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Abstract—Since quantum computers can solve important prob-
lems faster than classical computers, many resources have gone
into the development of this technology in recent decades. Despite
the tremendous progress that has already been made towards the
development of quantum computers, they are still an emerging
technology, which restricts access and reliability. Thus, research
on quantum algorithms still heavily relies on quantum circuit
simulators that run on classical hardware. However, simulating
the execution of a quantum computer on conventional hardware
is exponentially difficult, which is also the reason why quantum
computing is an interesting technology in the first place. Partic-
ularly complex is noise-aware simulation of quantum computers,
i.e., the consideration of noise effects that are common in today’s
quantum hardware during quantum circuit simulation. In this
work, we investigate the use of decision diagrams for this task.
To this end, we present two distinct approaches for noise-aware
quantum circuit simulation, investigate how they can be real-
ized using decision diagrams, and implement decision diagram-
based solutions for each of the presented noise-aware simulation
schemes. In an extensive evaluation, we unveil potential for
further improvements and also demonstrate substantial speed-
ups compared to the current state of the art.

I. INTRODUCTION

Quantum computers promise to solve specific tasks that
are intractable for conventional computers. They mainly
achieve this by exploiting the quantum mechanical effects
of superposition, i.e., a quantum bit can be in a combination
of different states at the same time, and entanglement, which
is that quantum bits can be connected with one another. Early
examples of quantum algorithms that demonstrate the potential
of this technology are Shor’s algorithm, with which integers
can be efficiently factored [1], and Grover’s database search
algorithm [2]. More recently, other algorithms have been
found in the areas of machine learning [3] and chemistry [4],
among others. Matching the success in the development of
new quantum algorithms, there have also been formidable
achievements towards the development of quantum computers,
which are driven by big players such as Google, IBM, Intel,
Rigetti, and Alibaba.

Despite this, quantum computers are still an emerging tech-
nology with restricted reliability and accessibility. Therefore,
a substantial amount of research on quantum computing still
depends on so-called quantum circuit simulators running on
classical hardware. As their name suggests, they simulate
the execution of a quantum circuit and, by this, allow for
the development and evaluation of quantum circuits without
access to actual quantum hardware. Moreover, quantum circuit
simulators allow for more insights into the considered quantum
applications since their results do not only provide probabilistic
measurements but full access to the resulting quantum state.

However, the task of quantum circuit simulation is exponen-
tially hard. This might also be one of the reasons why many
quantum circuit simulators (such as [5]–[9]) mimic only perfect

quantum computers. But, due to the extreme fragility of quan-
tum mechanical effects, today’s quantum computers are prone
to noise effects (i.e., errors) that obscure their calculations [10].
While error mitigation is constantly improving, errors generated
by noise effects are still an overshadowing aspect of quantum
computing. Hence, considering those noise effects during
quantum circuit simulation is essential to gain important
insights into how algorithms behave when executed on real
quantum hardware. These insights can be used for developing
noise resistant algorithms or the development/evaluation of
quantum error correction schemes.

Fortunately, noise effects in quantum computers are well
studied and mathematical models for approximating them are
available. However, employing those models during quantum
circuit simulation makes the hard problem of quantum circuit
simulation even harder, limiting corresponding approaches
(see, e.g., [11]–[20]). More precisely, the main challenge of
quantum circuit simulation is already caused by the exponential
nature of the vectors and matrices that are required to describe
quantum states and operations. Additionally, considering error
effects caused by noise requires extended descriptions and/or
methods (covered in more detail later in this paper) that add
substantial further complexity. How to efficiently cope with all
this complexity is an important research problem.

An interesting approach to address this problem is based
on the use of decision diagrams (as introduced, e.g., in [6]).
They offer a compact data structure for representing quantum
states and operations that is often below the exponential size of
other solutions. In fact, recent investigations and case studies
have shown their potential of being a viable data structure
that is promising in handling the complexity of quantum
circuit simulation [6]–[8], [21]–[27]. However, thus far their
potential for noise-aware quantum circuit simulation is largely
unexplored. Hence, it remains unknown whether the compact
representation provided by current state-of-the-art quantum
decision diagrams also can be utilized when noise is considered
during the simulation.

In this work, we address this question1. To this end, we
present two schemes for considering noise during quantum
circuit simulation: a deterministic and a stochastic scheme. For
both, we investigate how they can be realized using decision
diagrams and what optimizations are possible. Based on that,
we implemented decision diagram-based solutions for each
of the presented noise-aware simulation schemes in C++ 2

and subjected them to intensive evaluations (comparing them
against each other as well as state-of-the-art simulators by IBM
and Atos).

The results show that, depending on the scheme used as well
as the considered errors, noise-aware quantum circuit simulation

1Preliminary versions of this work have been published in [28], [29].
2Both implementations are available as open-source at https://github.com/

cda-tum/ddsim.

https://github.com/cda-tum/ddsim
https://github.com/cda-tum/ddsim
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with decision diagrams provides tremendous improvements
compared to the state of the art; but also unveils some short-
comings of this approach. More precisely, our investigations
show that decision diagrams as used thus far severely struggle
with a deterministic consideration of noise. In contrast, when
applied to the stochastic scheme, they enable speed-ups in the
simulation time of several magnitudes and allow for simulating
circuits with more than twice the number of qubits compared
to the state of the art.

In the remainder of this paper, these contributions and
findings are presented as follows: In Section II, the concepts
of quantum computing and noise in quantum computing are
reviewed. Section III discusses quantum circuit simulation for
both, straightforward and decision diagram-based approaches,
and introduces the research question we are considering in
this work. In Section IV and Section V, deterministic and
stochastic noise-aware quantum circuit simulation are presented,
respectively, and it is investigated how those concepts can be
implemented in a decision diagram-based simulator. Finally,
we present the results of our extensive evaluations in Section VI
and conclude the paper in Section VII.

II. BACKGROUND

In order to keep this work self-contained, this section reviews
the basic concepts of quantum computing as well as noise
effects. We refer the reader to standard textbooks, e.g., [30],
[31], for a more thorough introduction.

A. Quantum Computing

In the classical world the basic unit of information is a bit,
which can either assume the state 0 or 1. In the quantum world,
the smallest unit of information is called a quantum bit or qubit.
Like a classical bit, a qubit can assume the states 0 and 1,
which are called basis states and—using Dirac notation—are
written as |0〉 and |1〉. Additionally, a qubit can also assume
a combination of the two basis states, which is then called
a superposition. More precisely, the state of the qubit |ψ〉 is
written as |ψ〉 = α0 · |0〉+ α1 · |1〉 with α0, α1 ∈ C such that
|α0|2 + |α1|2 = 1. The values α0, α1 are called amplitudes and
describe how strongly the qubit is related to each of the basis
states. Measuring a qubit yields |0〉 (|1〉) with probability |α0|2
(|α1|2). By measuring the qubit, any existing superposition is
destroyed and the state of the qubit collapses to the measured
basis state.

Quantum states containing more than one qubit are often
called quantum registers and the concepts above can be
extended to describe such systems as well. An n qubit register
can assume N = 2n basis states and is described by N ampli-
tudes α0, α1, . . . αN−1, which must satisfy the normalization
constraint

∑
i∈{0,1}n |αi|2 = 1. Usually quantum states are

shortened to state vectors containing only the amplitudes, e.g.,
[α00 α01 α10 α11]> for n = 2 qubits.

Example 1. Consider the 2-qubit quantum register

|ψ〉 = 0 · |00〉+ 1 · |01〉+ 0 · |10〉+ 0 · |11〉 ,

which is represented by the state vector [0 1 0 0]>. This is
a valid state, since it satisfies the normalization constraint
|0|2 + |1|2 + |0|2 + |0|2 = 1. Measuring the system yields |01〉,
with probability 1.

Quantum states can be manipulated using quantum opera-
tions. With the exception of the measurement operation, all
quantum operations are inherently reversible and represented
by unitary matrices, i.e., square matrices whose inverse is their
conjugate transpose. Important 1-qubit operations are

H = 1/
√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
,

Y = iXZ =

[
0 −i
i 0

]
, and I =

[
1 0
0 1

]
,

with the H gate transforming a basis state into a superposition,
X being the quantum equivalent of the NOT operation, the Z
gate flipping the phase of a qubit. The identity “operation” I
leaves a state unchanged and is relevant in the context
of simulating noise. There are also 2-qubit operations. An
important example is the controlled-X (also known as CNOT)
operation, which negates the state of a qubit, if the chosen
control qubit is |1〉. Applying an operation to a state can be
done by matrix-vector multiplication. For this, the size of
both the matrix and the vector have to match. Since quantum
states often consist of more than one qubit, this often requires
embedding the operation, which is done using the Kronecker
product with the I operator.

Example 2. Consider again the 2-qubit register |ψ〉 from
Example 1. In order to apply an H operation to the first qubit,
the operation first has to be enlarged using the Kronecker
product

1√
2

[
1 1
1 −1

]
︸ ︷︷ ︸

H

⊗
[
1 0
0 1

]
︸ ︷︷ ︸

I

=
1√
2

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


︸ ︷︷ ︸

H⊗I

.

Applying this operation to |ψ〉 results in

1√
2

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


︸ ︷︷ ︸

H⊗I

·

010
0


︸︷︷︸
|ψ〉

=


0
1√
2
0
1√
2


︸ ︷︷ ︸
|ψ′〉

.

Next we are applying a CNOT operation to |ψ′〉, which negates
the amplitude of the second qubit if the first qubit is set to |1〉.
This is given by1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

·


0
1√
2
0
1√
2


︸ ︷︷ ︸
|ψ′〉

=


0
1√
2
1√
2
0


︸ ︷︷ ︸
|ψ?〉

.

Measuring |ψ?〉 either yields |01〉 or |10〉, each with prob-
ability 1/2. Note that the measurement outcome of the two
qubits are strongly correlated—an essential concept in quantum
computing known as entanglement.

B. Noise in Quantum Computing
The formalism presented above can be used to describe

how perfect quantum computers behave. However, due to
the fragility of quantum mechanical effects, real quantum
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computers are prone to noise, which causes errors during
computations. Such error effects can be viewed as (unwanted)
operations on the state. However, while ideal quantum opera-
tions are deterministic, errors can have an additional degree
of randomness. For instance, whenever a specific qubit is
used, an error may occur with probability p while everything
works perfectly fine with probability 1− p. The outcome of
an erroneous quantum computation cannot be described by
a single state vector anymore. Instead, it is described by a
mixture (or ensemble) {(pi, |ψi〉)} of possible outcomes. Here,
the states |ψi〉 label potential outcomes while each weight
pi describes the probability with which outcome |ψi〉 occurs
(pi ≥ 0 and

∑
i pi = 1).

These noise effects can be classified into two categories [32]:
• Gate errors (also known as operational errors)
• Decoherence errors (also known as retention errors)
Gate Errors are introduced when operations are exe-

cuted [32]. They occur since quantum computers are mechani-
cal apparatuses that do not always apply operations perfectly.
Instead, an operation may be not executed at all, or in a
(slightly) modified fashion. Since gate errors are highly specific
for each quantum computer and even vary for qubits within
the quantum computer, they are often approximated using
depolarization errors [12], [14]. A depolarization error describes
that a qubit is set to a completely random state [30]. For publicly
available quantum computers from IBM, the error probabilities
are on the order of 10−3 to 10−2 [33].

Example 3. Consider again the 2-qubit state
|ψ?〉 = 1√

2
(|01〉+ |10〉) from Example 2. Suppose that

this state might be affected by a gate error in the
first qubit only, depolarizing it. With probability 1 − p,
nothing happens and the state remains unchanged. With
probability p, the first qubit becomes depolarized. We
can capture this effect by either applying I, X, Y, or
Z—each with probability p

4 . This produces a mixture
{(1− p, 1√

2
(|01〉+ |10〉), (p4 ,

1√
2
(|01〉+ |10〉), (p4 , (

1√
2
(|00〉+

|11〉), (p4 , (
i√
2
(|11〉−|00〉), (p4 ,

1√
2
(|01〉−|10〉)} which cannot

be represented by a single 2-qubit state.

Decoherence Errors occur due to the fragile nature of
quantum systems (qubits). In practice, this leads to the problem
that they can hold information for a limited time only. There
are two types of decoherence errors that may appear [32]:
• A qubit in a high-energy state (|1〉) tends to relax into a

low energy state (|0〉). That is, after a certain amount of
time, qubits in a quantum system eventually decay to |0〉.
This error is called amplitude damping error or T1 error.

• In addition to that, when a qubit interacts with the
environment, a phase flip effect might occur. This leads
to phase flip error or T2 error.

Developments in the physical realization of quantum com-
puters (e.g., in [34], [35]) show significant improvements in
the coherence times of qubits—improving the “lifetime” of
qubits before decaying to |0〉 and reducing the frequency of
phase flip errors, respectively. Nevertheless, these errors are
still a significant aspect of all quantum computers and, hence,
should also be considered during simulation.

Example 4. Once again, suppose that the 2-qubit state
|ψ?〉 = 1√

2
(|01〉+ |10〉) from Example 2 is affected by an

error. More precisely, an amplitude damping error affects

the first qubit with probability p. This error is described
by the matrices E0 =

[
0
√
p

0 0

]
and E1 =

[
1 0
0
√
1−p

]
[30].

Applying E0 and E1 to |ψ?〉 mimics the effect of amplitude
damping with probability p and results in the state mixture
{(p2 , |00〉), (1−

p
2 ,

1√
2−p |01〉+

√
1−p√
2−p |10〉)}.

III. MOTIVATION

This section first reviews, how perfect quantum circuit
simulation is conducted, i.e., the simulation of a (theoretical)
quantum computer that is not subject to any noise effects.
This simulation is conceptually simple but quickly requires
huge computational resources due to the exponentially large
representation of quantum states and operations. In this work,
we consider tackling this complexity using decision diagrams
whose principles and utilization are reviewed next. All this,
however, does not take noise effects into consideration. Hence,
finally, the open question of noise aware quantum circuit
simulation is discussed and two directions that address this and
which are investigated in this work are outlined—providing
the motivation of this work.

A. Quantum Circuit Simulation
The basic concepts reviewed in Section II are sufficient

to simulate the execution of perfect quantum computers.
More precisely, having states and operations represented
by 1-dimensional and 2-dimensional arrays, respectively, the
application of operations is simulated by matrix-vector mul-
tiplications, as shown in Example 2. Since matrix-vector
multiplications can be decomposed into a series of smaller
operations, this simulation approach comes with a huge po-
tential for parallelization. More precisely, every multiplication
of a matrix M and a vector V can be split into multiple
multiplications and additions, i.e.,

[
M00 M01

M10 M11

]
·
[
V0
V1

]
=

[
M00 · V0 +M01 · V1
M10 · V0 +M11 · V1

]
.

This decomposition scheme can be repeated recursively,
resulting in a large number of intermediate operations that
can be performed independently of one another with little
synchronization overhead. This—conceptually simple—concept
is the basis for many state-of-the-art quantum circuit simulators
(such as, e.g., [9], [11]–[18], [20]).

However, a crucial bottleneck of such a straightforward
approach to quantum circuit simulation is the exponential
growth of the involved vectors and matrices relative to the
number of involved qubits (this is often referred to as the curse
of dimensionality). This makes, e.g., the representation of
quantum states consisting of more than a few qubits extremely
challenging. One might think that considering qubits locally
avoids this exponential blow-up, i.e., instead of considering all
qubits within a single state at once, we could simply regard
them independently. This is often possible when representing
quantum operations (in particular for elementary operations
that use only few qubits). In these cases, it is not necessary to
construct the full operation matrix of size 2n × 2n using the
Kronecker product (as illustrated in Example 2). However, this
does not extend to the representation of quantum states. Due to
entanglement—an essential concept of quantum computing—
individual qubits may affect each other, making it impossible
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(a) Representation of |ψ?〉
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1√
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1√
2

0 0 1√
2
−1√
2





q0

q1

1

1/
√
2

00

−1

(b) Representation of H ⊗ I

Fig. 1. Decision diagram representation of a quantum state and a operation

to represent them individually. Accordingly, the matrices
representing quantum operations applied to (a larger set of)
entangled qubits are subject to exponential growth.

Example 5. Consider again the quantum state |ψ?〉 from
Example 2. Measuring the first qubit q0 collapses it to either |0〉
or |1〉 both with 50 % probability. However, since the qubits
of |ψ?〉 are entangled with one another, this measurement
also affects q1. That is, when, e.g., the measurement of q0
yields |0〉, q1 collapses to the basis state |1〉 (although not
explicitly measured); resulting in [0 1 0 0]>. This shows that,
due to entanglement, individual qubits cannot be represented
independently of each other.

Overall, although conceptually simple, this quickly renders
quantum circuit simulation significantly complex (each addi-
tional qubit to be considered effectively doubles the memory
required to represent the vector). Researchers are currently
heavily investigating how this exponential complexity can
be tackled—leading to different simulation schemes (such as
Feynman-based simulation [36]), the utilization of approxi-
mation (see, e.g., [37]), or alternative data-structures such as
Tensor Networks [38]–[40], Matrix Product States [38], and
Decision Diagrams [6]–[8], [22]–[27]. In the remainder of
this work, we are focusing on approaches based on decision
diagrams.

B. Quantum Circuit Simulation With Decision Diagrams
In order to tackle the exponential complexity of quantum

circuit simulation, approaches based on decision diagrams
(see e.g., [6]–[8], [22]–[27]) have been proven promising.
Here, the general idea is to identify data redundancies in
the representation of states/operations and to represent them
through shared sub-structures. This can result in a very compact
representation, which makes it possible to simulate quantum
applications that cannot be simulated using a straightforward
approach.

More precisely, representing, e.g., a state vector as a decision
diagram revolves around recursively splitting the vector into
equal-sized sub-vectors, until the sub-vectors only contain a
single element. To illustrate this, consider a quantum register
q0, q1, . . . , qn−1 composed of n qubits, with q0 representing
the most significant qubit. Then, the first 2n−1 entries of the
corresponding state vector represent amplitudes for basis states
where q0 is |0〉 and the other entries represent amplitudes where
q0 is |1〉. In a decision diagram, this is represented by a node
labeled q0 with two successors, where the left (right) successor
points to a node (labeled q1) that represents the sub-vector
with amplitudes for basis states with q0 assigned |0〉 (|1〉).

This scheme is repeated recursively until sub-vectors of size
1 (i.e. complex numbers) result. During this procedure, equal

sub-vectors are represented by the same node, which reduces
the overall size of the decision diagram. Additionally, instead of
having explicit terminal nodes for all amplitudes, edge weights
are used to store common factors of the amplitudes, resulting
in even more compaction. In order to reconstruct the amplitude
of a specific state, the edge weights along the corresponding
path are multiplied. Furthermore, to aid the readability of the
decision diagram, edge weights of 1 are omitted and nodes
with an incoming edge weight of 0 are represented as 0-stubs—
indicating that amplitudes of all possible states represented by
this part of the decision diagram are 0.

Example 6. In Fig. 1a, the quantum state |ψ?〉 from Exam-
ple 2 is depicted in both, the vector and decision diagram
representation. The annotations of the state vector indicate
how it is decomposed into the corresponding decision diagram.
Reconstructing specific amplitudes from the decision diagram
is done by multiplying the edge weights of the corresponding
path. For example, reconstructing the amplitude of the state
|10〉 (bold lines in the figure), is done by multiplying the edge
weight of the root edge (1/√2) with the left edge of q0 (1) as
well as the right edge of q1 (1), i.e. 1/

√
2 · 1 · 1 = 1/

√
2.

In a similar fashion, quantum operations can be represented
by decision diagrams. However, due to their square nature, they
are split into four equally sized sub-parts. This is represented
in a decision diagram by a node with four successors: the
first one representing the sub-matrix in the upper left corner,
the second one representing the sub-matrix in the upper right
corner, the third one representing the sub-matrix in the lower
left corner, and the fourth one representing the sub-matrix
in the lower right corner. Other than that, the decomposition
process is analogous to the one for vectors.

Example 7. In Fig. 1b, the decision diagram representation
of the operation H ⊗ I from Example 2 is provided. Once
again, the annotations of the matrix representation indicate how
the matrix is decomposed into the resulting decision diagram.
Also, reconstructing specific matrix elements from the decision
diagram representation is done by multiplying the edge weights
along the corresponding path, e.g., the highlighted matrix
element can be reconstructed by multiplying the edge weights
of the root edge 1√

2
with the fourth edge of q0 (1) and the first

edge of q1 (1), i.e., 1√
2
· 1 · 1 = 1√

2
.

Having a representation of quantum states and operations
through decision diagrams, simulation is conducted by multi-
plying operations onto states. Yet, because of the different
representation, multiplications must be decomposed with
respect to the most significant qubit. Consider a quantum
register |v〉 = q0, q1, . . . , qn−1 of n qubits, where q0 represents
the most significant qubit and a unitary quantum operation
M of size 2n × 2n. Multiplying the operation M onto the
state |v〉, is done by splitting |v〉 into two and M into four
equally sized parts, leading to two sub-vectors of size 2n−1

and four sub-matrices of size 2n−1 × 2n−1. The process is
repeated recursively until matrices of size 2× 2 and vectors of
size 2 remain, which are multiplied. From the resulting values
(i.e., amplitudes), the edge weights are calculated by extracting
common factors, and the decision diagram is constructed. Thus,
multiplication of decision diagrams mainly revolves around
recursive traversals of the involved decision diagrams.

Overall, using those structures often yields representations
of states and operations which are much more compact than
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the exponentially large vectors and matrices. More precisely, as
shown for example in [6], [21], the size of decision diagrams
representing states and operations does not solely depend on the
number of involved qubits (as is the case for vector and matrix
representations), but on the complexity of the represented
quantum object. Thus, representations of quantum operations
stay of sub-exponential size, as long as the number of target
qubits is low. The size of quantum states depends on the
complexity of the represented state. A good case example is the
entanglement circuit, which generates the GHZ state and which
can be simulated in linear runtime with increasing number
of qubits. On the other hand, Google’s quantum supremacy
circuits [41], which are designed to be exceptionally hard to
simulate classically, are bad case examples for which decision
diagrams also grow exponentially with the number of qubits.

C. Open Question: Consideration of Noise

As reviewed above and confirmed by several evaluations
in previous works such as [6], [21]–[24], quantum circuit
simulation with decision diagrams offers a promising alternative
to other approaches that, due to the exploitation of using sharing
for redundant sub-structures, may allow for better performance.
However, almost all investigations conducted thus far in this
direction assumed perfect quantum computers, i.e., did not
consider noise effects.

In this work, we are investigating whether the promises
of quantum circuit simulation with decision diagrams can
be kept when noise effects are additionally considered. The
basis for this is thereby rather straightforward: In principle,
corresponding errors and how they affect the quantum states
and operations are well understood. In fact, corresponding
models are already available (see for example [30]) and can
accordingly be realized on top of decision diagrams as well.
However, additionally incorporating them makes the problem
of quantum circuit simulation (which is already of exponential
complexity) even harder. This raises the questions of what
effects (with respect to the performance) the consideration of
noise in decision diagram-based quantum circuit simulation
has and, if it degrades the performance, what more advanced
strategies could be employed to mitigate performance losses
as much as possible.

The following sections address these questions in detail. To
this end, two directions are investigated:
• A deterministic consideration of noise effects: Here, the

formalism of (perfect) quantum circuit simulation (i.e.,
the representation of quantum states and operations as
reviewed in Section II-A) is extended to additionally rep-
resent all considered occurrences of corresponding errors
and their probabilities. This allows to deterministically
track noise effects during the simulation, but also makes
the problem of quantum circuit simulation even harder.
This direction is covered in detail in Section IV.

• A stochastic consideration of noise effects: Here, the
corresponding error effects are considered in a stochastic
fashion, i.e., the considered errors are imposed during
single simulation runs (based on their probability). By
having several such runs, the real final state can be
approximated using Monte Carlo sampling. This allows
to keep the actual simulation runs more efficient, but
may require a substantial number of runs for proper
sampling and, after all, remains a stochastic (rather than

Table I
FORMALISMS FOR DETERMINISTIC SIMULATION OF NOISE

State
representation

Let |φ〉 be a state vector representing a quantum system.
The corresponding density matrix is defined as

ρ = |φ〉 〈φ| with 〈φ| := |φ〉† . (1)

Applying
operations

Applying an operation specified by the unitary U to a
quantum system given by the density matrix ρ yields
the density matrix

ρ∗ = U ρ U†. (2)

Error
representation

Using the operator-sum representation, an error is
represented by a tuple (E0, E1, . . . , Em) of Kraus
matrices that satisfy the condition

m∑
i=0

E†iEi = I. (3)

Error
application

Applying an error specified by the Kraus matrices
(E0, E1, . . . , Em) to a quantum system given by the
density matrix ρ yields the density matrix

ρ′ =
m∑
i=0

EiρE
†
i . (4)

deterministic) approach. This direction is covered in detail
in Section V.

Finally, the actual performance of the resulting solutions
proposed for both directions is evaluated and compared in
Section VI.

IV. DETERMINISTIC SIMULATION OF NOISE

In this section, we introduce a method to deterministically
consider noise effects during quantum circuit simulation with
decision diagrams. For this, the formalism introduced in
Section II is not sufficient anymore. We therefore extend that
formalism to also support the deterministic consideration of
noise effects during the simulation. Next, we investigate how
this affects decision diagram-based simulation. Finally, based
on these observations, we propose an advanced approach to
address the identified challenges.

A. Formalism

As reviewed in Section II-B, noise probabilistically affects
qubits and leaves the quantum state in a mixture of possible
states. The number of possible states increases exponentially
with each error and it quickly becomes infeasible to sepa-
rately track all possible quantum states. Fortunately, quantum
mechanics can describe such state mixtures, using so-called
density matrices [30]. Density matrices can be derived from
state vectors as defined by Eq. 1 in Table I. The resulting
representation offers a merged state description independently
of how many individual pure states the mixed state consists
of. The following example illustrates this concept:

Example 8. Consider the quantum state |ψ′〉 from Example 2,
which is in the state

0 · |00〉+ 1√
2
· |01〉+ 0 · |10〉+ 1√

2
· |11〉 ,
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or, using vector notation, 1/
√
2 · [0 1 0 1]>. The density matrix

ρ′ representing this state is given by

ρ′ =


0
1√
2
0
1√
2

 · [0 1√
2

0 1√
2

]
=

0 0 0 0
0 1

2 0 1
2

0 0 0 0
0 1

2 0 1
2

 .
Like the vector representation, the density matrix contains
the probabilities of measuring specific basis states. Now,
however, the probabilities are reflected in the diagonal elements
(highlighted in gray) of the matrix. More precisely, the diagonal
entries from the first element in the upper-left to the last element
in the bottom-right represent the probabilities for measuring
|00〉 , |01〉 , |10〉 , and |11〉, respectively. Hence, measuring this
state would yield |01〉 or |11〉—both with probability 1/2.

Since quantum states are now represented by density matrices
(rather than vectors), obviously also the application of quantum
operations (represented by matrices thus far) needs to be
adjusted. Instead of a matrix-vector multiplication, now two
matrix-matrix multiplications are required as defined by Eq. 2
in Table I.

Example 9. Analogous to Example 2, we apply a CNOT
operation to ρ′ = |ψ′〉 〈ψ′|, that negates the amplitude of
the second qubit if the first qubit is set to |1〉. This is given by0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0


︸ ︷︷ ︸

ρ?

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

·

0 0 0 0
0 1

2 0 1
2

0 0 0 0
0 1

2 0 1
2


︸ ︷︷ ︸

ρ′

·

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT†

The new quantum state ρ? represents the same state as |ψ?〉
from Example 2. Measuring measuring this state would also
yield |01〉 or |10〉—both with probability 1/2.

Next, we look at errors, which can be represented by a tuple
of Kraus operators as defined by Eq. 3 in Table I.

Example 10. The depolarization error from Example 3 is given
by D = (E0, E1, E2, E3) with

E0 =

√
1− 3p

4

[
1 0
0 1

]
, E1 =

√
p

4

[
0 1
1 0

]
,

E2 =

√
p

4

[
0 −i
i 0

]
, and E3 =

√
p

4

[
1 0
0 −1

]
.

(5)

Amplitude damping (illustrated in Example 4), also known as
T1 decoherence error can be described by T1 = (E0, E1) with

E0 =

[
1 0
0
√
1− p

]
, E1 =

[
0
√
p

0 0

]
(6)

and, finally, the T2 decoherence error can be described as
T2 = (E0, E1) with

E0 =
√
p ·
[
1 0
0 1

]
, E1 =

√
1− p ·

[
1 0
0 −1

]
. (7)

The variable p, which occurs in all Kraus matrices, represents
the probability that an error occurs [30]. This probability is
a parameter of the specific quantum computer and has to be
provided to the simulator.

Finally, errors are applied to the density matrix as defined
in Eq. 4 of Table I, i.e., each Kraus operator is applied to (a

copy) of the density matrix. Afterwards, all individual result
matrices are summed up, into a density matrix representing the
new quantum state. To illustrate this, consider the following
example:

Example 11. Suppose an amplitude damping (T1) error affects
the second qubit of state ρ? (from Example 9) with a probability
of 2 % (p=0.02). The description of the T1 error is given by
the Kraus matrices provided in Eq. 6. Applying each Kraus
matrix to the second qubit of state ρ? results in0.01 0 0 0.494

0 0.49 0.494 0
0 0.494 0.5 0
0 0 0 0


︸ ︷︷ ︸

ρ×

=

0 0 0 0.494
0 0.49 0.494 0
0 0.494 0.5 0
0 0 0 0


︸ ︷︷ ︸

(I ⊗ E0 )ρ
?(I ⊗ E0 )

†

+

0.01 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

(I ⊗ E1 )ρ
?(I ⊗ E1 )

†

The resulting density matrix ρ× contains the effect of the error:
While the probability for measuring |10〉 is unchanged, the
probability of measuring |01〉 has dropped to 49 % and, now,
there is a probability of 1 % to measure |00〉. Hence, the
probability that the second qubit is measured |0〉 has increased
by 2 %, reflecting the damping error assumed above.

Having this mathematical description of noise, a wide range
of errors affecting present-day quantum computers can be
considered (for each error, just a corresponding representation
in terms of Kraus matrices needs to be provided). Thus, the
formalism can be used as a basis for mimicking the execution
of real quantum computers for quantum circuit simulation.

B. Effect to Simulation
Using the formalism presented above, approaches for

quantum circuit simulation can accordingly be extended.
For straightforward approaches as reviewed in Section III-A
(representing corresponding vectors and matrices in terms
of 1- and 2-dimensional arrays, respectively), this is partic-
ularly straightforward and revolves mainly around changing
the state representation from vectors to matrices. This can
be addressed by extending the underlying data structure
(i.e., arrays) accordingly. The newly required operations, i.e.,
matrix-matrix multiplications and the addition of matrices, can
easily be extended as well or are often already supported by
the underlying libraries anyway. Thus, many such quantum
circuit simulators supporting the consideration of noise are
already available (see, e.g., [12]–[18]). However, switching
from state vectors to density matrices makes the curse of
dimensionality and, by this, the resulting complexity (as
discussed in Section III-A) even worse—severely limiting the
corresponding approaches.

The question remains, whether and, if so, how quantum
circuit simulation based on decision diagrams is affected by
extending the formalism. Since compactness constitutes one of
the main advantages of decision diagram-based quantum circuit
simulation, there still might be potential. On the other hand,
the increased complexity caused by the additional formalism
certainly constitutes a challenge. The following example sheds
some light on this:

Example 12. Consider again the state ρ? = |ψ?〉 〈ψ?| in both,
the vector (see Example 2) and the density matrix (see Exam-
ple 9) representation. In Fig. 2a and Fig. 2c the corresponding
decision diagram representations are provided. The size of
the decision diagrams is rather similar (4 nodes vs. 6 nodes,
although the corresponding vector and density matrix are of



7

q0

q1 q1

1

1/
√

2

0 0

(a) DD of a state vector |ψ?〉
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q0 q0
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a · c · g
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(b) Generic 2-qubit state vector

q0

q1 q1 q1 q1

1
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(c) DD rep. of ρ?

q0

q1 q1 q1 q1

1

1/2

0.2

0 0
0.98

00
0.989

0 0
0.989
0 0 0 0 0

(d) ρ? after T1 error to q1e (p = 0.02)

Fig. 2. Decision diagram (DD) representation of state vectors and density matrices

size 22 and 22 × 22, respectively). This indicates that, using
the density matrix formalism, does not necessarily harm the
ability of decision diagrams to represent states/operations in a
compact fashion (even though a somewhat larger representation
results).

Naturally, this example does not show that decision diagrams
always provide a efficient representation for a quantum state.
In fact, previous works such as e.g., [6], [21] clearly show that
the worst-case complexity of decision diagrams is exponential
(although polynomial representations are possible). But the
example provides a promising indication that the characteristic
of offering more compact representations is not automatically
lost when this formalism is applied.

However, having a compact representation is not enough.
In addition, an efficient realization of the matrix-matrix
operations (mainly multiplication and addition), as presented in
Section IV-A, is also necessary. In the case of multiplication,
related work such as [6] already provides efficient solutions for
vector-matrix multiplications—extending this to matrix-matrix
multiplications is straightforward. Matrix-matrix addition, how-
ever, which is required for applying errors as defined in Eq. 4,
has thus far only been a sub-operation and turns out to be
particularly challenging.

Recall that adding two matrices is done by adding all
elements sharing the same index. Thus, access to all matrix
elements is required. When working with decision diagrams,
this constitutes a bottleneck, since each matrix element is
encoded into the tree structure and must be restored for the
operation. In Fig. 2b it is illustrated by color and notation how
each element within a vector is encoded into a decision diagram
(matrices are encoded analogously (see III-B)). Therefore,
accessing all matrix elements in order to add them, requires to
decompress and thereby traverse the entire decision diagram.
This is in contrast to multiplication, where, depending on the
applied quantum operation, multiplication can in some cases
be applied without decompressing any elements at all [42].

Overall, our investigation indicates that the decision diagram
structure may also be suitable when used for noise-aware
quantum circuit simulation using density matrices. At the same
time, due to the extended formalism, new challenges arise
which must be addressed, namely how to efficiently apply
noise to the state without having to traverse the entire decision
diagram.

C. Advanced Simulation Approach
A major challenge when considering noise effects during

decision diagram-based quantum circuit simulation is to
efficiently realize the necessary operations (particularly Eq. 4).

Applying noise heavily revolves around adding matrices, which
requires access to all matrix elements and, thus, triggers the
complete traversal of the involved decision diagrams. This
causes an exponential overhead during the simulation, which
severely impacts the performance of corresponding approaches.
To address this challenge, we investigated alternatives that
either completely avoid adding matrices or, at least, involve
only (smaller) sub-matrices. Our investigations finally led to
an alternative whose main idea is based on the following three
observations:

First, adding matrices to apply errors can, in some cases, be
avoided altogether. Specifically, the T2 error can be realized
by multiplications only, i.e., the effect of this error on a single
qubit can be captured by[

a b
c d

]
7−→

[
a (2p− 1)b

(2p− 1)c d

]
, (8)

where p represents the probability that an error occurs3.
Applying the T2 error can therefore be realized by applying a
factor to specific edges of the decision diagram, for which no
amplitude has to be decoded at all.

Second, sequentially applying errors, as defined in Eq. 4,
requires accessing the decision diagram multiple times. This
process can be substantially improved by explicitly enforcing
the error effects directly on the corresponding nodes of the
affected qubits (as illustrated in Example 13). In doing so, we
can apply all desired effects to all qubits with just one traversal
of the decision diagram.

Third, due to the tree-like structure of decision diagram
representations of quantum states, applying operations to the
quantum state often only affects parts of the decision diagram.
More precisely, in a decision diagram, every qubit is represented
by one or more nodes. Applying an operation to a qubit only
modifies the outgoing edges from the nodes representing this
specific qubit. Predecessor nodes are only indirectly affected
during the normalization process (as described in Section III-B).

Based on the observations above, we are proposing an
advanced scheme to realize Eq. 4 for applying errors to
quantum decision diagrams. The key idea is to directly
modify the decision diagram to reduce the overhead and
merge separate operations. More precisely, due to our third
observation, we know that applying operations to qubits
affects only the outgoing edges of nodes representing this
qubit. Using this knowledge, it becomes trivial to predict
how each operation will modify the decision diagram. This
allows us to aggregate distinct operations—be it matrix-matrix

3The colors in the equation illustrate how the matrix elements relate to
decision diagram edges of Fig.2c
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multiplications/additions, applying separate noise effects, or
applying noise operations to different qubits—into a single
operation.

Example 13. To illustrate this idea, consider again Example 11
where we apply an amplitude damping (T1) error with a
probability of 2 % to the second qubit (q1) of the quantum
state ρ∗. However, now, we apply the error directly to the
decision diagram representation of ρ∗ (given in Fig. 2c). The
effects of the T1 error with p = 0.02 are given by the following
transformation4[

a b
c d

]
7−→

[
a + 0.02 · d

√
0.98 · b√

0.98 · c 0.98 · d

]
. (9)

Modifying all nodes labeled q1 accordingly, leads to the new
decision diagram shown in Fig. 2d. This new decision diagram
represents ρ∗ after the T1 error with p = 0.02 has been applied
and is equal to ρ× from Example 11.

Overall, by extending the formalism to density matrices
and state mixtures, deterministic consideration of errors is
possible. While this comes with an substantially increased
complexity of the state description, the main advantage of
decision diagram-based state representation—compactness—
is not completely lost. To address the additional complexity
of applying error operations (compared to standard quantum
operations), we proposed an alternative, more efficient scheme.
However, despite mitigating the negative effects of deterministi-
cally simulating with error effect, they still unavoidably impact
the scalability of corresponding simulation approaches due to
the increased state complexity. In the next section, another
approach for quantum circuit simulation with consideration to
errors is proposed which addresses this problem.

V. STOCHASTIC SIMULATION OF NOISE

In this section, we introduce a method to stochastically
consider noise effects during quantum circuit simulation with
decision diagrams. The main idea is as follows: Whenever an
error could occur, we mimic the effect of this error with some
probability. Simulating in such a fashion generates one possible
final state. Sampling enough such final states, opens the door to
(Monte-Carlo) approximation to estimate the actual amplitudes
of the final quantum state. By this, a more efficient simulation is
achieved at the expense of having an approximation (rather than
an exact deterministic result). In the following, this approach is
described by providing the formalism for stochastic quantum
circuit simulation first. Afterwards, we discuss how this affects
the quantum circuit simulation before an advanced approach is
presented that improves the procedure based on those insights.

A. Formalism
In order to realize a stochastic quantum circuit simulator, we

need (1) a formalism that allows one to impose error effects on
quantum state representations, and (2) a mathematical model to
predict how many samples are necessary for a reliable result.

Addressing (1), noise effects occurring during quantum
computing can be viewed as (unwanted) operations on the
quantum state. Using this idea allows us to reuse the procedures

4The color coding shows how each matrix element relates to one of the
outgoing edges of a decision diagram node. That is, the matrix elements a, b,
c, and d, relate to the four outgoing edges of a decision diagram node from
left to right.

for quantum circuit simulation introduced in Section II. More
precisely, quantum states and operations are represented
by vectors and matrices, and operations are applied using
matrix-vector multiplications. Then, error effects can be seen
as further operations that only occur with some probability p.
Such an erroneous operation leaves the state in a mixture of i
possible outcomes |ψi〉 each with some probability pi. This
state mixture depends on the probability of the error, as well
as the type of error.

Errors can then be represented in terms of Kraus matrices.
Gate errors can be mimicked by depolarization errors, as already
illustrated in Example 3. Similarly, phase flip (T2) decoherence
errors can be realized by applying a Z-operation. Due to
their irreversible nature, mimicking the effect of amplitude
damping (T1) decoherence errors, cannot be handled so easily.
While for other errors the probability that the error is applied
only depends on the error probability itself, the probability of
applying amplitude damping also depends on the quantum state
the error is applied to. How this can be handled is illustrated
in the following example.

Example 14. Consider the state |ψ∗〉 = 1√
2
(|01〉+ |10〉) from

Example 2 (shown in Fig 1a) and suppose that it is subject
to amplitude damping. If the error occurs with probability p,
its effect can be described by the matrices E0 =

[
0
√
p

0 0

]
and

E1 =
[
1 0
0
√
1−p

]
[30]. But since the probability p of amplitude

damping depends not only on p but also the given state of
the qubit, E0 and E1 have to be applied to |ψ?〉 as well. This
either yields a state vector whose squared norm is p

2 (in case
E0 is applied to |ψ∗〉) or 1 − p

2 (in case E1 is applied to
|ψ∗〉). These probabilities can eventually be used to randomly
choose and normalize one possible output. So, considering this
error (amplitude damping on the first qubit) yields the mixture
{(p2 , |01〉), (1−

p
2 ,

1√
2−p |00〉+

√
1−p√
2−p |11〉)}.

Having a scheme to stochastically apply errors, the next
question becomes, how many samples must be generated to
get a good prediction of the true probabilities. Recall that
by simulating in a stochastic fashion, we get one possible
final state |ψ̃〉 from the actual mixture {(pi, |ψi〉)}: |ψ̃〉 = |ψi〉
with probability pi. We can approximate the true distribution
of sampled output states by forming empirical averages
using Monte-Carlo approximation. This scheme is especially
well suited to accurately learn properties of the final state
(distribution) without the need to keep track of the complete
(exponential) distribution. In quantum computing, interesting
properties (e.g. the fidelity with another state or the outcome
probability of measurements) can often be described as a
quadratic function in the state vector, i.e., ol = |〈ωl|ψ〉|2 with
l ∈ {1, . . . , L} for L properties. In the case of a probabilistic
state mixture {(pi, |ψi〉)}, such a quadratic property becomes

ol =
∑
i

pi |〈ωl|ψi〉|2 (10)

and can be approximated by an empirical average over M
samples |ψ̃j〉 from the distribution

ôl =
1
M

M∑
j=1

∣∣∣〈ωl|ψ̃j〉∣∣∣2 (Monte Carlo). (11)
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Furthermore, the same sample collection
{
|ψ̃1〉, . . . , |ψ̃M 〉

}
can be used to estimate multiple quadratic properties at once.

Using that, a sufficient sample set is motivated by the
following theorem (taken from [29]):

Theorem 1. Fix a collection of L (arbitrary) quadratic
properties (10), as well as ε ∈ (0, 1) (accuracy) and δ ∈ (0, 1)
(confidence). Then, M = log(2L/δ)/(2ε)2 state samples suffice
to accurately approximate all target properties with high
confidence: maxl |ôl − ol| ≤ ε with probability at least 1− δ.

Proof. Fix a target property ol =
∑
i pi|〈ωl|ψi〉|2. Conducting

a single stochastic run yields the correct property in expectation,
i.e., E|〈ωl|ψ̃j〉|2 = ol. Standard concentration inequalities,
like Hoeffding, imply Pr [|ol − ôl| ≥ ε] ≤ 2e−2Mε2 . The claim
follows from taking a union bound over all L target approxi-
mations and inserting the advertised value of M .

The required number of samples M scales inverse quadrati-
cally with the target accuracy ε—as is typical in Monte Carlo.
More interestingly, M depends only logarithmically on the
number L of tracked properties and is independent of the
size of the system (i.e., the number of qubits of the quantum
state). This logarithmic scaling can help to counteract the curse
of dimensionality. For example, to approximate all N = 2n

outcome probabilities of a n-qubit system up to ε accuracy,
only roughly n/ε2 samples are required.

Overall, stochastic quantum circuit simulation allows the
consideration of errors without the need to extend the rep-
resentation of quantum states. This is achieved by viewing
error effects as “normal” operations during the quantum circuit
simulation, which are randomly applied during the computation,
based on their probability. By generating enough samples in
such a fashion, the probabilities for measuring specific states
can be estimated.

B. Effects on the Simulation
Stochastic quantum circuit simulation is an interest-

ing alternative to deterministic consideration of errors.
It avoids the increase in complexity from 2n-vectors to
2n × 2n- density matrices and can be implemented in a
straightforward fashion on top of an “error-free” quantum
circuit simulator. Accordingly, some quantum circuit simulators
already make use of this (e.g. [11]–[13], [16], [20]). However,
at the same time the deterministic description of the quantum
state is lost and interesting properties of the quantum state can
only be approximated. In order to get reliable and accurate
results, sufficiently many samples have to be generated.

Example 15. In our experiments, we want to use stochastic
quantum circuit simulation to accurately predict properties
of a quantum circuit simulation. More precisely, we want at
most an error margin of ε = 0.01 and a confidence of 95 %
(δ = 1− 0.95). Additionally, during the simulation, we want
to track 25000 properties (L = 25000). Using Theorem 1, we
can predict the number of required samples:

M =
log
(
2L
δ

)
2ε2

=
log
(

2·25000
1−0.95

)
2 · 0.012

= 30000 (12)

Thus, at least 30000 samples are necessary to predict 25000
properties of the quantum state with 95 % confidence and an
error margin of 0.01.

The question therefore becomes how to generate the required
samples—each exponential in size.

C. Advanced Simulation Approach
A major challenge of stochastic quantum circuit simulation

is to efficiently generate the required number of samples.
Decision diagrams are an interesting candidate to achieve
this. They have already proven to be a suitable data structure
to efficiently represent quantum states and also support the
operations necessary for stochastic consideration of errors.
Decision diagrams offer the following further potential for
improvement when considering stochastic quantum circuit
simulation:

Exploiting Concurrency: Due to the compact representation
and heavy use of sharing, decision diagrams have been unsuited
for concurrent execution thus far [43]. Because of that, decision
diagram-based quantum circuit simulation could not fully
exploit the available hardware resources of modern (multi-core)
computers yet (in contrast to simulation approaches based,
e.g., on arrays, which are easy to parallelize; see, e.g., [9],
[11]–[18]). Interestingly, stochastic quantum circuit simulation
offers the prospect of resolving the apparent conflict between
optimizing memory (by using decision diagrams) and exploiting
concurrency (to speed up matrix-vector multiplication) by other
means. Now, the full potential of sharing with decision diagrams
can be used, since the remaining hardware power can still be
put to good use to generate further samples in parallel.

Note that parallelization is, of course, not a new approach.
Parallel execution is a well known and general feature of
Monte-Carlo-type approximations—and stochastic quantum
circuit simulation is merely an interesting use-case. State-of-
the-art stochastic simulators such as [11]–[13], however, do
not seem to make use of this yet. This is most likely due
to the fact that parallel executions are still more beneficial
for improving, e.g., the matrix-vector multiplications of single
runs—leaving no free resources for parallelizing the generation
of samples. This does not constitute a problem for decision
diagram-based simulation, as no parallel resources are needed
for a single simulation—allowing one to use the hardware
power for generating samples in parallel.

Stacking operations: While stochastic quantum circuit simu-
lation can be directly implemented on top of the concepts from
Section II, the compressed data structure of decision diagrams
allows for further optimization of matrix-vector multiplications
by exploiting an idea first suggested in [44]. More precisely,
simulating a quantum circuit boils down to applying m quantum
operations U1, U2, . . . , Um to an initial state |ψ〉, resulting in
the final state |ψ〉m, i.e.,

|ψ〉m = Um . . . U2U1 · |ψ〉 . (13)

Matrix-vector multiplications are usually more efficient than
matrix-matrix multiplications, which is why Eq. 13 is usu-
ally solved by consecutively applying operations onto
the vector representing the quantum state. However, due
to the compressed data structure of decision diagrams,
matrix-matrix multiplications can be considerably faster than
matrix-vector multiplications. This has to do with the fact that,
when working with decision diagrams, the cost of operations
depends on the complexity of the involved decision diagrams.
Since a state vector is often more complex than a quantum
operation, “stacking” (i.e., multiplying) quantum operations
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with each other before applying them to the quantum state
can improve the simulation speed. But, simply stacking all
quantum operations before applying them to the quantum state
does not work, because whenever two quantum operations are
being multiplied, the resulting stacked operation becomes more
complex. Therefore, the advantage of this approach relies on
finding a good heuristic of how many operations are stacked,
before they are applied to the quantum state. Additionally, this
scheme only improves the performance when the quantum state
is so complex that stacking operations is faster.

When we employ this scheme during stochastic quantum
circuit simulation, both those aspects are considered, i.e.,
whenever an “intentional” quantum operation is applied, the
error effects are stacked on top of it. On the one hand, this
is a decent heuristic since all operations target the same
qubit, which keeps the resulting stacked operations compact.
On the other hand, since we simulate with consideration to
errors, the quantum state naturally tends to become more
complex anyway—increasing the size of the decision diagram
representing it and, thus, making operations stacking more
viable.

Overall, stochastic quantum circuit simulation allows one
to consider errors without the substantial overhead on top of
the already exponential problem of quantum circuit simulation.
However, using this formalism, the deterministic description
of the quantum state is lost and in order to generate reliable
results the simulation must be repeated many times. In the
next section we will analyze how this affects the performance
compared to the deterministic simulation scheme.

VI. EVALUATION

In order to empirically evaluate the proposed noise-aware
quantum circuit simulation approaches, we implemented the
concepts presented in Sections IV and V in C++, on top of the
open-source decision diagram package taken from [6], [45]. Af-
terwards, we compared their performance in different scenarios,
i.e., we evaluated the proposed optimizations, compared them
against industry-grade state-of-the-art simulators (by IBM and
Atos), and finally, compared both noise-aware simulation styles
with each other. In this section, the results of these evaluations
are summarized and discussed.

A. Setup
To obtain meaningful results, we used a range of different

benchmark sets. More specifically, we considered typical
use cases incorporating quantum-mechanical effects with an
increasing number of qubits. Namely, the Entanglement circuit—
a quantum algorithm that generates the GHZ state—as well as
the Quantum Fourier Transform (QFT) [30]. Both benchmarks
have the additional benefit of being good case examples for
decision diagram-based quantum circuit simulation without
consideration of errors [21] and, thus, allow to us directly
observe the effects of noise. In addition to this, we also
used the QASMBench benchmark suite in our experiments
which contains a broad range of different quantum circuit
algorithms [46]. To ensure a fair comparison, we translated
all quantum circuits into QASM basic gates prior to the
experiments [47], i.e., arbitrary single-qubit gates, as well
as controlled-X and controlled phase shift gates.

In the experiments, we assumed the noise effects reviewed
in Section II-B. That is, we approximated gate errors using

depolarization with a probability of 0.1 %, amplitude damping
error (T1) with 0.2 % probability, and phase flip error (T2)
with 0.1 % probability. Each noise effect is (probabilistically)
applied to the qubit, whenever it is used. For the stochastic
simulators, we generated 30000 samples to predict the final
state (according to Theorem 1, this translates to tracking 25000
properties with an error margin of 0.01 and a confidence of
95 %).

All experiments have been conducted on a system with 96
cores running at a clock frequency of 2.2 GHz and 1.5 TB of
RAM. As methods, we considered the LinAlg simulator of Atos’
Quantum Learning Machine (QLM) [13] from version 1.5.1, the
density matrix and statevector simulators of IBM’s Qiskit [12]
in version 0.36.0, as well as the decision diagram-based
methods proposed in this paper. While the QLM simulator
ran directly on the system, we ported Qiskit and the proposed
simulators to the machine using Docker [48]. We choose Docker
since its virtualization overhead is negligible [49], which
ensures a fair comparison. For all experiments, we applied
a timeout of half an hour (1800 seconds). In the following
summary, we only list the most relevant benchmarks, i.e., we
omit benchmarks that could be simulated by all approaches
in less than a few seconds, and, benchmarks that no simulator
could simulate within the given time limit. For transparency,
implementations of both proposed solutions are available online
as open-source at https://github.com/cda-tum/ddsim.

B. Comparison Between Implementations
First, we evaluated the advantage of the proposed optimiza-

tions for deterministic and stochastic noise-aware quantum
circuits simulation. To this end, we implemented two versions
for each simulation style: One in which we implemented the
necessary concepts in a basic fashion (i.e., as presented in
Section IV-A and Section V-A)) and one where we implemented
the optimized approaches presented in Section IV-C and
Section V-C, respectively.

In Table II, the results for the deterministic approach and the
stochastic approach are provided. In both tables, the name of the
benchmark, the number of qubits #Q, the number of gates #G,
the runtime for the basic and the optimized implementation,
as well as the relative runtime with the optimization compared
to the basic implementation.

For both approaches, the optimizations substantially improve
the runtime for many circuits and do not worsen the runtime
for any of the tested algorithms. In the case of the deterministic
simulation approach, the performance gains are often on
the order of magnitudes. For the stochastic simulator, the
optimizations improve the simulation by around 20 % for
several circuits.

C. Comparison to Related Work
In a second series of evaluations, we compared the proposed

simulation approaches (in their optimized version) to other
quantum circuit simulators. We used two simulators that
constitute good representatives for the current state of the art,
i.e., the LinAlg simulator of Atos’ Quantum Learning Machine
(QLM) [13], as well as the density matrix and statevector
simulators of IBM’s Qiskit [12]. In contrast to the other
evaluations—where decoherence and depolarization errors have
been considered together—here we additionally considered the
scenario with depolarization errors only. This allows us to

https://github.com/cda-tum/ddsim
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Table II
COMPARISON BETWEEN BASIC AND OPTIMIZED DECISION DIAGRAM-BASED SIMULATORS

(a) Optimization for deterministic simulation

Benchmark #Q/#G Basic Optimized Rel. Runtime
basis_trotter 4/1625 18 s 1 s 8 %

qaoa 6/269 22 s 4 s 21 %
vqe_uccsd 6/2281 >1800 s 486 s -

QFT 9/192 1432 s 241 s 16 %
qpe 9/150 >1800 s 392 s -

entanglement 26/26 1407 s 174 s 12 %
entanglement 27/27 >1800 s 271 s -
entanglement 28/28 >1800 s 432 s -

(b) Optimization for stochastic simulation

Benchmark #Q/#G Basic Optimized Rel. Runtime
basis_trotter 4/1625 28 s 16 s 56 %

vqe_uccsd 8/10806 1110 s 771 s 69 %
ising 10/479 152 s 122 s 80 %

sat 11/678 728 s 623 s 85 %
seca 11/281 561 s 457 s 81 %

cc 12/48 225 s 189 s 83 %
multipler 15/123 392 s 335 s 85 %
bigadder 18/284 114 s 90 s 78 %

evaluate how the different noise models affect the performance.
Additionally, to take into account that two-qubit operations
are more error prone compared to single-qubit operations, we
double the error probabilities for two-qubit gates.

In Tables IIIa and IIIb, the results of the experiments are
provided. The structure of both tables is the same: Each table
contains the results for the entanglement and QFT circuit with
an increasing number of qubits as well as a selection of the
QASMBench circuits for both considered noise models. For
each experiment we provide the name of the benchmark, the
number of qubits #Q, the number of gates #G, as well as the
required runtime for simulating it with the QLM, Qiskit, and
the decision diagram-based solution in seconds. Furthermore,
we do not list any results from Atos’ QLM simulator for the
QASMBench benchmarks, due to space issues.

The results clearly show where noise-aware quantum cir-
cuit simulation with decision diagrams improves the current
state-of-the-art, but also unveils its shortcomings. More pre-
cisely, looking at the results of the deterministic noise-aware
simulation in Table IIIa, we see that the decision diagram-based
solution performs worse than the considered state of the art
for most benchmarks. The decision diagram-based simulator is
only considerably faster (and more scalable) for simulating the
entanglement circuit. Notably, the hardware model considerably
affects the performance of the proposed solution, i.e., when only
depolarization errors are considered the runtime considerably
improves for the entanglement circuit, QFT, sat, seca, and
multiply (with 13 qubits). The results show that the main
advantage of decision diagram-based simulators—namely their
compactness—is not completely lost when simulating with
density matrices. On the other side, the worse results for
the remaining benchmarks also show that the additional
complexity introduced by the noise cannot yet completely
be mitigated by the current type of decision diagrams. Here,
the current state-of-the-art, i.e., Atos’ QLM and IBM’s Qiskit
simulators, still seem to provide the better solutions (or, at least,
solutions that are not that much affected by the considered
benchmark and/or error model). By this, these results unveil
that, although decision diagrams may provide some promises
for an efficient deterministic consideration (as seen by the
entanglement benchmark), they still struggle with providing a
robust solution that works in general. This motivates further
research, e.g., towards alternative decision diagram types and/or
further optimization dedicated to the compact representation
of density matrices.

In contrast, a different picture is seen when the stochastic
scheme is considered. Here, the benefits of decision diagrams
allow for tremendous improvements in some cases compared
to the state of the art and substantially improved scalability for
the entanglement and QFT circuit. This confirms that decision

diagrams indeed provide a useful alternative to existing noise-
aware quantum circuit simulators. As with the deterministic
simulation scheme, once again, the complexity of the hardware
model strongly affects the simulation time, as reflected in the
data. In all cases the runtime considerably improves when only
depolarization errors are considered.

D. Comparison Between Deterministic and Stochastic Scheme
Finally, a third series of evaluations considered the differ-

ence in the performance of the deterministic and stochastic
simulation scheme. To this end, we directly compared both
approaches. To gain more insight into the behavior of both
simulation schemes, we also tracked the resource consumption
of both simulators (in addition to the runtime). Table IV
provides the obtained results. Again, the table contains the
name of the benchmark, the number of simulated qubits #Q,
the number of gates #G, as well as the runtime in seconds
for both simulation approaches. Furthermore, the average CPU
usage and the maximum memory usage in MB are provided.

While the deterministic simulator is sometimes faster for
smaller quantum circuits, the stochastic approach scales much
better and manages to simulate circuits that are not feasible
with the deterministic approach. The better performance of
the stochastic simulator is most likely related to the more
efficient use of the available hardware resources (using up to
92 times more processing power compared to the deterministic
simulator). Nevertheless, the increased performance of the
stochastic simulator comes with losing the deterministic
description of the quantum state and, hence, a potential loss
of accuracy. In practice, however, this drawback is often
negligible since noise-aware quantum circuit simulation is only
an approximation of real quantum computers in the first place
and, as shown in our discussions in Section V and through
Theorem 1, the error margin of the approximated results can
be reduced to the desired accuracy by generating more samples.
Hence, while having a deterministic approach as a baseline
for an exact consideration of noise/errors, the (much more
efficient and scalable) stochastic approach is more suited for
the simulation of practically relevant instances.

VII. CONCLUSION

Decision diagrams offer a promising data structure for
handling the complexity of representing quantum states and
operations on classical computers. Accordingly they have
found successful application in quantum circuit simulation. But
their potential for corresponding simulations that additionally
consider noise effects, i.e., the consideration of errors that
frequently occur within real quantum computers, remained
largely unexplored thus far. In this work, we investigated this
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Table III
COMPARISON TO RELATED WORK RESULTS

(a) Comparison to state-of-the-art deterministic quantum circuit simulators

Error Entanglement Circuit QFT Circuit QASMBench Benchmarks
model #Q/#G QLM Qiskit Prop. #Q/#G QLM Qiskit Prop. Benchmark #Q/#G Qiskit Prop.
Decoherence 16/16 721 s 45 s 1 s 9/192 2 s 2 s 7 s basis_trotter 4/1625 2 s 1 s
and 17/17 >1800 s 206 s 1 s 10/241 4 s 2 s 149 s qaoa 6/269 2 s 1 s

Depolarization 18/18 >1800 s 776 s 2 s 11/291 13 s 2 s >1800 s vqe_uccsd 6/2281 2 s 7 s
19/19 >1800 s >1800 s 3 s 12/346 52 s 4 s >1800 s vqe_uccsd 8/10806 5 s 1362 s...

...
...

... 13/410 240 s 10 s >1800 s ising 10/479 2 s >1800 s
26/26 >1800 s >1800 s 161 s 14/475 1117 s 40 s >1800 s sat 11/678 2 s >1800 s
27/27 >1800 s >1800 s 284 s 15/548 >1800 s 98 s >1800 s seca 11/281 2 s >1800 s
28/28 >1800 s >1800 s 524 s 16/624 >1800 s 394 s >1800 s multiply 13/123 4 s 274 s
29/29 >1800 s >1800 s 943 s 17/704 >1800 s 1722 s >1800 s multiply 15/573 397 s >1800 s
30/30 >1800 s >1800 s 1335 s 18/793 >1800 s >1800 s >1800 s cc 18/72 934 s >1800 s

Depolarization 14/14 41 s 3 s 1 s 8/153 2 s 2 s 2 s basis_trotter 4/1625 2 s 1 s
15/15 168 s 13 s 1 s 9/192 2 s 2 s 9 s qaoa 6/269 1 s 1 s
16/16 710 s 45 s 1 s 10/241 4 s 2 s 33 s vqe_uccsd 6/2281 2 s 6 s
17/17 >1800 s 206 s 2 s 11/291 12 s 2 s 155 s vqe_uccsd 8/10806 5 s >1800 s
18/18 >1800 s 774 s 4 s 12/346 51 s 3 s >1800 s ising 10/479 2 s >1800 s
19/19 >1800 s >1800 s 6 s 13/410 239 s 10 s >1800 s sat 11/678 2 s 3 s...

...
...

... 14/475 1122 s 40 s >1800 s seca 11/281 2 s 1 s
30/30 >1800 s >1800 s 590 s 15/548 >1800 s 101 s >1800 s multiply 13/123 3 s 1 s
31/31 >1800 s >1800 s 718 s 16/624 >1800 s 368 s >1800 s multiply 15/573 385 s >1800 s
32/32 >1800 s >1800 s 877 s 17/704 >1800 s >1800 s >1800 s cc 18/72 921 s >1800 s

(b) Comparison to state-of-the-art stochastic quantum circuit simulators

Error Entanglement Circuit QFT Circuit QASMBench Benchmarks
model #Q/#G QLM Qiskit Prop. #Q/#G QLM Qiskit Prop. Benchmark #Q/#G Qiskit Prop.
Decoherence 20/20 23 s 623 s 12 s 11/291 991 s 11 s 9 s basis_trotter 4/1625 135 s 21 s
and 21/21 42 s 1313 s 13 s 12/346 1606 s 22 s 14 s qaoa 6/269 25 s 10 s

Depolarization
...

...
...

... 13/410 >1800 s 49 s 16 s vqe_uccsd 6/2281 143 s 61 s
26/26 970 s >1800 s 13 s

...
...

...
... vqe_uccsd 8/10806 700 s 830 s

27/27 >1800 s >1800 s 14 s 17/704 >1800 s 357 s 16 s ising 10/479 42 s 145 s
28/28 >1800 s >1800 s 14 s 18/793 >1800 s >1800 s 21 s sat 11/678 23 s 893 s
29/29 >1800 s >1800 s 15 s 19/886 >1800 s >1800 s 22 s seca 11/281 8 s 722 s
30/30 >1800 s >1800 s 16 s

...
...

...
... multiply 13/123 107 s 479 s

31/31 >1800 s >1800 s 16 s 31/2372 >1800 s >1800 s 39 s multiply 15/573 14 s 9 s
32/32 >1800 s >1800 s 16 s 32/2526 >1800 s >1800 s 41 s cc 18/72 197 s >1800 s

Depolarization 21/21 14 s 797 s 12 s 16/624 1031 s 55 s 10 s basis_trotter 4/1625 19 s 6 s
22/22 26 s 1661 s 13 s 17/704 1573 s 87 s 11 s qaoa 6/269 4 s 9 s
23/23 50 s >1800 s 13 s 18/793 >1800 s 166 s 11 s vqe_uccsd 6/2281 40 s 45 s...

...
...

... 19/886 >1800 s 360 s 19 s vqe_uccsd 8/10806 204 s 424 s
26/26 470 s >1800 s 13 s 20/977 >1800 s 761 s 21 s ising 10/479 9 s 124 s
27/27 1071 s >1800 s 13 s 21/1080 >1800 s 1653 s 22 s sat 11/678 11 s 22 s
28/28 >1800 s >1800 s 14 s 22/1186 >1800 s >1800 s 22 s seca 11/281 4 s 6 s... >1800 s >1800 s 14 s

...
...

...
... multiply 13/123 36 s 9 s

31/31 >1800 s >1800 s 14 s 31/2372 >1800 s >1800 s 26 s multiply 15/573 5 s 11 s
32/32 >1800 s >1800 s 14 s 32/2526 >1800 s >1800 s 27 s cc 18/72 92 s 10 s

issue. To this end, we considered two different approaches for
noise-aware quantum circuit simulation, namely a deterministic
and a stochastic scheme, and investigated corresponding
solutions based on decision diagrams. We proposed advanced
methods to address challenges caused by considering noise and
implemented those concepts in C++. In an extensive evaluation,
we investigated the value of the proposed optimizations, how
the implemented simulators perform against state-of-the-art
solutions from IBM and Atos, and how both noise-aware
simulation schemes compare against each other.

The findings of this paper confirm the usefulness of decision
diagrams for noise-aware quantum circuit simulation and
provide a promising alternative for noise-aware simulation
(which has been made available as open-source implementation
at https://github.com/cda-tum/ddsim). Additionally, further
potential for future work has been unveiled. More precisely,
while decision diagrams offer tremendous improvements (speed-
ups of several magnitudes and much better scalability) for
the stochastic scheme, the deterministic scheme performs
worse compared to the state-of-the-art. Alternative types of
decision diagrams which are more suited for deterministic

noise-aware simulation schemes should be developed. Next, it
should be evaluated how approximation of decision diagrams,
i.e., the artificial introduction of errors in the representation
of the quantum state, affects the reliability and performance
of noise-aware quantum circuit simulation. While this has
already been discussed for simulation without consideration
of errors (see [37]) noise-aware quantum circuit simulation
has different requirements and should therefore be considered
separately. Additionally, while the proposed solution shows
the viability of decision diagram-based noise-aware quantum
circuit simulation, further functionality, i.e., allowing for more
errors types (e.g., biased noise, idle noise, or crosstalk) and
flexibility (e.g., varying the error probability depending on
the qubits and quantum operations), would allow for a more
accurate approximation of real quantum computers.
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Table IV
OPTIMIZATION FOR STOCHASTIC SIMULATION

Benchmark #Q/#G Det. Time. Stoch. Time Det. CPU Stoch. CPU Det. Memory Stoch. Memory
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basis_trotter 4/1625 1 s 16 s 107 % 9239 % 165 mb 17236 mb

vqe_uccsd 6/2281 486 s 54 s 107 % 9246 % 513 mb 76386 mb
qpe 9/150 392 s 5 s 97 % 6684 % 108 mb 1089 mb

QFT 9/192 241 s 4 s 107 % 9145 % 297 mb 1323 mb
ising 10/479 >1800 s 122 s 107 % 9246 % 417 mb 76641 mb
seca 11/281 >1800 s 457 s 107 % 9190 % 225 mb 1490 mb

cc 12/48 >1800 s 189 s 108 % 9251 % 117 mb 6060 mb
multipler 15/573 >1800 s 335 s 107 % 6941 % 609 mb 1418 mb

entanglement 16/16 <1 s 8 s 117 % 6612 % 97 mb 1223 mb
bigadder 18/284 >1800 s 90 s 107 % 8245 % 66 mb 1887 mb

entanglement 27/27 271 s 7 s 108 % 9051 % 1918 mb 1986 mb
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