Simulation Paths for
Quantum Circuit Simulation with Decision Diagrams
What to Learn from Tensor Networks, and What Not

Lukas Burgholzer Student Member, IEEE, Alexander Ploier and Robert Wille Senior Member, IEEE

Abstract—Simulating quantum circuits on classical computers
is a notoriously hard, yet increasingly important task for the
development and testing of quantum algorithms. In order to
alleviate this inherent complexity, efficient data structures and
methods such as tensor networks and decision diagrams have
been proposed. However, their efficiency heavily depends on the
order in which the individual computations are performed. For
tensor networks the order is defined by so-called contraction
plans and a plethora of methods has been developed to deter-
mine suitable plans. On the other hand, simulation based on
decision diagrams is mostly conducted in a straight-forward, i.e.,
sequential, fashion thus far.

In this work, we study the importance of the path that is chosen
when simulating quantum circuits using decision diagrams and
show, conceptually and experimentally, that choosing the right
simulation path can make a vast difference in the efficiency of
classical simulations using decision diagrams. We propose an
open-source framework (available at github.com/cda-tum/ddsim)
that not only allows to investigate dedicated simulation paths, but
also to re-use existing findings, e.g., obtained from determining
contraction plans for tensor networks. Experimental evaluations
show that translating strategies from the domain of tensor net-
works may yield speedups of several factors compared to the state
of the art. Furthermore, we design a dedicated simulation path
heuristic that allows to improve the performance even further—
frequently yielding speedups of several orders of magnitude.
Finally, we provide an extensive discussion on what can be
learned from tensor networks and what cannot.

I. INTRODUCTION

Over the last couple of years, quantum computers have
evolved from a theoretical computational model to practical
devices aimed for pushing beyond the horizon of classically
tractable problems. Even though actual quantum computers
have already been built, their availability is still rather lim-
ited and devices are heavily affected by noise. Moreover,
in order to develop and test potential applications, complete
representations of the respective quantum states are needed—
information which is fundamentally unavailable on actual
devices. Hence, the simulation of quantum computations on
classical machines plays a vital role in the ongoing race to
realize useful applications for quantum computing.

Such simulations entail computing a representation of the
state resulting from the application of a sequence of operations
(typically described as a quantum circuit) to the initial state
of a quantum system. Conceptually, this corresponds to a
sequence of matrix-vector multiplications. While simple in
principle, the underlying vectors and matrices grow expo-
nentially with respect to the number of simulated qubits
(the quantum analogue to the bit)—quickly requiring pow-
erful supercomputing clusters to feasibly conduct the classical
simulations [1[]-[3[]. Clever data structures such as tensor
networks [4]-[|6] or decision diagrams [7]-[[10] have been

demonstrated to alleviate this complexity in many practically
relevant cases.

To translate the problem of classically simulating a quantum
circuit into the tensor network domain, each gate of the circuit
as well as the initial state is represented as a tensor and
individual tensors are connected via shared indices. Then, sim-
ulating the quantum circuit entails contracting all connected
tensors along the shared indices until only a single tensor
remains. It is commonly known that the complexity of such
a simulation is extremely sensitive to the order in which the
individual tensors are contracted. Accordingly, a plethora of
methods have been developed to efficiently determine suitable
contraction paths [[11]-[14]—a task proven to be NP-hard [15]].
The general idea of such contraction plans is to exploit the
topological structure of the quantum circuit.

Decision diagrams, on the other hand, try to compactly
represent the individual operations and quantum states by
exploiting redundancies in the underlying representation. To
this end, they represent these quantities as directed, acyclic
graphs with complex-valued edge weights. Similar to tensor
networks, the initial quantum state and each gate of a quantum
circuit are first translated to their (typically linearly-sized)
decision diagram representation. Simulation of such a system
is then conducted by multiplying the respective decision
diagrams until a decision diagram representation of the final
state vector remains. Therein, the complexity of multiplying
decision diagrams scales with the product of their sizes, i.e.,
their number of nodes. Whenever the respective intermediate
decision diagrams remain rather compact, an efficient scheme
for classical simulation is obtained.

Therefore, data structures such as tensor networks and
decision diagrams can help to alleviate the complexity of
simulating quantum circuits. In both cases, the efficiency
heavily depends on the order in which computations are per-
formed, namely the contraction plan for tensor networks and
the order of matrix-matrix or matrix-vector multiplications for
decision diagrams—called simulation path in the following.
While thoroughly investigated for tensor networks, this effect
has hardly been studied for decision diagrams yet.

In this Wor we investigate this issue and propose an
open-source framework that allows to exploit arbitrary sim-
ulation paths for decision diagram-based quantum circuit sim-
ulation. Instead of reinventing the wheel, we establish a flow
that not only allows to investigate dedicated paths but also
to re-use existing techniques, e.g., from the tensor network
domain, also for decision diagrams.

'A preliminary version of this work has been published in [16].

github.com/cda-tum/ddsim

Considering the verification of quantum circuit compilation
flow results as a particularly important use case for quantum
circuit simulation, we show, both conceptually and experi-
mentally, that choosing the right simulation path can make
a vast difference in the efficiency of classical simulations
using decision diagrams. To this end, we demonstrate that
translating strategies from the domain of tensor networks
allows for speedups of several factors compared to the state
of the art in many cases. Additionally, we design a dedicated
simulation path heuristic that allows to improve the perfor-
mance even further—frequently yielding speedups of several
orders of magnitude. Based on these evaluations, we discuss
the resulting consequences on what can be learned from
tensor networks and what cannot be learned from them. This
eventually provides the basis for future research on quantum
circuit simulation using decision diagrams.

The rest of this paper is structured as follows: [Section II
introduces the necessary background for the rest of this
work. Then, illustrates the degrees of freedom and
the potential impact of arbitrary simulation paths. Motivated
by that, presents the framework that allows to
evaluate these arbitrary simulation paths and describes how
existing techniques from the tensor network domain can be
used to obtain “good” simulation paths without starting from
scratch. Afterwards, summarizes our experimental
evaluations, followed by a discussion of their implications in
[Section VI [Section VII| concludes the paper.

II. BACKGROUND

To keep this paper self-contained, this section briefly covers
the basics on quantum circuit simulation followed by a brief
review of decision diagrams—which provide the basis of the
simulation approach considered in the rest of this work.

A. Quantum Circuit Simulation

A quantum state |p) of an n-qubit quantum system can be
described as a linear combination of 2" basis states, i.e.,

P Y) it eCand Y fai =1

ie{0,1}» ie{0,1}»
This state is commonly represented as a vec-
tor [0, -, alv__l]T, referred to as state vector. Measuring

this state leads to a collapse of the system’s state to one

of the basis states |i)—each with probability |a;|? for

i € {0,1}". In the following, we will always identify |p)

with its corresponding state vector, i.e.,
l) = [ao...0,- - ,0é1.‘.1]T~

Example 1. An important example of a quantum state is the

3-qubit Greenberger—Horne—Zeilinger or GHZ state [17)]:

1 1 T
—(]000) + |111)) = —]1,0,0,0,0,0,0,1
75(1000) + 1)) = | |

The state of any quantum system can be manipulated by
quantum operations, also called quantum gates. Any such
gate g acting on k qubits can be identified by a unitary
matrix U of size 2% x 2% ie., g = U. Its action on a quantum

|GHZ) =

HHSHT

s
[#]

R

Fig. 1. Circuit for the 3-qubit quantum Fourier transform

state corresponds to the matrix-vector product of the matrix
with the vector representing the stateEL ie., [¢) =U|p).

A quantum circuit is now described as a composition
of quantum gates. Consequently, the evolution of an initial
quantum state |@) through a quantum circuit G = g ... g|g|
is described by the subsequent application of the individual
gates to this initial state, i.e.,

)G =10)g1... 911 =Ujg * - *xUr x|p) .

If this task is conducted on a classical computer, it is com-
monly referred to as quantum circuit simulation.

Example 2. shows a 3-qubit quantum circuit real-
izing an important quantum algorithm, namely the quan-
tum analog to the Fourier transform. It consists of three
single-qubit Hadamard gates (indicated by boxes labeled H),
three two-qubit controlled-phase rotations (indicated by boxes
labeled S and T connected to e), and a two-qubit SWAP gate
(indicated by x). Given an initial state in the computational
basis, this circuit outputs the state’s representation in the
Fourier basis.

B. Decision Diagrams

The representations of a quantum system state and the
operations manipulating it are exponentially large with re-
spect to the number of qubits involved. This quickly limits
straight-forward approaches for representing (and manipu-
lating) even moderately sized state vectors, such as arrays,
without resorting to supercomputing clusters. For example,
representing the dense state vector of a 32-qubit system
already requires 64 GiB of memory (assuming 128 bit complex
numbers).

Decision diagrams [7]-[10] have been proposed as a com-
plementary approach for efficiently representing and manip-
ulating quantum states by exploiting redundancies in the
underlying representation. A decision diagram representing
a quantum state (or operation) is a directed, acyclic graph
with complex edge weights. To this end, a given state vector
with its complex amplitudes «; for i € {0,1}" is recursively
decomposed into sub-vectors according to

[ag...0y---yar.1]"
[an]T [alx]T
[aooy] " [eory] " [oney] T a7,

with z € {0,1}""! and y € {0,1}"2, until only individual
amplitudes remain. The resulting graph has n levels of nodes,
2Technically, the matrix first needs to be extended to the full system

size (by forming appropriate tensor products with identity matrices) for the
multiplication to make sense.

s
OO
3
. 2

() |GHZ) (b) Color wheel (c) Controlled-S gate (d) H gate
Fig. 2. Decision diagrams for 3-qubit states and gates

labelled n — 1 down to 0. Here, each node ¢ has exactly two
successors indicating whether the path leads to an amplitude
where qubit 4 is in state |0) or |1).

By extracting common factors into edge weights (and em-
ploying suitable normalization schemes, see [7]], [9]), any two
sub-vectors that only differ by a constant factor can be unified
and need not be represented by separate nodes in the decision
diagram. Exploiting such redundancies frequently allows to
obtain rather compact representations (in the best case linear
with respect to the number of qubits) for the, in general,
exponentially large state vectors.

Example 3. shows a graphical representation (as
proposed in [|18)]) of the decision diagram for the GHZ state

considered previously in To this end, the thickness
of an edge indicates the magnitude of the corresponding
weight, while the color wheel shown in is used to
encode its phase. Furthermore, edges with a weight of 0 are
denoted as e-stubs. In general, the decision diagram for an
n-qubit GHZ state requires 2n — 1 nodes for representing the
2"-dimensional state vector.

Decision diagram representations for quantum gates are
obtained by extending the decomposition scheme for state
vectors by a second dimension. This corresponds to recur-
sively splitting the respective matrix into four equally sized
sub-matrices according to the basis

1 0] {0 1] {0 O [0 O
0 0”10 O)>(1 O’|0 1|~
Example 4. Consider again the circuit shown in

Then, [Fig. 2d and [Fig. 2d| show the decision diagram repre-
sentations for the 23 x 23 matrices of the controlled-S and the

Hadamard gate at the end of the circuit, respectively.

As described above, applying a gate to a quantum system
entails the matrix-vector multiplication of the corresponding
matrix with the current state vector. This operation can be
recursively broken down according to

Uoo Uop1 o Q0] _ (Uoo * ap... + Up1 * a1..)

Uo Un Q.. (Uo* ... + U a1,)|’
with Uy; € C2" 2" and ;. € C2"' for i,j € {0,1}.
Since the U;; and ¢ directly correspond to the successors

in the respective decision diagrams, matrix-vector (as well as
matrix-matrix) multiplication is a native operation on decision

/

Fig. 3. Maximally large decision diagram resulting from QFT |GHZ)

diagrams and its complexity scales with the product of the
number of nodes of both decision diagrams. Thus, whenever
the decision diagrams remain compact throughout the compu-
tation, the simulation of quantum circuits can be efficiently
conducted using decision diagrams [19]-[22]]. While many
practical examples lead to compact decision diagram represen-
tations [23]], their worst case complexity remains exponential.

Example 5. Let |¢) denote the n-qubit GHZ state and let
G be the circuit for the n-qubit quantum Fourier transform.
As demonstrated in |Example 3| and |Example 4| for n = 3,
both, the decision diagram representations for the initial state
|p) as well as the individual gates are linear. However, it
can be shown that the decision diagram of the final state
resulting from the simulation of G with initial state |o) is
maximally large, i.e., consists of 2" — 1 nodes. shows
the corresponding decision diagram for n = 3.

III. MOTIVATION AND RELATED WORK

In this section, we consider the question of how the order
in which the respective multiplications are conducted influ-
ences the complexity of decision diagram-based simulation—
a topic hardly considered thus far. Afterwards, we discuss
correspondingly related work including how other types of
quantum circuit simulators address this problem.

A. Considered Problem

As reviewed above, the simulation of a quantum circuit
G = g1 ...9|¢| given an initial state [p) entails the sequence
of computations

) G=lp)g1...91c1 = Ujg) * -+« Ur *|p).

Since matrix-matrix and matrix-vector multiplication is asso-
ciative, the order in which the individual multiplications are
conducted can, in principle, be chosen arbitrarily. We refer to
such an order of computations as a simulation path. Due to
matrix-vector multiplication, in general, being far less complex
than matrix-matrix multiplication, the most natural simulation
path is to sequentially compute the matrix-vector product of
the individual (and compact) gate matrices with the current
state vector. However, for a circuit G with |G| gates, there are

|G| % (|G] = 1) *---x1=|G|!,

i.e., exponentially many, unique simulation paths—raising the
question whether the most natural path indeed is always the
best path.

Sequential

o | g <% EEXTRTY -5 | F- 08 e g;_é\-l ceeeeel gl [g
I
—

Fig. 4. Comparison of the sequential and the optimal simulation path for the problem of verifying the equivalence of two quantum circuits

In order to demonstrate the impact of the simulation path
on the simulation complexity, we consider the following
typical use case for quantum circuit simulation: Given two
quantum circuits G = g1...g|g and G’ = g’l...gl’G,|, it
shall be checked whether both circuits are equivalent—an
essential question when, e.g., verifying the results of quantum
circuit compilation flows [24]. Due to quantum circuits being
inherently reversible, this can be checked by concatenating one
circuit with the inverse of the other, i.e.,

G=GG = g1---9|qG g|'5,1| o '9/1717

and simulating the resulting circuit with various initial
states |¢). Whenever G and G’ are equivalent, G = I holds
(with I denoting the identity transformation) and, hence, G
maps |p) to itself. However, as the following example will
show, choosing the right simulation path for the simulation
of G can make the difference between linear and exponential
complexity.

Example 6. Consider the scenario as in and,
for the sake of the argument, assume that G' = G, ie., it
naturally holds G = GG~! = I for any). Then, following
the discussion in simulating G ina sequential
fashion leads to an intermediate decision diagram that is
maximally large—implying an exponential memory complexity
and, hence, exponential runtime. If however, the simulation
path is chosen to start “in between” G and G~ and alternate
between applying gates from G and G~', any computation

(except the last matrix-vector multiplication) has the form

U l'xU; I+U;,

?

or

fori=1,...,|G|. Since, in general, the complexity of decision
diagrams representing individual gates is linear, the overall
runtime and memory complexity is linear as well.
illustrates this scenario, i.e., sketches the respectively applied
matrix-matrix or matrix-vector multiplications, in addition to
a color palette indicating the size of the correspondingly
resulting decision diagrams (with green denoting a small and
red a large size).

Obviously, the previous example is specifically constructed
to show the extremes—there is a one-to-one correspondence
between gates from G and G’ and, hence, an easy way to
define an “optimal” strategy. In practice, i.e., when G’ # G,
no such natural correspondence exists and, as a consequence,
it is generally hard to determine an “optimal” strategy for
conducting the simulation. While this is hardly surprising,
given that equivalence checking of quantum circuits has been
shown to be computationally hard [25]], it underpins the
importance of efficient and automated methods for determining
suitable simulation paths.

B. Related Work

Decision diagrams are not the only data structure for
simulating quantum circuits that suffers from the exponential
difference in best and worst case complexity. The connection
to tensor networks [4]]-[6] has already been pointed out in
Section m In general, a tensor can be understood as a multi-
dimensional array of complex numbers—the tensor’s rank
being the number of dimensions (or indices) while its shape
specifies the number of elements in each dimension. Two
tensors sharing common indices can be contracted into a single
tensor by summing over repeated indices. A tensor network is
a countable set of tensors connected by shared indices.

Example 7. Let A, B,C be matrices in CN*N. Further, let
the matrix product C' = AB be given by

N-1
Cij= g A; Bk j,
k=0

with i,5 = 0,...,N — 1. Then, this corresponds to the
contraction of the rank-2 tensors A = [A,] and B = [By, ;]
over the shared index k. This is conveniently represented
graphically as:

The order in which a tensor network is contracted into a sin-
gle tensor is called a contraction plan. In general, an efficient
contraction plan tries to keep the size of intermediate tensors
and the dimension of contracted indices in check. However,
the problem of determining an optimal order of contractions
has been proven to be NP-hard [15]]. Accordingly, trying to
efficiently solve this challenging task for tensor networks has
been a heavily researched topic for years [11]-[14].

Both techniques—decision diagrams and tensor networks—
efficiently represent the initial state as well as all the individual
operations in the form of a dedicated data structure. Then, they
choose a certain path to combine these individual descriptions
in order to eventually form a representation of the final
quantum state—either by multiplying decision diagrams or
by contracting tensors. Hence, the problem of determining an
optimal simulation path for decision diagrams poses a similar
challenge as determining an optimal contraction order for a
tensor network.

However, in case of decision diagrams, this question is
hardly studied and almost no heuristics exist for determining
an efficient simulation path. Initial works related to the prob-
lem considered in this work have been conducted in [26], [27]].
In [26]], it is shown that initially constructing the functionality
of certain building blocks in prominent quantum algorithms
such as Grover’s [28] or Shor’s [29] algorithm (by con-
ducting, potentially expensive, matrix-matrix multiplications)
can lead to significant runtime improvements compared to
the sequential matrix-vector multiplication approach described
above. In [27], the authors describe schemes for constructing
the functionality of such building blocks in a more efficient
fashion, which can be interpreted as very specific simulation
paths. But still, only a significantly limited subset of the
immense space of possibilities for very specific problems has
been explored.

Besides the sizeable difference of research conducted on
tensor networks compared to decision diagrams in general,
one of the main reasons for this disparity in focusing on the
order of execution during simulation can be identified from the
fundamental properties of both techniques: The performance
when contracting tensors only depends on their size and
shape—not on the actual content (the data) in the tensors.
On the one hand, this implies that an a-priori estimate of
a particular contraction plan’s performance can be efficiently
inferred from the sizes and shapes of the tensors involved in all
contractions. On the other hand, this also means that, without
a proper contraction plan, there is nothing to be gained by
employing tensor networks.

In contrast, decision diagrams explicitly try to exploit re-
dundancies in the underlying representations rather relying on
“external” characteristics. As discussed in this
allowed them to efficiently represent and simulate even large
quantum systems in many cases. Consequently, while tensor
networks are in dire need of efficient contraction plans to
achieve peak performance, simulating circuits in a sequential
fashion using decision diagrams has been “good enough” in
many cases.

First steps towards combining tensor networks and decision
diagrams have been taken in [10]. There, the authors use a

Fig. 5. Task dependency graph for one particular simulation path

variation of decision diagrams as illustrated in
to represent individual tensors in a more efficient fashion, i.e.,
they show what can be learned from decision diagrams in order
to improve tensor networks. In contrast, this work investigates
whether knowledge from the tensor network domain can lead
to improvements for simulation based on decision diagrams.

IV. A SIMULATION PATH FRAMEWORK

In an effort to foster the understanding and development of
simulation path heuristics for quantum circuit simulation based
on decision diagrams, this section presents an open-source
simulation path framework. This framework allows to execute
arbitrary simulation paths via the powerful TaskFlow [30]
library. Instead of reinventing the wheel and trying to com-
pensate for years of research on tensor contraction methods,
the framework includes a push-button flow to employ existing
techniques from the tensor network domain while simultane-
ously providing the means to easily realize dedicated simu-
lation path strategies for decision diagrams. In the following,
we describe how the framework itself handles simulation paths
and, afterwards, describe the flow for translating the problem
from the domain of decision diagrams to the tensor network
domain and back again.

A. Handling Simulation Paths

The simulation of a quantum circuit G = g ... g|g| with
the initial state |@) entails the computation of the expression

Initially, this requires the construction of decision diagrams
for the initial state and the individual gates. Then, each
multiplication in the above expression can be regarded as a
task that takes two decision diagrams and returns the result
of their multiplication. Thus, a path for the simulation of
G corresponds to a sequence of (multiplication) tasks that
eventually results in the final state vector. It is natural to
represent such a sequence as a task dependency graph. An
example illustrates the idea.

Example 8. Consider again the 3-qubit QFT circuit shown
in[Fig. 1| Then, the following sequence of tasks describes one
particular simulation path of G:

[(0,1),(2,3),(4,5),(6,7),(8,9), (10,11), (12, 13)].

@000

@001

ao10

@11

log2[SIZE log10[FLOPS
4.090[1 910[1

3.75
3.50

3254
3.00 -

@100

@101

@110

@111

(a) Tensor network

-0.75
-0.50
-0.25
- 0.00

(b) Contraction plan visualization

2.75
2.50 -
2.25-

1.75
.
1.50
1.25
— N -1.00
.
/ 1

2.00 -

Fig. 6. Tensor network for the simulation of the 3-qubit QFT and visualization of a corresponding contraction plan

To this end, index 0 denotes the initial state, index 1 to |G| the
individual operations, and the result of a task is indexed by
the next largest integer not already in use. The corresponding

graph is shown in

This task-based formulation of quantum circuit simula-
tion allows to employ powerful tools for asynchronous task-
parallelism [30]—[32] to conduct the simulation. The resulting
framework takes a circuit and a sequence of tasks as an input
and uses the Taskflow [30] library to build the corresponding
task dependency graph and execute it asynchronouslyﬂ The
question remains how to determine suitable ones out of the
|G|! options.

B. Utilizing Research on Tensor Network Contraction

As reviewed in [Section [II-B| a plethora of methods has
been developed for determining efficient contraction plans for
tensor networks and first steps have been taken to combine
these two techniques. Due to the direct connection between the
two domains, it would not make sense to try and reinvent the
wheel when it comes to simulation using decision diagrams.
Instead, we realized a flow in Python that connects both
domains and, as a consequence, allows to make use of research
conducted towards tensor network contraction. The following
(rather technical) paragraphs give a detailed description of this
process.

Starting from an initial quantum circuit (provided in the
form of an OpenQASM file [34] or Qiskit QuantumCircuit
object [35])), the first step is to create a corresponding tensor
network representation. To this end, each individual gate
is transformed to a corresponding tensor representing the
underlying matrix. We do not employ tensor slicing techniques
(as demonstrated in [12]], [36], [37]), which allow to split the
tensors of multi-qubit gates into multiple smaller tensors, since
these techniques are not yet widely adopted in the decision
diagram domain (although first efforts towards this direction
have been conducted in [38]]).

Next, the initial state |p) needs to be translated to the
tensor network domain. In general, an m-qubit state is de-
scribed by a rank-n tensor of size 2", i.e., the complete
state vector. In case of product states, i.e., states that can
be written as a product of single-qubit states such as the

3 A similar effort has been conducted for the tensor network domain in [33].

all-zero state |0...0) = |0) ® --- ® |0), this can rather be
represented as n rank-1 tensors of size 2. A similarly compact
representation is achieved for decision diagrams of product
states, which always consist of n nodes (as opposed to the
general worst case of 27~1 nodes). However, while tensor
networks allow for arbitrary contractions between two tensors
as long as they share a common index, decision diagrams for
quantum computing, as considered in this work, do not support
arbitrary kinds of (tensor) contractions as of now. Instead,
they only support (proper) matrix-vector and matrix-matrix
multiplication, i.e., it is, for example, not possible to contract
the (vector) decision diagram representing a single-qubit state
and the (matrix) decision diagram representing a two-qubit
operation. As a consequence, the initial state in the translated
tensor network needs to be represented as a full rank-n tensor
(see for further discussions).

Contracting the resulting tensor network results in a tensor
representing the complete output state vector of the simulation.

Example 9. Consider once more the 3-qubit QFT circuit
shown in Then, the corresponding tensor network
representation for the simulation of the circuit is shown
in[Fig_6d,

After the translation, the resulting tensor network can
be fed into any available tensor network contraction tool
in order to determine a suitable contraction plan. We
used the hyper-optimized tensor network contraction tool
CoTenGra [11] as a state-of-the-art representative. It allows
to determine contraction plans for large tensor networks using
various graph-based methods and is publicly available at
github.com/jcmgray/cotengra. Furthermore, it provides means
to visualize contraction plans and their complexity in mean-
ingful ways.

Example 10. Feeding the tensor network shown in
into CoTenGra results in the following simulation path:

[(0,1),(2,8),(3,9),(4,10),(5,11), (6,12), (7,13)].

The resulting contraction tree can be visualized as shown in
To this end, the color of each node represents the
number of floating point operations required for a particular
contraction, while the color of each edge represents the size of
the respective tensors—the darker the color, the more complex
the contraction or the larger the tensor.

github.com/jcmgray/cotengra

Quantum Circuit Tensor Network

1 CoTenGra |I

1(0, 1), (2, 8), (3,9), (4, 10), >
5, 11), (6, 12),

(7,13)] \

Simulation Path Task Dependency Graph

Fig. 7. Automated simulation path flow inspired by the tensor network domain

Overall, this results in a flow as shown in where the
initial quantum circuit is first translated to a tensor network
and then fed into CoTenGra. Afterwards, a task dependency
graph is constructed from the obtained contraction plan and
used for the decision diagram simulation.

V. EXPERIMENTAL EVALUATIONS

The proposed simulation path framework has been imple-
mented on top of the publicly available decision diagram-based
simulator DDSIM (available at |github.com/cda-tum/ddsim),
which is part of the Munich Quantum Toolkit (MQT, formerly
known as JKQ [39]). Afterwards, we used the resulting tool
to conduct an extensive case study in order to (1) evaluate
the effectiveness of strategies developed in the tensor network
domain, and (2) determine the potential of dedicated heuristics
for quantum circuit simulation using decision diagrams. All
evaluations have been conducted on a machine equipped with
an AMD Ryzen 9 3950X CPU and 128 GiB RAM running
Ubuntu 20.04.

A. Experimental Setup

Inspired by the discussions in [Section III-A] we primarily
focused on the typical use case of verifying the equivalence
of two quantum circuits, i.e., for two given quantum circuits
G and G’, we considered the simulation of the combined
circuit G = GG'~1. In order to create meaningful verification
instances, a broad selection of circuits G and G’ has been
taken from the publicly available benchmark suite MQT
Bench [40], which offers various quantum algorithms on dif-
ferent abstraction levels. More specifically, the circuits G have
been taken from the algorithmic layer (the highest available
abstraction), while the circuits G’ have been taken from the
native-gates layer (where circuits are compiled and optimized
for a particular architecture). As discussed in
this creates a non-trivial verification scenario where there no
longer is a one-to-one correspondence between the gates of G

and G’ (as, e.g., shown in [Example 6).

B. Dedicated Simulation Path Heuristic

In order to evaluate the potential of a non-trivial, dedicated
simulation path scheme, we developed and implemented a
heuristic that aims to efficiently solve this kind of verification

tasks by exploiting some knowledge about the compilation
flow itself (inspired by the ideas in [24]). For each gate g
in the original circuit G, the resulting method estimates
the corresponding number of operations in G’ based on the
decomposition of g into the native gate-set of G’ (which can
easily be computed a-priori using the same settings for the
decomposition as were used for compiling G to G’). Then,
starting in between both circuits, any application of a gate
from G is followed by the application of the corresponding
number of gates from G’~1, until only the final multiplication
with the initial state vector remains—yielding the final result
of the simulation.

In all but the most trivial cases, any method based on this
principle can only ever derive an approximation of the actual
number of operations in the compiled circuit, since already
the simplest optimizations employed during compilation fre-
quently eliminate a significant amount of gates from the overall
circuit. However, as witnessed by the evaluations, this type of
simulation path still frequently allows to keep the intermediate
decision diagrams throughout the simulation very compact
(i.e., close to the identity structure) and, hence, allows for
an efficient simulation.

C. Experimental Results

A representative subset of the obtained results is summa-
rized in [Table T—with the first three columns denoting the
name of the benchmark, the number of qubits n, as well as the
number of gates |G| of the combined circuit. The remaining
columns show

o the runtime 4., of the state-of-the-art, i.e., sequential,
simulation path strategy [[19],

o the runtime ¢4, of the proposed flow for translating
strategies from the tensor network domain (split into the
time t.,; spent on determining a simulation path using
CoTenGreE] and the simulation time ¢,;,,), as well as

o the runtime tj.,, of the proposed dedicated simulation
path heuristic.

The framework as well as the benchmark script are publicly
available at github.com/cda-tum/ddsim to conduct further eval-
uations.

In a first series of evaluations, we used the design flow
proposed in to make use of the plethora of
available tensor network strategies to determine a suitable
simulation path. As shown by these results, re-using or trans-
lating methods developed in the tensor network domain via
the proposed flow can already speed up the simulation of
quantum circuits using decision diagrams by a large margin
compared to the state-of-the-art, i.e., sequential, approach [[19]]
(runtimes of instances where t., < ts¢, are highlighted in
bold). Interestingly, for some cases (such as the Graph State
benchmark on 54 qubits), the substantially improved runtime
(tsim) is overshadowed by the time spent on searching for a
suitable path (t.,;)—these instances are highlighted in ifalic.
In other cases, nothing at all is to be gained by spending up to

4The tool allows to set a timeout and a maximum number of repetitions,
which were set to 600s and 65, respectively.

github.com/cda-tum/ddsim
github.com/cda-tum/ddsim

TABLE I
EXPERIMENTAL EVALUATIONS

Benchmark SOTA [19] Proposed Flow 1Seclion IV—B} [Seclion V—B]
Name n Gty tarls] tonls) tenls] thewr |8
GHZ State 64 130 0.00 692 0.00 6.92 0.00
GHZ State 96 194 0.01 1435 0.01 14.36 0.01
GHZ State 128 258 0.01 2934 0.01 29.35 0.02
Graph State 50 300 46.60 23.55 0.04 23.59 0.21
Graph State 52 312 147 11.59 0.06 11.64 0.14
Graph State 54 324 4471 13.84 0.07 13.92 0.36
Graph State 56 336 8.09 30.22 36.37 66.59 0.15
Two Local Ansatz 14 826 2.79 46.60 2.51 49.11 0.02
Two Local Ansatz 15 930 12.72 3831 12.37 50.69 0.02
Two Local Ansatz 16 1040 70.56 76.55 55.88 132.42 0.02
Two Local Ansatz 17 1156 21021 12291 231.75 354.66 0.03
Entangled QFT 16 714 10525 48.81 0.24 49.05 0.04
Entangled QFT 17 799 529.37 5533 11347 168.81 0.09
Entangled QFT 18 893 6821.64 7558 2.36 77.94 0.18
Deutsch-Jozsa 64 614 0.03 36.61 0.03 36.63 0.05
Deutsch-Jozsa 96 952 0.03 9421 0.03 94.24 0.11
Deutsch-Jozsa 128 1278 0.05 164.98 0.06 165.03 0.21
QPE inexact 15 668 0.68 61.02 0.59 61.60 1.93
QPE inexact 16 750 3.77 5048 425 54.73 4.41
QPE inexact 17 843 2022 4747 1385 61.33 14.37
QPE inexact 18 935 190.23 70.47 43.18 113.65 33.43
Efficient SU2 Ansatz 14 882 398 3282 330 36.12 0.35
Efficient SU2 Ansatz 15 990 1329 8251 1220 94.72 0.90
Efficient SU2 Ansatz 16 1104 4347 6841 40.19 108.60 4.11
Efficient SU2 Ansatz 17 1224 22247 80.92 409.12 490.04 11.37
W-State 64 758 0.03 71.04 0.02 71.06 0.04
W-State 96 1142 0.05 133.44 0.05 133.49 0.09
W-State 128 1526 0.08 239.39 0.09 239.49 0.14
Real Amplitudes Ansatz 15 930 1502 6251 3206 94.57 0.02
Real Amplitudes Ansatz 16 1040 10456 96.86 47.08 143.94 0.02
Real Amplitudes Ansatz 17 1156 252.46 112.12 218.20 330.32 0.03

n: Number of qubits |G|: Gate count of GG’
tseq: Total runtime of simulation with sequential path [19]
tcot: Runtime of CoTenGra [11]]
tsim: Runtime of path determined by CoTenGra [11]
tien: Total runtime of simulation using the proposed flow
theur: Total runtime of simulation with heuristic simulation path

600 s on the search for a suitable path. This is further discussed
in

In a second series of evaluations, we studied the per-
formance of the dedicated heuristic simulation path method
proposed above. The results clearly underline the potential
of dedicated simulation path schemes for decision diagrams.
Although the proposed method is only a heuristic, it oftentimes
yields several orders of magnitude faster runtimes compared
to the state of the art (again, runtimes where ¢ < tseq are
highlighted in bold). Most notably, for the Entangled QFT
benchmark on 18 qubits, choosing the right simulation path
makes the difference between waiting almost two hours for
the result and having it available in the blink of an eye.

VI. DISCUSSION

While the problem of finding a suitable simulation path for
decision diagrams has many apparent similarities to finding
an efficient contraction plan for tensor networks, the results
summarized above demonstrate that there are key differences
between both data structures. Based on that, interesting con-
clusions can be drawn on what can be learned from tensor
networks and what cannot for quantum circuit simulation
based on decision diagrams.

For tensor networks, it is inevitable that the final result of
the full state simulation is exponentially large. This inher-
ently limits the usability of such simulations to the available
system memory. In contrast, there are many known quantum

algorithms whose state vectors during the simulation emit
a very compact (in the best case, linear) decision diagram
representation [[19]] (also witnessed in the evaluation above
for the GHZ State, W-State, and Deutsch-Jozsa benchmarks).
As such, there is no strict qubit limit for simulation based
on decision diagrams. Furthermore, the margin between the
simulation times of all three considered strategies is negligible
and, hence, it does not make sense to spend any amount of
time searching for an alternative simulation path in these cases.

One might be tempted to conclude that, given the same
simulation path/contraction plan, simulation based on decision
diagrams always has at most as large a memory footprint and
takes at most as long as the corresponding tensor network
contraction—which would imply that decision diagrams are
strictly superior to tensor networks. However, in order to
maintain the decision diagram structure, a data structure more
advanced than simple multi-dimensional arrays (as commonly
used for tensors) is necessary. As a consequence, each node
in a decision diagram is significantly larger in memory than
individual tensor entries. Since, in the worst case, the decision
diagram consists of exponentially many unique nodes (27!
for an n-qubit state), the simulation might incur a much higher
memory footprint. In addition, decision diagram operations
frequently make use of compute tables in order to avoid
redundant computations and exploit any redundancy present in
the representations. If the decision diagram contains no redun-
dancies, all that constitutes a significant overhead compared
to straight-forward tensor contraction (as, e.g., observed for
the sequential simulation of the Entangled QFT benchmark).
Overall, decision diagrams and tensor networks complement
each other in many different ways and, therefore, should be
employed under consideration of the specific task at hand.

Although finding a suitable simulation path inspired by the
tensor network domain may consume a significant amount of
time (in some cases overshadowing the subsequent runtime
improvements), the runtime (%g;,,) of the simulation paths
determined by CoTenGra demonstrates that there is something
to be learned from the domain of tensor networks. However,
the current state of the art in decision diagrams for quantum
computing, as they are considered in this work, imposes
several limitations on what can actually be learned from the
domain of tensor networks.

One of the main (technical) restrictions of decision diagrams
at the moment is that they only allow for proper matrix-vector
and matrix-matrix multiplication while tensor networks allow
for arbitrary contractions between two tensors (as long as they
share a common index). So, while the following contraction
between a single-qubit state and a two-qubit operation makes
perfect sense for tensor networks

decision diagrams currently only permit the following type of
contraction

U |00) ==

This limits the degrees of freedom to explore during the search
for an efficient contraction plan and eliminates some of the
benefits of tensor networks as it essentially fixes the tensor of
the initial state to be maximally large.

In a similar fashion, so-called tensor slicing techniques
have been shown to accelerate and trivially parallelize tensor
network contractions [12]], [36], [37]. There, the main idea
is to split multi-qubit tensors into multiple smaller tensors of
higher order, as exemplary illustrated in the following

©) ©—a
ol - o8-

While first efforts towards employing such techniques for
decision diagrams have been conducted in [38]], they are not
yet mature and flexible enough to be employed in the same
way as for tensor networks.

As discussed above, employing tensor networks for full
quantum state simulation inherently carries an exponential
memory complexity. For that reason, tensor networks are com-
monly rather used to determine individual amplitudes of the
resulting state. This is accomplished by attaching additional
tensors to the end of the tensor network that describe the
desired amplitude, as exemplary illustrated by

Since the result of the simulation no longer is an exponentially
large vector, but rather a single scalar, the order of contractions
plays a far greater role for the efficiency of such simulation.
At the moment, the only established way to determine indi-
vidual amplitudes using decision diagrams is to compute the
decision diagram for the full state vector and, then, extract
the desired amplitude by traversing the decision diagram from
top to bottom. While there still are many instances where this
procedure works just fine, this imposes a significant restriction
on the available degrees of freedom for determining a suitable
simulation path.

VII. CONCLUSIONS

In this work, we studied the importance of the path that
is chosen when simulating quantum circuits using decision
diagrams. The resulting framework allows to employ arbitrary
simulation paths and to connect the domain of tensor networks
with the domain of decision diagrams. Our experimental
evaluations have shown that much can be learned from the
domain of tensor networks—potentially allowing for runtime
improvements of up to several factors compared to the state of
the art. In addition, we demonstrated that the development of
application-specific heuristics which are tailored for decision
diagrams can achieve speedups of several orders of magnitude
compared to the state of the art. Finally, we have shown,
conceptually as well as experimentally, that decision diagrams
and tensor networks differ in some key aspects and that not
everything can be learned from tensor networks—at least not
given the current state of the art in decision diagrams for
quantum computing. As decision diagrams, which still are a
very young data structure compared to tensor networks, are

developed further, the potential for taking advantage of all
the research conducted towards tensor networks is expected
to increase drastically. By making the developed framework
publicly available, we hope to accelerate such endeavors.

ACKNOWLEDGMENTS

This work received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
101001318), was part of the Munich Quantum Valley, which is
supported by the Bavarian state government with funds from
the Hightech Agenda Bayern Plus, and has been supported
by the BMWK on the basis of a decision by the German
Bundestag through project QuaST, as well as by the BMK,
BMDW, and the State of Upper Austria in the frame of the
COMET program (managed by the FFG).

REFERENCES

[11 G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. D. Sawaya,
“Intel Quantum Simulator: A cloud-ready high-performance simulator
of quantum circuits,” Quantum Sci. Technol., 2020.

[2] T. Hiner and D. S. Steiger, “0.5 petabyte simulation of a 45-Qubit
quantum circuit,” in Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis, 2017.

[3] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high
performance simulation of quantum computers,” in Scientific Reports,
2018.

[4] R. Jozsa, On the simulation of quantum circuits, 2006. arXiv: quant-
ph/0603163.

[51 I. L. Markov and Y. Shi, “Simulating quantum computation by con-
tracting tensor networks,” SIAM J. Comput., vol. 38, no. 3, pp. 963—
981, 2008.

[6] J. D. Biamonte and V. Bergholm, Tensor networks in a nutshell, 2017.
arXiv: [1708.00006.

[71 P. Niemann et al., “QMDDs: Efficient quantum function representation
and manipulation,” IEEE Trans. on CAD of Integrated Circuits and
Systems, 2016.

[81 L. Chin-Yung, W. Shiou-An, and K. Sy-Yen, “An extended XQDD rep-
resentation for multiple-valued quantum logic,” IEEE Trans. Comput.,
pp- 1377-1389, 2011.

[91 A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently handle

complex values? Implementing decision diagrams for quantum com-

puting,” in Int’l Conf. on CAD, 2019.

X. Hong et al., A tensor network based decision diagram for repre-

sentation of quantum circuits, 2020. arXiv: 2009.02618.

J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,”

Quantum, vol. 5, p. 410, 2021.

C. Huang et al., Classical simulation of quantum supremacy circuits,

2020. arXiv: 2005.06787.

S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, Simulation of

low-depth quantum circuits as complex undirected graphical models,

2018. arXiv: [1712.05384.

D. Lykov et al., Tensor Network Quantum Simulator With Step-

Dependent Parallelization, 2020. arXiv: 2012.02430.

L. Chi-Chung, P. Sadayappan, and R. Wenger, “On optimizing a

class of multi-dimensional loops with reduction for parallel execution,”

Parallel Process. Lett., 1997.

L. Burgholzer, A. Ploier, and R. Wille, “Exploiting arbitrary paths for

the simulation of quantum circuits with decision diagrams,” in Design,

Automation and Test in Europe, 2022.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2010.

R. Wille, L. Burgholzer, and M. Artner, “Visualizing decision diagrams

for quantum computing,” in Design, Automation and Test in Europe,

2021.

A. Zulehner and R. Wille, “Advanced simulation of quantum com-

putations,” IEEE Trans. on CAD of Integrated Circuits and Systems,

2019.

V. Samoladas, “Improved BDD algorithms for the simulation of

quantum circuits,” in Algorithms - ESA, D. Halperin and K. Mehlhorn,

Eds., 2008.

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

https://arxiv.org/abs/quant-ph/0603163
https://arxiv.org/abs/quant-ph/0603163
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/2009.02618
https://arxiv.org/abs/2005.06787
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/2012.02430

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

(31]

[32]
(33]
[34]

[35]

G. F. Viamontes, I. L. Markov, and J. P. Hayes, “High-performance
QuIDD-Based simulation of quantum circuits,” in Design, Automation
and Test in Europe, 2004.

S. Hillmich, R. Kueng, I. L. Markov, and R. Wille, “As accurate as
needed, as efficient as possible: Approximations in DD-based quantum
circuit simulation,” in Design, Automation and Test in Europe, 2020.
T. Grurl et al., “Arrays vs. Decision Diagrams: A case study on
quantum circuit simulators,” in Int’l Symp. on Multi-Valued Logic,
2020.

L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the
IBM Qiskit quantum circuit compilation flow,” in Int’l Conf. on
Quantum Computing and Engineering, 2020.

D. Janzing, P. Wocjan, and T. Beth, ““Non-identity check” is QMA-
complete,” Int. J. Quantum Inform., vol. 03, no. 03, pp. 463—473, 2005.
A. Zulehner and R. Wille, “Matrix-Vector vs. Matrix-Matrix multipli-
cation: Potential in DD-based simulation of quantum computations,”
in Design, Automation and Test in Europe, 2019.

L. Burgholzer, R. Raymond, I. Sengupta, and R. Wille, “Efficient
construction of functional representations for quantum algorithms,” in
Int’l Conf. of Reversible Computation, 2021.

L. K. Grover, “A fast quantum mechanical algorithm for database
search,” Proc. of the ACM, pp. 212-219, 1996.

P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., 1997.
T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
lightweight parallel and heterogeneous task graph computing system,”
IEEE Trans. Parallel Distrib. Syst., 2021.

H. Carter Edwards, C. R. Trott, and D. Sunderland, ‘“Kokkos: Enabling
manycore performance portability through polymorphic memory ac-
cess patterns,” Journal of Parallel and Distributed Computing, vol. 74,
no. 12, pp. 3202-3216, 2014.

H. Kaiser et al., “HPX - The C++ standard library for parallelism and
concurrency,” JOSS, vol. 5, no. 53, p. 2352, 2020.

T. Vincent et al., Jet: Fast quantum circuit simulations with parallel
task-based tensor-network contraction, 2021. arXiv: 2107.09793.

A. W. Cross et al., OpenQASM 3: A broader and deeper quantum
assembly language, 2021. arXiv: 2104.14722,

G. Aleksandrowicz et al., “Qiskit: An open-source framework for
quantum computing,” Zenodo, 2019.

Lukas Burgholzer Lukas Burgholzer (S’19) re-
ceived his Master’s degree in industrial mathematics
(2018) and Bachelor’s degree in computer science
(2019) from the Johannes Kepler University Linz,
Austria. He is currently a Ph.D. student at the
Institute for Integrated Circuits at the Johannes Ke-
pler University Linz, Austria. His research focuses
on design automation and software for quantum
computing. In these areas, he has published several
papers on international conferences such as ASP-
DAC, DAC, ICCAD, DATE, and QCE.

[36]
[37]

[38]

[39]

[40]

Z.-Y. Chen et al., “64-qubit quantum circuit simulation,” Science
Bulletin, vol. 63, no. 15, pp. 964-971, 2018.

E. Pednault et al., Pareto-efficient quantum circuit simulation using
tensor contraction deferral, 2020. arXiv: 1710.05867.

L. Burgholzer, H. Bauer, and R. Wille, “Hybrid Schrodinger-Feynman
simulation of quantum circuits with decision diagrams,” in Int’l Conf.
on Quantum Computing and Engineering, 2021.

R. Wille, S. Hillmich, and L. Burgholzer, “JKQ: JKU tools for quantum
computing,” in Int’l Conf. on CAD, 2020.

N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Bench-
marking software and design automation tools for quantum comput-
ing,” 2022. arXiv: 2204.13719 [quant-ph]|

Alexander Ploier Alexander Ploier received his
Master’s degree in industrial mathematics (2019)
from the Johannes Kepler University Linz, Austria.
He is currently a Ph.D. student at the Institute for
Integrated Circuits at the Johannes Kepler University
Linz, Austria. His research interests include design
automation for quantum computing—currently fo-
cusing on different data structures.

Robert Wille Robert Wille is a Full and Distin-
guished Professor at the Technical University of
Munich, Germany, and Chief Scientific Officer at the
Software Competence Center Hagenberg, Austria.
He received the Diploma and Dr.-Ing. degrees in
Computer Science from the University of Bremen,
Germany, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University

Dresden. From 2015 until 2022, he was Full Professor at the Johannes
Kepler University Linz, Austria, until he moved to Munich. His research
interests are in the design of circuits and systems for both conventional and
emerging technologies. In these areas, he published more than 400 papers
and served in editorial boards as well as program committees of numerous
journals/conferences such as TCAD, ASP-DAC, DAC, DATE, and ICCAD.
For his research, he was awarded, e.g., with Best Paper Awards, e.g., at TCAD
and ICCAD, an ERC Consolidator Grant, a Distinguished and a Lighthouse
Professor appointment, a Google Research Award, and more.

https://arxiv.org/abs/2107.09793
https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/1710.05867
https://arxiv.org/abs/2204.13719

