence, it is essential to have dedicated channel routing
solutions for microfluidic devices that explicitly meet these

1Besides that, please note that the term “routing” is also frequently
used to refer to the path-finding of droplets, e.g., in digital [20]–[23] or
programmable [24], [25] microfluidics. Likewise, “channel routing” describes
a different process in electronic design automation. However, in this work,
we focus on the routing of channels in channel-based microfluidics.

https://www.cda.cit.tum.de/research/microfluidics/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/

2

domain-specific requirements. To our knowledge, only the
works proposed in [29], [32] contributed (partially) in this di-
rection, by addressing the problems of cornered channel bends
and length matching constraints. However, these approaches
consider the respective requirements only individually. Ad-
dressing all requirements simultaneously is a substantially
harder task for which, thus far, no automatic solution exists
yet.

Moreover, typical routing methods require expertise in
certain software or even substantial programming knowledge
in order to be used. Therefore, adjusting to specific routing
solutions takes a considerable amount of time. Due to the
lack of interfaces and a procedure that is still heavily reliant on
design automation expertise, these routing algorithms have not
gained widespread adoption in the microfluidic community.

In this work2, we propose a comprehensive and easily
accessible solution to this problem. More precisely, we de-
veloped a method that determines the desired routings and, at
the same time, satisfies different domain-specific constraints.
In addition to typical geometric properties such as width
and spacing, the proposed solution guarantees a specified
minimum bend radius for all channels. Moreover, it aims to
route channels in such a way that they have a certain length.
This in turn enables influencing important parameters such as
hydrodynamic resistance, flow rates, and pass-through timings.

Afterwards, we incorporated this method into a front-end
which is easily accessible and can even be used by end-users
from the microfluidic domain without detailed expertise in
design automation. The tool is set up in such a way that a
routing problem can be specified in a graphical, push-button
fashion. Eventually, the resulting design is delivered in a
widely used file format and can be easily used for further
processing.

The remainder of this work is structured as follows: First,
we go into more detail about the considered routing problem
in the next section. In Sec. III, we present the general idea
proposed in order to solve the problem. Afterwards, we
discuss the corresponding implementation and its challenges in
Sec. IV. The resulting tool and its applicability are presented
in Sec. V, before the paper is concluded in Sec. VI.

II. CONSIDERED PROBLEM

In this section, we describe the considered problem in more
detail and discuss the challenges that come along with it.
To this end, we use Fig. 1 that provides a corresponding
illustration of the problem we want to address.

More precisely, in the considered scenario different compo-
nents are placed on a 2D-layer, which are supposed to perform
different microfluidic operations such as mixing, heating,
incubation, etc. Each of these components has one or more
inlets as well as outlets, through which fluids/droplets can
enter or exit the component. Now, a typical design task is to
connect these components as well as input/output ports of the
chip in a certain way (based on a corresponding specification),
e.g., to guide fluids/droplets through the chip and, by this,
realize a desired experiment – constituting a routing problem.

2A preliminary version of this work has been presented before in [33].

In the domain of conventional electronic circuits, routing is
an established process for which numerous methods have been
proposed, e.g., for PCBs or ICs. Accordingly, it seems obvious
to simply use these methods as a basis for microfluidic devices
as well. However, for channel-based microfluidic devices
as considered in this work, these schemes do not properly
work. While some of the existing solutions are capable of
incorporating length constraints and implementing rounded
bends on their own, the combination of these constraints, in
addition to consideration of parameters such as microfluidic
channel resistances, and the lack of simple user interfaces for
the intended target group (designers of microfluidic devices),
still poses a problem. In particular, the following challenges
constitute crucial problems for the current design process of
microfluidic devices:

Rounded Corners: For some microfluidic applications, it is
important to ensure a proper flow of the respective fluids.
To this end, corners, i.e., changes in the direction of the
channels, can be implemented by sharp, rectangular turns or,
alternatively, by smooth, rounded bends – ideally with a certain
bending radius. The effects of the shape of channel corners
on the overall behavior of a microfluidic device are negligi-
ble for applications with a laminar flow regime and a low
Reynolds number. However, such effects become substantial
in non-laminar, turbulent flows [28]. More precisely, particles
such as cells or droplets are subject to additional forces
during sudden changes of direction, i.e., sharp channel corners
may affect the behavior of particles in microfluidic devices
under these circumstances. In the worst case, such devices are
rendered inoperable. Methods inspired by conventional routing
methods for electronic circuits rely on grid-based schemes
and, hence, usually yield routing layouts with rather angular
corners (also known as Manhattan layouts). However, if the
aforementioned conditions apply, such layouts are not optimal
for channel-based microfluidic devices, and rounded bends are
preferable.

Length Constraints: Frequently, channels in a microfluidic
device are not only supposed to connect the different com-
ponents but additionally must satisfy a desired length due to
various constraints. Such constraints are, e.g., a specific hydro-
dynamic resistance, a maximal/minimal flow rate through the
channel, a certain time a fluid/droplet needs to pass a channel,
etc. But again, approaches inspired by routing methods for
conventional ICs do not satisfy this constraint and, hence,
frequently determine routes that do not ensure specific lengths,
resistances, or similar constraints.

Example 1. Let’s assume we have the three components
placed on a layout as shown in Fig. 1. Applying any method
that is inspired by routing for electronic devices will result
in a solution, where the corresponding in- and outlets are
connected in an angular and direct fashion as shown in the
figure. More precisely, all corners of the channels have angles
of 90◦ and, hence, most certainly will disrupt the flow of the
fluids inside them. Furthermore, while the connected channels
are indeed correctly routed, they have more or less arbitrary
lengths which can become critical in situations where a certain
channel length is desired. Overall, the resulting routing most

3

Fig. 1: Routing layout

likely will not be feasible for microfluidics.

Accessibility: Despite the fact that, thus far, no solution
exists which comprehensibly addresses the requirements from
above, accessibility is another huge problem when it comes to
design automation for microfluidics. In fact, the vast majority
of the solutions proposed in the past require a substantial pro-
gramming or EDA-background (notable exceptions are, among
others, [6]–[8]). Because of this, many design automation
solutions, even if they generate great results, often do not get
established in practice.

III. GENERAL IDEAS

In this section, we present the general ideas behind the
proposed channel router, which will overcome the short-
comings discussed above. The main idea is based on a
so-called rubber-band router [34]–[36]. As the name suggests,
a connected channel between two inlet/outlets is modeled as
a rubber-band. This has the effect that, when an obstacle
prevents a direct connection, the channel just bends around
the obstacle as shown in Fig. 2a. Hence, this router method
does not rely on common grid-based algorithms and, thus, can
produce an “any-angle” layout.

Having that as a main idea, we address the shortcomings
discussed before as follows:

Addressing Rounded Corners: Critical points in the layout
such as inlet/outlets or corners of obstacles are modeled as
waypoints (marked as red circles in Fig. 2a). Channels must
have a certain distance to these round waypoints and can only
pass them by a circular path. This distance can be adjusted
by adapting the radius of these waypoints. By this, a desired
bending radius of the channel is guaranteed. As a result, a
channel will always be a combination of straight segments and
arcs when a straight connection is not possible. This finally
prevents angular corners of common routing algorithms.

Addressing Length Constraints: When a channel should
realize a desired length, a common concept in microfluidics
is to add a meander structure to the channel. They allow to
adjust the length of the channel while, at the same time, do
not occupy too much space on the chip. In the proposed

(a) Obstacle affects channel

(b) Additional waypoints for meander structure

Fig. 2: General idea of the proposed rubber-band routing

routing idea, such meander structures can be realized by
placing additional waypoints (marked as green circles in
Fig. 2b) at convenient spots near the corresponding channel.
Afterwards the algorithm forces the channel to “connect” to
these waypoints in a proper way. By adjusting the position
of these extra waypoints, the desired channel length can be
generated.

Addressing Accessibility: In order to make the router more
accessible, a main idea is to realize the corresponding methods
as an online tool, which allows to open it directly inside a
browser and prevents further installations processes. Moreover,
the interface of the tool should be developed in a sense that
also users with little to no programming or EDA-experience
can interact with it easily, i.e., the tool should be well
suited for microfluidic engineers. To this end, user inputs
should either be made by drawing the corresponding com-
ponents/obstacles/connections inside a drawing area, or by
entering the corresponding information through user-friendly
input masks. Additionally, instead of defining a desired length
of a channel, the user should be able to specify, e.g., a certain
hydrodynamic resistance of a channel. This resistance will then
be converted automatically to the corresponding length. Once
all inputs are defined, a routing layout can then be literally
generated in a push-button fashion and exported as Scalable
Vector Graphics (SVG) file.

Having sketched the main ideas behind the proposed routing

4

method, there are still challenges which need to be addressed,
e.g., how to position the waypoints, how to find valid paths, or
how to realize a desired channel length. All these challenges
will be discussed in more detail in the next section.

IV. IMPLEMENTATION DETAILS

In this section, we cover the details of the proposed router
and its challenges for the implementation. To this end, we
first outline the basic algorithmic procedure which is based
on an A* search. Afterwards, we describe the corresponding
expansion strategy needed to realize the respective connections
and the meander creation needed to realize the desired lengths.

A. Algorithmic Procedure

The basic procedure to determine a valid routing consists
of an initialization phase and the actual path finding realizing
the desired connections:

Initialization: First, waypoints are generated for all corners
of all components/obstacles and, for each end of a channel,
further waypoints are placed such that the inlets are located
on the circumference of that waypoint as shown for the inlets
in Fig. 2a. This basically provides the main entities for the
routing method, i.e., those waypoints are supposed to be
connected until a desired connection from a start to destination
inlet is realized. In order to ease this process later, another
initialization step is executed: a Delaunay triangulation. In
theory, all waypoints could be part of the waypoint sequence
that realizes a desired channel connection. However, the rel-
evant successor waypoints in the search process are typically
found near the current search position (e.g., in the proximity
of obstacles). Therefore, a Delaunay triangulation is conducted
in order to significantly reduce the number of possible search
nodes. Here, the area spanned by all waypoints is partitioned
into triangles where each waypoint is located on the corner
of one or more triangles, as shown by the gray dashed lines
in Fig. 2a. This allows to storing a list of neighbors for each
waypoint (namely those sharing a triangulation edge with it),
which is used to aid the routing process by reducing the
number of waypoints to be checked for the next step to the
neighboring ones (rather than all of them). Since the waypoints
are typically well distributed, the search space is reduced with
this neighbor list.

Path Finding: After the initialization, determining the chan-
nel connections is conducted through an A* search. This
graph search algorithm determines the shortest connection
by utilizing a heuristic to estimate the remaining length and
favors waypoints that are close to the target. In our model, a
node represents the connection up to the current point which
is always located on the circumference of a waypoint, i.e.,
the connection or channel is attached to the waypoint. The
search starts at a channel inlet, i.e., the position on the circle
around the corresponding waypoints as depicted for the inlet
in Fig. 2a. In every iteration, the algorithm chooses the most
promising node in terms of minimal path length and the
estimated remaining connection length. To this end, we simply
employ the Euclidean distance as a heuristic for the remaining
path length which is a reasonable choice for 2D-problems.

The algorithm terminates when either the destination inlet is
reached in the same way as the initial node, or all search nodes
have been exhausted without finding a connection. The crucial
part is the node expansion, i.e., to determine successor nodes
while, at the same time, not violating any spacing constraints.
Since each placement of channel segments may influence other
connections and even itself, we have to compute subsequent
nodes on-the-fly. This so-called expansion strategy determines
how a node is expanded, which is explained in the following.

B. Expansion Strategy

As already mentioned, the current node represents the
connection up to the current endpoint, which is always located
on the circumference of a waypoint. The goal is now to expand
this node by connecting to other waypoints. Theoretically,
every waypoint may generate a possible successor node, but
neighboring waypoints can be efficiently determined from the
triangulation conducted during the initialization.

Likewise, the endpoint of the consecutive node is also
positioned on the circumference of another waypoint, such
that the connection is a tangent to both of these circles. For
simplicity, it is assumed that new channel connections are
attached to already populated waypoints on the outside only.
Attaching a channel on the inside of already attached channels
would require a local rerouting and is not covered in this work.

Therefore, node expansion consists of making connections
between circles (illustrated in Fig. 3). The radii of these circles
are determined by channel width, spacing, and bend radius
such that minimal spacing to the waypoint center is accounted
for. If the next waypoint already has previously attached
channels, this radius does not only depend on the currently
routed channel’s dimensions, but additionally on the already
attached channels. Therefore, the new circle’s radius cr can be
computed from the outermost attached circle a and the current
connection c with

cr = max

(
cbr, ar +max(as, cs) +

1

2
(aw + cw)

)
,

where ar is the outermost radius, aw is the width, and as is
the spacing of the outermost circle. Similarly, cw is the width,
cs is the spacing, and cbr is the minimal bend radius of the
current connection. If there is no (outermost) circle, i.e., the
next waypoint has no attached channels, the same calculation
is applied with ar = 0, as = 0, and aw = 0.

Example 2. Let’s assume we want to connect to a waypoint
that already has one attached channel a with ar = 100 µm,
as = 50 µm, and aw = 20 µm (as illustrated in Fig. 4).
If the connecting channel c has the geometric properties
cbr = 150 µm, cs = 60 µm, and cw = 20 µm, then the com-
puted radius amounts to cr = 180 µm.

Then, the tangents to the previous and next waypoint circle
are computed. In general, there are up to two possible tangents
that match the clockwise direction of the previously generated
channel path. Each of these segments may establish a new
node, as depicted in Fig. 3.

Therefore, a single node expansion is reduced to simple
geometric operations by adding an arc and a straight channel

5

tangents

arc

current node

next node

next node

Fig. 3: Node expansion

cw

a ,max()s cs

cr

awar

Fig. 4: Radii of attached channels

segment to the current path, both of which need to be validated
against geometrical constraints such as minimal distances
to obstacles. More precisely, straight channel segments may
violate geometrical constraints in essentially three different
ways:

• Crossing other Channel Segments: If it crosses the
preceding tangent as illustrated in Fig. 5a, i.e., it
self-intersects the previous segment, attempt to directly
connect the waypoints instead. This is necessary to
guarantee a connection between waypoints that are not
neighbors by triangulation. Otherwise, if it crosses other
channel segments (cf. Fig. 5b), it is discarded.

• Too Close to other Waypoint: If a third waypoint inter-
cepts the segment, as depicted in Fig. 5c, attempt to route
to that specific waypoint instead.

• Crossing Obstacles: Discard the segment if it crosses an
obstacle (cf. Fig. 5d).

Arcs around waypoints need to be validated in a similar
fashion, whereas the new node is always discarded in case of
conflicts. Arcs can violate constraints in the following four
ways:

• Obstacle Crossing: If an arc directly crosses an obstacle,
as shown in Fig. 6a.

• Close to Obstacles: When an arc is too close to an
obstacle, and thus spacing constraints are not satisfied
(cf. Fig. 6b).

• Close to Channels: If an arc is too close to other channel
segments, then the spacing constraints of both, arc and
channel, are not satisfied, as shown in Fig. 6c.

• Close to Waypoints: If other waypoints (and their attached
channels) are too close to the arc so that mutual spacing
constraints are violated (cf. Fig. 6d).

All expansions that pass these checks are possible successor
nodes. Following the A* scheme, the one is further explored
which yields the lowest cost until the shortest length solution
is obtained for the connection. However, as we might not nec-
essarily be interested in a connection with the lowest distance
but a precisely given one, we additionally add meanders to
achieve the desired length. This is covered in the next section.

(a) (b)

(c) (d)

Fig. 5: Channel segment constraint violations

(a) (b)

(c) (d)

Fig. 6: Waypoint arc constraint violations

C. Creation of Meanders

In order to match the desired length of specific channels,
the algorithm tries to incorporate meander structures into the
initial routing. We assume that the desired length is longer
than the length of the initial routing3, so we aim to extend
it until the length criterion is met. To this end, we employ
a two-step process: First, we iteratively insert meander bends
until the channel has at least the desired length (but may be

3Please note that, if a channel is already longer than its desired length, we
cannot find a solution. This problem is also discussed later in Sec. V-C.

6

longer), i.e., an upper bound routing is computed, which is a
simpler task than directly determining an exact length routing.
Afterwards, we use this result to determine a routing that
matches the desired length (employing a bisection approach).
Before this process is explained in detail, the general process
of creating meander bends is examined. This is achieved by
inserting special meander waypoints at suited positions along
the straight segments of a channel.

Meander waypoint placement: Meander waypoints differ
from regular waypoints in the intended effect on the overall
design. On one hand, only single channels form a meander,
and therefore, meander waypoints have exactly one attached
channel in a valid routing. On the other hand, meander
waypoints do not have to apply the same spacing constraints to
attached channels. While regular waypoints have the purpose
of ensuring a certain distance between the attached chan-
nel and an obstacle, i.e., the obstacle corner located at the
waypoint’s position, there is no obstacle edge at meander
waypoints. Hence, the required spacing is halved and the
radius cr around the waypoint can be computed with

cr = max

(
cbr,

1

2
(cs + cw)

)
,

where cw is the width, cs is the spacing, and cbr is the minimal
bend radius of the channel.

Having that, the next task is to place these waypoints in
order to enable routing channels into the typical meander
shape. The goal is to replace each straight channel segment
with a corresponding meander. In the following, we describe
the procedure to insert a meander instead of a single channel
segment.

At each end of the meander, the equivalent space of 2cr is
reserved for entry waypoints (indicated in blue in Fig. 7) that
redirect the channel sideways. The remaining space is filled
with meander waypoints (marked as green circles in Fig. 7),
whereupon the number of meander bends n (and, therefore,
the number of necessary waypoints) can be computed as

n =
⌊ l − 4cr

2cr

⌋
,

where l is the length of the original channel segment that
is to be replaced with the meander. In order to achieve a
more regularly shaped meander, the meander waypoints are
equally distributed along the original segment’s direction. The
resulting distance d between meander waypoints therefore
amounts to

d =
l − 4cr
n

.

After resolving the waypoint distribution along the original
channel segment, the waypoints are displaced by a certain
offset – alternating between the left and right side of the origi-
nal channel segment. This lateral offset of meander waypoints
(illustrated in Fig. 7) can be chosen arbitrarily4. By altering
the lateral offset for single meander waypoints, the length of
the resulting meander and, therefore, the length of the entire

4When the lateral offset is set to −cr , then the corresponding waypoint
vanishes, i.e., producing the same effect as having no meander waypoint at
the designated spot.

entry waypoint

entry waypoint

bend waypoint

bend waypoint

original channel

lateral offset

lateral offset

d

d

d

d

adjustable offset

Fig. 7: Meander waypoint placement

channel, can be adjusted to the respectively given requirement.
However, a large offset may render it impossible for the setup
to produce a valid routing, e.g., when a meander waypoint is
moved too close to an obstacle or another channel.

With the waypoint placement taken care of, the remaining
task is to determine the lateral offsets of meander waypoints
such that a routing with the desired length is generated. This
is achieved in a two-step process.

Upper bound routing: The first part consists of
step-by-step increments of the meander waypoint offsets until
an upper bound routing is found, i.e., a routing where the
channel has at least the desired length. Overall, this leads
to a meander insertion procedure as sketched in Fig. 8. The
meander generation starts with an initial routing with no lateral
offsets. As long as the actual channel length is smaller than
the desired channel length (the condition marked as C1), we
attempt to further increase lateral offsets of meander waypoints
and, therefore, channel length.

To this end, the next available meander waypoint is chosen.
If the waypoint offset has not been marked as maxed out (the
condition marked as C2) (i.e., at its maximal possible offset
since previous iterations showed that the lateral offset could
not be further increased due to the presence of obstacles), we
increase its lateral offset by a certain predefined step size. The
choice of step size is arbitrary, however, in this work, a step
size of cr produces reasonable results due to the nature of
the problem. In any case, the length of the resulting channel
increases with each step. Accordingly, the routing is updated
after each change of the meander waypoint offsets.

If the result of the updated routing is valid (the condition
marked as C3), the result is stored as the current intermediate
result. Otherwise, if such a routing turns out to be impossible,
we can assume that the altered meander offset produces a

7

false

false

false

false

true

true

true

true

Accept update
as new routing

Mark waypoint offset
as maxed out

Is valid routing?

Closest solution

All offsets
maxed out?

Increase offset by step size

Waypoint offset
maxed out?

Upper bound routing
Channel length
< desired length

Pick next meander waypoint

Initial routing

C1

C2 C4

C3

Fig. 8: Meander insertion

collision with other obstacles, and, therefore, is marked as
maxed out. In both cases, we move on to the next meander
waypoint and repeat the process.

This procedure is repeated until the desired channel length
is reached or surpassed. If all meander waypoints are at their
maximal offset (the condition marked as C4), i.e., maxed out,
without reaching the desired channel length, it is impossible
to find a desired solution under the assumptions of the applied
model. In this case, it is up to the designer to make changes to
the problem specification (this is discussed in more detail later
in Sec. V-C). However, the latest intermediate routing result
constitutes the closest solution that has been found.

To illustrate the core idea of this procedure, Ex. 3 and Fig. 9
sketch the progression over time of the described method for
a small example5.

Example 3. Let’s assume we have an initial routing of a
channel and intend to increase its length by the described
process, a sketch of which is shown in Fig. 9. The initial state
is depicted in Fig. 9a: Since all meander waypoints vanish for
the initial lateral offsets, no additional waypoints are created.
In the next step (Fig. 9b), a first meander waypoint A is

5The locations of the meander waypoints are determined with the formulas
for the meander waypoint placements. The upper bound routing algorithm
merely alters the introduced lateral offsets.

(a)

A

E

(b)

A B

CE

E E

(c)

A

(d)

Fig. 9: Illustration of the meander waypoint insertion

inserted (and accordingly, two entry waypoints E) in place of
the first straight segment. Several steps later (Fig. 9c), every
line segment has been replaced with the maximum number of
meander waypoints A, B, and C (the last segment is too short
to fit any meander bends). Thus, in Fig. 9d, we continue by
further displacing the leftmost meander waypoint A from the
original line. This process could be continued until the desired
length is reached or no further displacement is possible.

Bisection: The first step of the two-step process results
in a routing that does not necessarily have the exact desired
length, but may be larger. As the second step, a routing with
the exact desired target length can be generated by applying
the bisection method [37], which is illustrated in Fig. 10 and
described in the following.

At this point, our current result, generated by the first
step (Fig. 8), has a larger channel length then the target,
implementing an upper bound. Because waypoint offsets have
been increased by a constant step size, we know that the
length of the previous, intermediate solution is strictly smaller
than the target length, which constitutes a lower bound. We
use this fact to determine the ideal solution in between these
bounds. Therefore, the bisection acts on the offset of a single
meander waypoint (as indicated in Fig. 7 with the adjustable
offset), such that the ideal offset lies somewhere in the interval

8

Middle offset ← 1
2 lower offset + 1

2 upper offset
Middle ← routing update with middle offset

true

false

false

true

Upper ← Middle

Lower ← Middle

Solution with desired length

Length < target
< tolerance
|length − target|

Upper bound routingLower bound routing

Fig. 10: Bisection

between the lower and upper bound routing.
In each iteration, the possible interval of the waypoint offset

is halved. The routing is updated with a waypoint offset set to
the middle of the interval. Then, the resulting channel length
of the routing is analyzed:
• If the length is equal to the target with respect to a certain

tolerance, we have found our desired solution.
• Otherwise, if the length is smaller than the target, the

computed routing constitutes the lower bound for the next
iteration.

• Otherwise, the computed routing constitutes the upper
bound for the next iteration since the length is larger than
the target.

By applying this scheme, the routing converges towards a
solution with the desired length.

Eventually, carrying out this procedure for all channels
generates a valid routing, such that the channels conform to
the specified bend radius as well as the desired length. The
results are then visualized in a graphical user interface, which
is introduced in the next section.

V. RESULTING TOOL

All ideas and all implementations described above have
been implemented in terms of an online tool, which can
be accessed by visiting https://www.cda.cit.tum.de/research/
microfluidics/channel router/. The tool particularly aims at
microfluidic engineers looking for an efficient and easy-to-use
solution to realize the channel routing in their devices. In this
section, we demonstrate how to use the tool and what results
can be generated with it.

A. Using the Tool

The tool itself is shown in Fig. 11, which basically consists
of a drawing and control area on the left- and right-hand
side, respectively. The drawing area is the actual workspace
of the tool and holds a visual representation of the current
layout, while the control area contains buttons to start or
clear the routing as well as an input mask to have a more
detailed control over the specified layout. By clicking on the

corresponding buttons inside the control area, the user can add
the following two objects to the drawing area:

Components represent the actual building blocks on a mi-
crofluidic chip and must not be crossed by a channel, i.e., they
also serve as obstacles inside the layout. The tool allows to
define these components in the form of n-gons (i.e., polygons
with n sides). This has the advantage that both simple but
also rather complex objects can be created. To this end, the
polygons can be directly drawn inside the drawing area as
shown in Fig. 11: Here, the top-left component is currently
selected and, hence, its corners can be freely dragged around
in order to represent the desired shape (the middle point can
be used to drag the whole component around). Additionally,
components can also be specified as a list of points and their
corresponding x and y positions in order to allow for a more
precise control over the exact shape and position.

Connections represent the inlets/outlets of components that
should be connected inside a microfluidic chip. Hence, a
single connection is basically a pair of two points that define
the start and end point of a channel. A connection can also
be easily added by directly drawing the start and end point
(i.e., the inlets/outlets) on the boundary of corresponding
components inside the drawing area, as shown in Fig. 11.
Usually, the directions of a channel at the start and end point
are perpendicular to the edge of the corresponding component,
but the direction can also be defined manually by adjusting the
second (smaller and darker) point near the start and end point
of the connection. Moreover, when a new connection is added,
the user is prompted to provide the desired channel width, the
minimal space between two channels, the minimal bending
radius, as well as an (optional) length of the channel (as shown
on the right-hand side of Fig. 11). Note that, alternatively to the
channel length, the hydrodynamic resistance of the channel can
also be provided. However, in this case also the height of the
channel, and the viscosity of the fluid have to be specified. The
tool then automatically calculates the correspondingly needed
length based on these parameters. Again, all these parameters
as well as the coordinates and the start and end points can also
be specified directly inside an input mask for a more precise
control over the connection.

Once all these objects are defined, the user can start the
routing process by pressing the “Route” button.

B. Results of the Tool
In order to illustrate results generated by the tool, assume

the user has entered a layout as illustrated in Fig. 11. Addi-
tionally, assume that the user specified the connections A, B,
C to have a channel width of w = 100 µm, a minimal bending
radius of r = 100 µm, and a minimal spacing of s = 50 µm,
while the values for the connections D and E have been spec-
ified as w = 150 µm, r = 150 µm, and s = 50 µm. Moreover,
the user specified that the connection B should have a par-
ticular length of l = 5000 µm, while the connection D should
realize a hydrodynamic resistance RD = 3× 1012 kg/(m4s)
(with a channel height of h = 50 µm and a fluid viscosity of
µ = 1× 10−3 kg/(ms)).

Then, after clicking on the “Route” button, the proposed
method instantly generates a layout and displays it to the

https://www.cda.cit.tum.de/research/microfluidics/channel_router/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/

9

Fig. 11: Resulting online tool with drawing area (left) and control area (right)

D

C
B

A

E

Fig. 12: Generated routing layout

user as shown in Fig. 12. As can be seen, all channels were
routed correctly with respect to the specified parameters and
no cornered angles where produced. Moreover, the router
automatically generated corresponding meander structures in-
side the channels B and D in order to match the defined
length and hydrodynamic resistance, respectively. In case of
the connection B, the router even placed the meander in such
a way, that the channel does not cross the obstacle in the
middle of the layout. Having that, the user can now download
a corresponding SVG file in order to use for further production
processes.

Another frequent problem in routing is determining mul-
tiple, mostly parallel, connections between components [38].
The concept of rubber-band routing is able to handle such
cases in the same way since multiple channels may be attached
to the same waypoints. Fig. 13a illustrates a solution for
such a case (generated by the proposed tool), where several

A

B

(a) Multiple parallel channels

A

B

(b) Length-constrained routing

Fig. 13

channels connect the components A and B. At the same time,
the depicted channels bend around an obstacle and therefore
around its cornering waypoints. All of these channels have
been specified with the same dimensions, such that each
channel has a channel width of w = 100 µm, minimal bending
radius of r = 100 µm, and a minimal spacing of s = 100 µm.
The channel length is not constrained in this example.

Furthermore, such problems may require each parallel
channel to have a certain specified length, e.g., when the
throughput time of fluids in each channel must be coordinated
(or be equally long in a special case), creating a need for
a length-constrained routing between components A and B.
Fig. 13b depicts such an example (again, generated with the
proposed tool) with different channel lengths. Once again,
all of these channels have been specified with the same
dimensions, such that each channel has a channel width of
w = 100 µm, minimal bending radius of r = 150 µm, and
a minimal spacing of s = 100 µm. However, the desired
length for each channel is arbitrarily defined in advance –
amounting to (left-to-right) 6000 µm, 9000 µm, 15 000 µm,
10 000 µm, 7500 µm, and 8000 µm. As expected, the channels

10

TABLE I: Benchmark data

Case Components
Channel Connections Runtime

any length length-constr. [s]
1 20 10 0 0.54
2 20 7 3 0.96
3 20 5 5 1.63
4 20 0 10 3.84
5 40 20 0 1.57
6 40 15 5 3.44
7 40 10 10 6.37
8 40 0 20 16.61
9 100 50 0 17.74

10 100 37 13 30.85
11 100 25 25 52.68
12 100 0 50 111.94

are routed in parallel with incorporated meander structures, but
without violating mutual spacing constraints. Overall, these
examples demonstrate the applicability of the proposed tool.
Since the tool is publicly available at https://www.cda.cit.tum.
de/research/microfluidics/channel router/, the reader is kindly
invited to try out further examples and scenarios.

C. Discussion

While the two subsections above provided an intuition about
the usage of and the results from the tool, we aim to complete
this section with a discussion on the overall performance
and applicability of the proposed method and resulting tool
(covering what the method/tool is able to deliver, but also
what it cannot provide yet).

We provide a set of larger benchmark cases which are also
available for download from within our tool. As benchmark
cases, we considered connections between arrays of compo-
nents, both unconstrained and constrained in channel length,
as well as mixed cases. For the cases with length-constrained
channels, the lengths of these channels were increased by 20%
with respect to the unconstrained cases (and therefore, the
shortest connections). All other relevant geometric parameters
of the channels (width, spacing, and minimum bend radius)
were set to sensible fixed values. The results of our perfor-
mance evaluations are summarized in Table I.

Despite the good performance of the tool, it might happen
that the algorithm cannot determine a solution at all. In fact,
after all, the method is not complete, i.e., can eventually not
prove whether a solution exists. While this is one of the
reasons for the efficient run-time performance (being complete
would require a much larger search space traverse), this might
look like a serious disadvantage at the first glance. However,
if the method returns with no result, it is usually sufficient to
re-arrange the components slightly differently and re-run the
tool. This is especially true when a connection should realize
a certain length but the distance between the corresponding
components is too long, so not even a straight channel would
satisfy the length constraint. In the current version, such
connections are marked as red (indicating an error), but we
will provide a more comprehensive error description in future
implementations in order to prevent these failures. After all, we
were always able to eventually determine a result after such

small re-arrangements. Since this additionally, did not harm
the design task or the validity of the solution, the proposed
tool remained efficient. In fact, complex routing layouts could
be generated for various designs within a few moments and
in an easy-to-use fashion.

VI. CONCLUSION

In this work, we presented a routing tool for channel-based
microfluidic devices, i.e., devices where components must
be connected by channels according to a certain specifica-
tion. Since current routing algorithms are frequently based
on wire routers from the traditional electrical domain, they
often do not satisfy the requirements needed in microfluidics,
such as a minimal bending radius for channel bends or
a length constraint for particular channels. Moreover, the
accessibility of these routers is focused on users with an
EDA-background, but are mostly not suitable for designers
of microfluidic devices. We developed a router that addresses
these shortcomings and, additionally, implemented the router
as a user-friendly tool. The tool is available online and can
be accessed by visiting https://www.cda.cit.tum.de/research/
microfluidics/channel router/.

ACKNOWLEDGMENTS

This work has partially been supported by the FFG project
AUTOMATE (project number: 890068) as well as by BMK,
BMDW, and the State of Upper Austria in the frame of the
COMET Programme managed by FFG.

REFERENCES

[1] G. M. Whitesides, “The origins and the future of microfluidics,” Nature,
vol. 442, no. 7101, pp. 368–373, 2006.

[2] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Mi-
crofluidic Lab-on-a-Chip platforms: requirements, characteristics and
applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153–1182,
2010.

[3] P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug
discovery,” Nature Reviews Drug Discovery, vol. 5, no. 3, p. 210, 2006.

[4] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,”
Lab on a Chip, vol. 8, pp. 198–220, 2008.

[5] P. K. Sorger, “Microfluidics closes in on point-of-care assays,” Nature
biotechnology, vol. 26, no. 12, pp. 1345–1346, 2008.

[6] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E.
Araci, and U. Schlichtmann, “Columba 2.0: A co-layout synthesis tool
for continuous-flow microfluidic biochips,” Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1588–1601,
2017.

[7] X. Huang, T.-Y. Ho, W. Guo, B. Li, and U. Schlichtmann, “Minicontrol:
Synthesis of continuous-flow microfluidics with strictly constrained
control ports,” in Design Automation Conference. IEEE, 2019, pp.
1–6.

[8] A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, and R. Wille,
“Meander designer: Automatically generating meander channel designs,”
Micromachines – Journal of Micro/Nano Sciences, Devices and Appli-
cations, vol. 9, no. 12, 2018.

[9] A. Grimmer, W. Haselmayr, and R. Wille, “Automated dimensioning
of Networked Labs-on-Chip,” Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

[10] ——, “Automatic droplet sequence generation for microfluidic networks
with passive droplet routing,” Comput.-Aided Des. Integr. Circuits Syst.,
2018.

[11] G. Fink, M. Hamidović, W. Haselmayr, and R. Wille, “Automatic design
of droplet-based microfluidic ring networks,” Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 2020.

https://www.cda.cit.tum.de/research/microfluidics/channel_router/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/
https://www.cda.cit.tum.de/research/microfluidics/channel_router/

11

[12] G. Fink, T. Mitteramskogler, M. A. Hintermüller, B. Jakoby, and
R. Wille, “Automatic design of microfluidic gradient generators,” IEEE
Access, vol. 10, pp. 28 155–28 164, 2022.

[13] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. Lee, and T.-Y. Ho, “An efficient
bi-criteria flow channel routing algorithm for flow-based microfluidic
biochips,” in Design Automation Conference, 2014, pp. 1–6.

[14] K. Hu, T. Dinh, T. Y. Ho, and K. Chakrabarty, “Control-layer routing and
control-pin minimization for flow-based microfluidic biochips,” Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. PP,
no. 99, 2016.

[15] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai, “Physical co-
design of flow and control layers for flow-based microfluidic biochips,”
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 6, pp. 1157–1170, 2017.

[16] Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlicht-
mann, “Multi-channel and fault-tolerant control multiplexing for flow-
based microfluidic biochips,” in Int’l Conf. on Computer-Aided Design,
2018.

[17] X. Chen and C. L. Ren, “A microfluidic chip integrated with droplet
generation, pairing, trapping, merging, mixing and releasing,” RSC
Advances, vol. 7, no. 27, pp. 16 738–16 750, 2017.

[18] X. Li, D. R. Ballerini, and W. Shen, “A perspective on paper-based
microfluidics: Current status and future trends,” Biomicrofluidics, vol. 6,
no. 1, p. 011301, 2012.

[19] J. Guerrero, Y.-W. Chang, A. A. Fragkopoulos, and A. Fernandez-
Nieves, “Capillary-based microfluidics—coflow, flow-focusing, electro-
coflow, drops, jets, and instabilities,” Small, vol. 16, no. 9, p. 1904344,
2020.

[20] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “BioRoute: A network-
flow-based routing algorithm for the synthesis of digital microfluidic
biochips,” Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 11, pp. 1928–1941, 2008.

[21] O. Keszocze, R. Wille, and R. Drechsler, “Exact routing for digital
microfluidic biochips with temporary blockages,” in Int’l Conf. on
Computer-Aided Design, 2014, pp. 405–410.

[22] O. Keszocze, R. Wille, K. Chakrabarty, and R. Drechsler, “A general
and exact routing methodology for digital microfluidic biochips,” in Int’l
Conf. on Computer-Aided Design, 2015, pp. 874–881.

[23] O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, and
R. Drechsler, “Exact routing for micro-electrode-dot-array digital mi-
crofluidic biochips,” in Asia and South Pacific Design Automation
Conference, 2017.

[24] Y.-S. Su, T.-Y. Ho, and D.-T. Lee, “A routability-driven flow routing
algorithm for programmable microfluidic devices,” in Asia and South
Pacific Design Automation Conference. IEEE, 2016, pp. 605–610.

[25] A. Grimmer, B. Klepic, T.-Y. Ho, and R. Wille, “Sound valve-control for
programmable microfluidic devices,” in Asia and South Pacific Design
Automation Conference, 2018.

[26] A. Finch, K. Mackenzie, G. Balsdon, and G. Symonds, “A method
for gridless routing of printed circuit boards,” in Design Automation
Conference. IEEE, 1985, pp. 509–515.

[27] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, and
S. Sapatnekar, “Placement and routing in 3d integrated circuits,” IEEE
Design & Test of Computers, vol. 22, no. 6, pp. 520–531, 2005.

[28] J. You, L. Flores, M. Packirisamy, and I. Stiharu, “Modeling the effect
of channel bends on microfluidic flow,” IASME Trans, vol. 1, no. 1, pp.
144–151, 2005.

[29] K. Yang, H. Yao, T.-Y. Ho, K. Xin, and Y. Cai, “Aarf: any-angle routing
for flow-based microfluidic biochips,” Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3042–3055, 2018.

[30] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in
Asia and South Pacific Design Automation Conference, 2017, pp. 530–
535.

[31] S.-S. Chen, J.-J. Chen, C.-C. Tsai, and S.-J. Chen, “Automatic router
for the pin grid array package,” IEE Proceedings-Computers and Digital
Techniques, vol. 146, no. 6, pp. 275–281, 1999.

[32] H. Yao, T.-Y. Ho, and Y. Cai, “PACOR: practical control-layer rout-
ing flow with length-matching constraint for flow-based microfluidic
biochips,” in Design Automation Conference, 2015, p. 142.

[33] G. Fink, P. Ebner, and R. Wille, “Comprehensive and accessible channel
routing for microfluidic devices,” in Design, Automation and Test in
Europe (DATE), 2022.

[34] D. Staepelaere, J. Jue, T. Dayan, and W.-M. Dai, “Surf: Rubber-
band routing system for multichip modules,” IEEE Design & Test of
Computers, vol. 10, no. 4, pp. 18–26, 1993.

[35] T. Dayan, Rubber-band based topological router. University of
California, Santa Cruz, 1997.

[36] W. W.-M. Dai, T. Dayan, and D. Staepelaere, “Topological routing
in surf: Generating a rubber-band sketch,” in Proceedings of the 28th
ACM/IEEE Design Automation Conference, 1991, pp. 39–44.

[37] R. L. Burden and J. D. Faires, “Numerical analysis 8th ed,” Thomson
Brooks/Cole, 2005.

[38] T. Yan and M. D. Wong, “Bsg-route: A length-matching router for
general topology,” in 2008 IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2008, pp. 499–505.

Philipp Ebner received his Master’s degree in com-
puter science from the Johannes Kepler University
Linz, Austria, in 2021. Currently, he is a Ph.D.
student at the Institute for Integrated Circuits at
the Johannes Kepler University. His main research
interest is design automation for microfluidics.

Gerold Fink received the Master’s degree in mecha-
tronics from the Johannes Kepler University Linz,
Austria, in 2019. Currently, he is a Ph.D. student at
the Institute for Integrated Circuits at the Johannes
Kepler University. His research area focuses on
simulations and design automations for microfluidic
networks.

Robert Wille (M’06–SM’15) is a Full and Dis-
tinguished Professor at the Technical University of
Munich, Germany, and Chief Scientific Officer at the
Software Competence Center Hagenberg, Austria.
He received the Diploma and Dr.-Ing. degrees in
Computer Science from the University of Bremen,
Germany, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University

Dresden. From 2015 until 2022, he was Full Professor at the Johannes
Kepler University Linz, Austria, until he moved to Munich. His research
interests are in the design of circuits and systems for both conventional and
emerging technologies. In these areas, he published more than 350 papers
and served in editorial boards as well as program committees of numerous
journals/conferences such as TCAD, ASP-DAC, DAC, DATE, and ICCAD.
For his research, he was awarded, e.g., with Best Paper Awards, e.g., at TCAD
and ICCAD, an ERC Consolidator Grant, a Distinguished and a Lighthouse
Professor appointment, a Google Research Award, and more.

	Introduction
	Considered Problem
	General Ideas
	Implementation Details
	Algorithmic Procedure
	Expansion Strategy
	Creation of Meanders

	Resulting Tool
	Using the Tool
	Results of the Tool
	Discussion

	Conclusion
	References
	Biographies
	Philipp Ebner
	Gerold Fink
	Robert Wille

