
Equivalence Checking of ParameterizedQuantum Circuits
Verifying the Compilation of Variational Quantum Algorithms

Tom Peham

Chair for Design Automation,

Technical University of Munich,

Germany

tom.peham@tum.de

Lukas Burgholzer

Institute for Integrated Circuits,

Johannes Kepler University Linz,

Austria

lukas.burgolzer@jku.at

Robert Wille

Chair for Design Automation,

Technical University of Munich,

Germany

Software Competence Center

Hagenberg GmbH, Austria

robert.wille@tum.de

ABSTRACT
Variational quantum algorithms have been introduced as a

promising class of quantum-classical hybrid algorithms that can

already be used with the noisy quantum computing hardware

available today by employing parameterized quantum circuits.
Considering the non-trivial nature of quantum circuit compilation

and the subtleties of quantum computing, it is essential to verify

that these parameterized circuits have been compiled correctly.

Established equivalence checking procedures that handle

parameter-free circuits already exist. However, no methodology

capable of handling circuits with parameters has been proposed

yet. This work fills this gap by showing that verifying the

equivalence of parameterized circuits can be achieved in a purely

symbolic fashion using an equivalence checking approach based

on the ZX-calculus. At the same time, proofs of inequality can be

efficiently obtained with conventional methods by taking

advantage of the degrees of freedom inherent to parameterized

circuits. We implemented the corresponding methods and proved

that the resulting methodology is complete. Experimental

evaluations (using the entire parametric ansatz circuit library

provided by Qiskit as benchmarks) demonstrate the efficacy of the

proposed approach. The implementation is open source and

publicly available as part of the equivalence checking tool

QCEC (https://github.com/cda-tum/qcec) which is part of the

Munich Quantum Toolkit (MQT).

1 INTRODUCTION
Quantum computers promise a computational advantage over

classical computers for certain problems [1]–[3]. Far-term

quantum algorithms such as Shor’s algorithm for integer

factorization [4] and Grover search [5] require robust, large-scale

error correction schemes to retrieve a meaningful result from their

execution [6]. Noisy Intermediate Scale Quantum (NISQ)

computers [7], the ones that are available today, are not able to

implement this error correction yet. Due to the high gate error

rates and short coherence times of NISQ devices, the depth of any

quantum circuit to be run on them is inherently limited.

Variational Quantum Algorithms [8] have been proposed to

achieve a computational advantage despite these limitations.

These algorithms use quantum programs as subroutines in a

classical optimization routine. The optimization loop iteratively

improves the parameters of a quantum circuit ansatz, which, in
turn, is used to estimate some desired quantity, such as the

expectation value of some observable. This general variational

framework has been applied to solve problems in chemistry [9],

finance [10], discrete optimization [11], and more.

But, before running an ansatz on a target device, a compilation

step has to be performed where the circuit is translated into a

natively supported gate-set and routed such that it conforms to the

device’s topological constraints—a costly and non-trivial

procedure [12]–[15]. To avoid the necessity of recompiling a

quantum circuit in each iteration step of a variational algorithm,

the circuit is usually compiled once in parameterized form in

which the parameters tuned by the classical optimization routine

are not bound to specific values. This compiled parameterized

circuit can then be used in the optimization loop without having to

perform all compilation steps over and over again.

The increasing use of parameterized circuits in the development

of quantum algorithms has also brought along the need for

verifying that these circuits have been compiled correctly.

Established equivalence checking methods such as proposed

in [16]–[20] are able to prove that a compiled circuit still adheres

to its specification after compilation. However, these approaches

cannot handle parameterized circuits. The only way to verify the

compilation of variational quantum algorithms with these

methods is to check the equivalence of the original and the

instantiated compiled ansatz in each iteration. Since equivalence

checking is a hard problem for even one instance—it is, in fact, a

QMA-complete problem [21]—solving it over and over again is

hardly a feasible approach.

In this work, we propose, for the first time, a methodology to

solve the equivalence checking problem for parameterized quantum

circuits. The proposed, multi-stage method starts out by using an

approach based on the ZX-calculus [22], [23] to try and prove the

equivalence of both parameterized circuits. If this does not succeed,

parameters of the circuits are instantiated, and a conventional,

complete equivalence checker is employed. In order to make this

check as easy as possible, we derive an instantiation scheme that

allows simplifyingmost of the parameterized gates from the circuits.

Furthermore, we prove this yields a complete equivalence checking

procedure for parameterized quantum circuits.

The resulting methodology has been evaluated on the entire
Qiskit [24] parameterized circuit library, which shows that the

proposed approach can decide the equivalence of variational ansatz

circuits for a high number of qubits and larger circuit depth than

is even practically executable today. The instantiation scheme, in

particular, allows for checking instances that would be infeasible

to handle otherwise—reducing the equivalence checking runtime

https://github.com/cda-tum/qcec

Tom Peham, Lukas Burgholzer, and Robert Wille

𝑍𝑍 (𝜃)

𝑍𝑍 (𝜃) 𝑍𝑍 (𝜃)

𝑞2 : 𝐻 𝑅𝑋 (𝛾)

𝑞1 : 𝐻 𝑅𝑋 (𝛾)

𝑞0 : 𝐻 𝑅𝑋 (𝛾)

(a) Parametric quantum circuit

𝑄0

𝑄1

𝑄2

𝑄3

𝑄4

𝑞2 ↦→

𝑞1 ↦→

𝑞0 ↦→

Architecture

=

𝐻 𝑅𝑍 (𝜃) 𝐻 𝑅𝑍 (𝛾) 𝐻

𝐻 𝑅𝑍 (𝜃) 𝑅𝑍 (𝜃) 𝐻 𝑅𝑍 (𝛾) 𝐻

𝐻 𝐻 𝑅𝑍 (𝛾) 𝐻

(b) Compiled circuit

Figure 1: Compiling a parametric circuit to a device

by orders of magnitude in many cases. While this method has

been developed with variational algorithms in mind, the approach

is much more general and works for any application that uses

parameterized quantum circuits. The implementation is open source

and publicly available at https://github.com/cda-tum/qcec.

The remainder of this paper is structured as follows. To keep

this work self-contained, Section 2 establishes the necessary

background on quantum computing and variational quantum

algorithms. Section 3 motivates the problem of equivalence

checking of parameterized quantum circuits, discussing the

shortcomings of existing equivalence checking approaches in the

parameterized case and proposes a complete equivalence checking

flow for parameterized circuits. After elaborating the details of the

proposed methods in Section 4, results obtained from the

experimental evaluations are provided in Section 5. Finally,

Section 6 concludes this paper.

2 BACKGROUND
This section briefly covers the necessary background to keep this

work self-contained as well as the relevant related work from the

literature. For an in-depth introduction, see [25].

2.1 Quantum Computing
In quantum computing, information is represented in the form of

quantum bits (short qubits) which, contrary to the classical world,

cannot only be in the basis states |0⟩ =
[
1

0

]
and |1⟩ =

[
0

1

]
, but also

in a superposition

𝛼0 |0⟩ + 𝛼1 |1⟩ with 𝛼0, 𝛼1 ∈ C and |𝛼0 |2 + |𝛼1 |2 = 1.

Multi-qubit systems are then described as superpositions of basis

states in the product Hilbert space (C2)⊗𝑛 . All transformations of

qubits have to be unitary transformations, i.e., linear

transformations 𝑈 : C2
𝑛 → C2𝑛 such that 𝑈 𝑈 † = 𝐼 , where 𝑈 †

is

the conjugate transpose of𝑈 and 𝐼 is the identity transformation.

Quantum computations are typically described as quantum circuits
which are diagrams composed of wires (representing qubits) as

well as boxes and interconnections on these wires called gates
(representing transformations of qubits). If the gate set is

expressive enough, any quantum computation can be written as a

quantum circuit using only gates from this set.

Example 1. The Hadamard gate 𝐻 = 1√
2

[
1 1

1 −1
]
is one of the

fundamental single-qubit quantum gates because it puts a qubit in
a basis state |0⟩ or |1⟩ into an equal superposition of these basis
states. The two-qubit controlled not (CNOT) gate (which is natively
supported on many quantum computers) flips the second qubit if the
first qubit is in the |1⟩ state and leaves it unchanged otherwise.

Although quantum algorithms are commonly described via

quantum circuits across different abstraction levels, their initial

description usually contains high-level gates and concepts that are

not directly supported by actual quantum computers. In fact,

existing quantum computers only support a limited gate library

and frequently have limited connectivity between the qubits which

means that not every pair of qubits on a quantum hardware can

interact in a two-qubit gate. Hence, in order to run a quantum

algorithm on an actual device, a compilation step has to be

performed which consists of synthesizing the gates of a quantum

circuit to the supported gate set, mapping logical to physical

qubits, inserting SWAP gates such that all two-qubit gates can be

properly executed, and applying optimizations to reduce the size

of the circuit [12]–[15].

Example 2. Assume the circuit in Fig. 1a shall be compiled to
an architecture which supports a gate library consisting of CNOT,
𝑅𝑍 , and 𝐻 gates, and has limited two-qubit interactions as shown on
the left-hand side of Fig. 1b. Then, Fig. 1b shows a possible way of
compiling this circuit. Because the ZZ gate (which is synthesized to
two CNOT gates and an 𝑅𝑍 gate) between physical qubit 𝑄2 and 𝑄0

cannot be executed directly, a SWAP gate has to be introduced into the
circuit. As shown above the circuit, this SWAP gate is synthesized as a
sequence of three CNOT gates. One of these CNOTs can be cancelled
with the CNOT of the synthesized ZZ gate, simplifying the circuit in
the process.

2.2 Variational Quantum Algorithms
Even with sophisticated compilation schemes, the noisy nature of

state-of-the-art quantum computing devices makes it impossible to

run far-term quantum algorithms such as Shor’s algorithm [4],

which require a substantial amount of gates. As every gate

potentially introduces an error into the system and, due to the

short coherence times of qubits, the maximal depth of quantum

circuits is limited on NISQ devices [7].

Variational Quantum Algorithms have been proposed to allow

for expressing more functionality even with low-depth circuits.

The quantum computations in variational algorithms are

expressed via ansatz circuits. These are shallow parameterized
quantum circuits 𝐺 (𝜃) with a parameter vector 𝜃 = (𝜃0, · · · , 𝜃𝑝−1).
Each assignment 𝜎 : {𝜃𝑖 | 0 ≤ 𝑖 < 𝑛} → (−𝜋, 𝜋]𝑛 yields an

instantiated circuit 𝐺 (𝜎 (𝜃)). The goal of a variational algorithm is

to successively adapt the circuit parameters using a classical

optimization routine (e.g., gradient descent) so that the resulting

circuit can be used to estimate some desired quantity, i.e, the

ground state of a molecule. By using classical computing,

variational ansatz circuits can be deliberately kept shallow.

However, shallow circuits are generally less expressive then more

https://github.com/cda-tum/qcec

Equivalence Checking of ParameterizedQuantum Circuits

complex circuits and ansatz circuits of different complexity have

been developed.

Example 3. The parameterized circuit shown in Fig. 1a represents
an instance of an Quantum Alternating Operator

Ansatz (QAOA, [11]) which can be used to solve problems such as
quadratic unconstrained binary optimization problems. The name
comes from the fact that a QAOA ansatz is comprised of two circuit
blocks, each of which is parameterized by a different parameter.

Note that, throughout the iterations in the variational algorithm,

only the values of the parameters change, while the general circuit

structure of the ansatz stays the same. Therefore, it is common to

perform the costly compilation of an ansatz in its parametric form

only once and, then, instantiate the parameters of this compiled

circuit in each iteration instead of instantiating the parameters

and compiling each time. This saves a lot of overhead incurred by

repeated and potentially expensive compilation steps.

3 VERIFYING VARIATIONAL
QUANTUM CIRCUITS

Compiling a variational ansatz can significantly change its

structure due to synthesized gates, SWAP insertions, and

optimizations applied during the compilation process. Because

compilation errors are hard to detect from the results of an

iteration of a variational algorithm alone, it is paramount to ensure

a priori that the compiled ansatz still adheres to its specification.

This section reviews the equivalence checking problem, describes

how existing techniques can be used to solve it, and discusses why

they do not work for parameterized circuits. Based on this, a

methodology is proposed that deals with these shortcomings.

3.1 Equivalence Checking
In general, given two quantum circuits𝐺 and𝐺 ′

that represent the

unitary matrices 𝑈 and 𝑈 ′
, the equivalence checking problem for

quantum circuits asks whether

𝑈 = 𝑒𝑖𝛾𝑈 ′
or, equivalently,𝑈 †𝑈 ′ = 𝑒𝑖𝛾 𝐼 ,

where 𝛾 ∈ (−𝜋, 𝜋] denotes a physically unobservable global phase.

In other words, equivalence checking asks whether two quantum

circuits 𝐺 and 𝐺 ′
realize the same functionality (described by 𝑈

and𝑈 ′
, respectively).

Solving this problem is conceptually very simple. After

constructing the matrices 𝑈 and 𝑈 ′
, an element-wise comparison

of them shows whether the circuits are equivalent or not.

However, because of the exponential size of the matrices in

question, this strategy is hardly feasible for practical quantum

circuits. This problem has already been studied extensively. As a

result, more sophisticated approaches have been proposed that can

frequently solve the equivalence checking problem for large

circuits and many qubits [16]–[20].

However, when allowing parameterized gates in the circuits to

be checked, the equivalence checking problem becomes even more

general. Checking the equivalence of two parameterized circuits

𝐺 (𝜃) and 𝐺 ′ (𝜃) requires showing that
𝐺 (𝜎 (𝜃0), · · · , 𝜎 (𝜃𝑝−1)) and 𝐺 ′ (𝜎 (𝜃))

are equivalent for all assignments 𝜎 . The naive approach to

circumvent this problem would be to just construct the matrices of

𝐺 (𝜃) and 𝐺 ′ (𝜃) symbolically. But then, in addition to the

exponential size of the matrices, one also has to deal with symbolic

variables when constructing the matrices. As known from

computer algebra systems, trying to represent symbolic matrix

entries precisely requires a lot of space for storing the coefficients

of the symbolic variables.

Alternatively, one might be tempted to simply check the

equivalence for one specific instantiation of two parameterized

circuits to conclude equivalence. Unfortunately, this brings along a

couple of difficult challenges in and of itself. On the one hand,

instantiating parameters in a random or unstructured fashion

produces circuits that are hard—if not impossible—to check with

existing methods. On the other hand, instantiating parameters

non-randomly can, as the following example shows, lead to false

positives and, hence, also does not provide a sufficient solution.

Example 4. Consider the following incorrect application of a
commutation rule for the 𝑅𝑍 gate:

→
𝑅𝑍 (𝛽) 𝑅𝑍 (𝛼) 𝑅𝑍 (𝛽) 𝑅𝑍 (𝛼)

Even though the two circuits are not equivalent for all 𝛼, 𝛽 ∈ (−𝜋, 𝜋],
they are equivalent if 𝛼 = 𝛽 . Therefore, equivalence of parametric
circuits cannot be decided by checking equivalence of any one
instantiation.

Because variational ansatz circuits are instantiated with

different parameters in each iteration, verifying the compilation

results of such circuits without symbolic equivalence checking

methods requires checking the equivalence of

𝐺 (𝜎𝑖 (𝜃0), · · · , 𝜎𝑖 (𝜃𝑝−1)) and 𝐺 ′ (𝜎𝑖 (𝜃)) for the parameter

assignment 𝜎𝑖 at each iteration 𝑖 of the hybrid optimization loop.

Repeatedly checking equivalence in this fashion leads to obvious

problems—in particular when checking a single instance is already

costly. Therefore, dedicated methods for equivalence checking of

variational ansatz circuits are desperately needed.

3.2 Related Work
Before developing solutions to the equivalence checking problem

for parameterized quantum circuits completely from scratch, it is

helpful to consider existing solutions for the parameter-free case

and see whether they can be extended to the parameterized case.

Previous approaches to verification and equivalence checking

broadly fall into three categories.

• Fully automated methods capable of checking equivalence

of two specific parameter-free quantum circuits [17], [18],

[20]: While these methods are able to check equivalence of

many parameter-free circuits, they cannot be directly

applied to parameterized circuits. More precisely, [20] only

works with a limited gate set as all verification rules need

to be explicitly derived manually for each gate and

parameter. The approach proposed in [18] works with

quantum decision diagrams which provide compact

representations of unitary matrices by exploiting

redundancies. But accurately detecting redundancies in the

parametric case requires an exact representation of the

respective symbolic matrix entries. Symbolic versions of

decision diagrams have been employed previously [26] but

exhibited large space requirements due to the exploding

Tom Peham, Lukas Burgholzer, and Robert Wille

𝑅𝑍 (𝜃2) · · ·

𝐻 · · ·

𝑅𝑋 (𝜃1) 𝑅𝑋 (𝜃3) · · ·

𝑅𝑍 (𝜃2) · · ·

𝐻 · · ·

𝑅𝑋 (𝜃1 + 𝜃3) · · ·

−𝜽2 𝜽2

−𝜽3 −𝜽1 𝜽2+𝜽3

.

.

.
𝜽2+𝜽3+

𝝅
2

.

.

.

.

.

.

.

.

.

.

.

.

Simplify

Simplify

(1) Check with ZX-calculus

Pick 𝑏

Find assignment 𝜎 s.t.

𝐴𝜎 (𝜃) = 𝑏

or random 𝜎 if last run

(2) Instantiate

𝑅𝑍 (𝜎 (𝜃2)) · · ·

𝐻 · · ·

𝑅𝑋 (𝜎 (𝜃1)) 𝑅𝑋 (𝜎 (𝜃3)) · · ·

?

=

𝑅𝑍 (𝜎 (𝜃2)) · · ·

𝐻 · · ·

𝑅𝑋 (𝜎 (𝜃1) + 𝜎 (𝜃3)) · · ·

(3) Check Instantiated Circuits

𝑟 runs?

×

✓

Not

equivalent

Equivalent

Yes

No

No 𝜎

Yes

No

Yes

Figure 2: Proposed equivalence checking method for parameterized quantum circuits

symbolic coefficients. Finally, [17] expresses rotations in

the form of dyadic fractions similar to [26]. But dyadic

fractions are insufficient when working with gates that are

not in the Clifford hierarchy as arbitrary rotations can

only be approximated with dyadic fractions.

• Semi-automatic methods using formal languages for

quantum computing and proof assistants [27]–[29]: While

these methods are very general when it comes to proving

equalities in quantum computing, employing them

requires expert knowledge about the languages and tools

being used and, therefore, they are not suited for

verification from a design automation perspective.

• Compiler- and domain-specific methods [30]–[32]: These

methods are based on the idea of writing compiler passes

in a domain-specific language. Those languages are

constructed in a way that allows for automated

verification of entire compilation flows and, therefore, are

more general than an equivalence checking method that

only checks the equivalence of two specific circuits. The

drawback of these methods is that they require dedicated

implementations of compilation flows which frequently

have to be updated once even small aspects of the compiler

are changed. Automated equivalence checking, on the

other hand, is agnostic to future improvements in

compilation and optimization methods as it only operates

on the circuit and not the compilation level.

Due to these shortcomings of existing equivalence checking

methods, new methods dedicated to handling parameterized

methods must be developed.

3.3 An Equivalence Checking Method for
Parameterized Quantum Circuits

In this work, we propose a fully automated, efficient, and complete
method for checking the equivalence of arbitrary parameterized

quantum circuits. To this end, a dedicated multi-stage process, as

depicted in Fig. 2, is used. The main ideas behind this method are

sketched in the following.

First, the parameterized circuits are converted into

parameterized ZX-diagrams—a graphic description of quantum

processes—that are then checked with a parametric version of the

ZX-calculus simplification algorithm described in [19], [33]

(step (1) in Fig. 2). If this check yields an affirmative answer to the

question of equivalence, then the two parameterized circuits have

been proven to be equivalent, and the algorithm terminates.

However, due to the incompleteness of this rewriting approach, a

non-affirmative answer does, in general, not imply that the circuits

in question are non-equivalent.

Therefore, if the ZX-calculus approach is not able to prove

equivalence, further steps have to be taken. To this end, note that,

in order to prove non-equivalence of two parameterized circuits

𝐺 (𝜃) and 𝐺 ′ (𝜃) it suffices to find one assignment

𝜎 : 𝜃 → (−𝜋, 𝜋]𝑛 such that 𝐺 (𝜎 (𝜃)) ≠ 𝐺 ′ (𝜎 (𝜃)).
As discussed above, choosing a good assignment is a delicate

issue, as random assignments may produce hard equivalence

checking instances, and non-random assignments can (as

discussed in Example 4) lead to false positives. Instantiation can

never produce false negatives, however. Hence, rather than

choosing a random assignment, one can take advantage of the

degrees of freedom provided by the parameters and instantiate the

circuits in such a fashion as to make the subsequent equivalence

check as simple as possible. In the proposed method, this is

achieved by solving a linear system obtained from the expressions

in parameterized gates (step (2) in Fig. 2). The instantiated circuits

are then checked with an existing, complete equivalence checking

method (step (3) in Fig. 2). If this method manages to prove

non-equivalence of the instantiated circuits, it can be concluded

that the parameterized circuits are not equivalent either.

To counteract the possibility of false positives, multiple

non-random instantiations are checked. In the worst case,

however, all these instantiations could yield false positives.

Therefore, the circuits are instantiated randomly as the last resort

before being checked one last time. This has the disadvantage of

handing very complicated circuits over to the equivalence checker,

but the advantage—as proven in this work—is that the probability

of obtaining a false positive through random instantiation is 0.

Hence, the output of this last check is returned as the final result.

4 IMPLEMENTATION AND COMPLETENESS
Having the ideas and concepts discussed above (and illustrated in

Fig. 2), this section now provides implementation details on the

respective steps and proves that the resulting overall methodology

is indeed complete.

4.1 Equivalence Checking of Parameterized
Circuits with the ZX-calculus

This section describes how equivalence of parameterized circuits

can be checked with the ZX-calculus. To this end, we first review

the basics of ZX-diagrams and the ZX-calculus.

ZX-diagrams [22], [23] are undirected, vertex-labelled graphs

consisting of two kinds of nodes (also called spiders), namely the

Z-spider .

.

.
𝜶

.

.

. and X-spider .

.

.
𝜶

.

.

. which carry a phase

𝛼 ∈ [0, 2𝜋) (a phase of 0 is usually omitted). Any quantum circuit

can be expressed as a ZX-diagram.

Equivalence Checking of ParameterizedQuantum Circuits

±𝝅
2

.

.

.
𝜶1 𝜶𝒏

.

.

.

.

.

.
𝜶2 𝜶𝒏−1

.

.

.

. . .

(LC)
=

.

.

.
𝜶1∓

𝝅
2 𝜶𝒏∓

𝝅
2

.

.

.

.

.

.
𝜶2∓

𝝅
2 𝜶𝒏−1∓

𝝅
2

.

.

.

. . .

𝒋𝝅 𝜶

.

.

.
𝜶1 𝜶𝒏

.

.

.

. . .

. . .

(GB)
=

𝜶

𝒋𝝅

.

.

.
𝜶1 𝜶𝒏

.

.

.

. . .

. . .

𝒋𝝅 𝒌𝝅

.

.

.
𝜶1 𝜸1

.

.

.

𝜷1
.

.

.

.

.

.
𝜶𝒏 𝜸𝒍

.

.

.

𝜷𝒎
.

.

.

.

.

.

.

.

.

.

.

.

(P)
=

.

.

.
𝜶1+𝒌𝝅 𝜸1+𝒋𝝅

.

.

.

.

.

.
𝜶𝒏+𝒌𝝅 𝜸𝒍+𝒋𝝅

.

.

.

𝜷1+(𝒋+𝒌+1)𝝅
.

.

.

𝜷𝒎+(𝒋+𝒌+1)𝝅
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝜶 𝜷

.

.

.

(ZHH)
=

.

.

.
𝜶 𝜷

.

.

.

𝜶

. . .

= 𝜶

. . .

𝜶

. . .

= 𝜶+𝝅
2

. . .

𝜶 𝜷
.

.

.

(UG)
= 𝜶+𝜷

.

.

.

𝜶 𝒌𝝅 𝜶1
.

.

.

𝜷 𝒋𝝅 𝜶𝒏
.

.

.

.

.

.

(GF)
=

𝜶1
.

.

.

(−1)𝒌𝜶+(−1)𝒋𝜷

𝜶𝒏
.

.

.

.

.

.

Figure 3: Rewrite system for ZX-diagrams

The ZX-calculus is a set of axioms that can be used for equational

reasoning about quantum processes solely through diagrammatic

manipulations of ZX-diagrams. An example of one of the axioms

of this calculus is the spider fusion rule
.

.

.
𝜶

.

.

.

.

.

.
𝜷

.

.

.

. . .

(f)
=

.

.

.
𝜶+𝜷

.

.

. , which

allows to combine connected spiders of the same colour.

Example 5. The circuit shown in Fig. 1a can be translated to the a
ZX-diagram and simplified by applying the spider fusion rule.

𝜽 𝜽 𝜽

𝜸

𝜸

𝜸

(f)
=

𝜽 𝜽 𝜽

𝜸

𝜸

𝜸

Although this ZX-diagram looks very similar to the original circuit,
the ZZ gates have been translated into a form (so-called phase gadgets)
that has no direct interpretation as a quantum circuit anymore.

The ZX-calculus has, among other applications, proven useful

for equivalence checking [19], [33]. Given two quantum circuits 𝐺

and 𝐺 ′
, one can check them for equivalence by constructing the

ZX-diagram of 𝐺−1𝐺 ′
and, then, simplifying the diagram as much

as possible using the rewriting system shown in Fig. 3. If the

ZX-diagram can be reduced to the identity diagram (the

ZX-diagram consisting only of wires and no spiders), the two

circuits are shown to be equivalent.

This method can be used to handle parameterized circuits as

well, since all phases 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 in Fig. 3 are just symbolic. For the

sake of finding matches for the rewriting rules their precise value

does not matter.

Whether or not the ZX-diagram of the circuit 𝐺−1 (𝜃)𝐺 ′ (𝜃) can
be rewritten to the identity diagram depends on the symbolic

expressions appearing in the diagram. It is reasonable to assume

that all phases 𝛼𝑘 are linear functions of the parameters

𝜃 = (𝜃0, · · · , 𝜃𝑝−1), i.e., they are of the form

𝛼𝑘 =
(𝑝−1∑︁
𝑖=0

𝑐𝑖𝜃𝑖
)
+ 𝑑 𝑐0, · · · , 𝑐𝑝−1, 𝑑 ∈ R.

This assumption is justified considering that many optimizations

of quantum circuits involve gate commutations and summation of

rotation angles for rotation gates [34].

Under this assumption it is easy to see that all phases resulting

from the application of the rules shown in Fig. 3 are also just linear

functions of these parameters. If some parameters cancel and the

resulting phase has the form𝑘 𝜋
2
, 𝑘 ∈ Z, new simplifications become

possible.

Example 6. Cancellation of parameters during simplification can
lead to further simplifications as, e.g., for following ZX-diagram.

−𝜽+𝝅
4

𝜽+𝝅
4

... 𝜶1 𝜶𝒏
...

... 𝜶2 𝜶𝒏−1
...

. . .

(UG)
=

𝝅
2

... 𝜶1 𝜶𝒏
...

... 𝜶2 𝜶𝒏−1
...

. . . (LC)
=

... 𝜶1−
𝝅
2 𝜶𝒏−

𝝅
2

...

... 𝜶2−
𝝅
2 𝜶𝒏−1−

𝝅
2

...

. . .

If, eventually, all parameters cancel and the diagram is reduces

to the identity when simplifying𝐺−1 (𝜃)𝐺 ′ (𝜃), it can be concluded

that 𝐺 (𝜃) is equivalent to 𝐺 ′ (𝜃) entirely in parameterized form.

4.2 Determining Instantiation Parameters
Established equivalence checking methods like [18] greatly benefit

from circuits that have a certain repeating structure in their

functionality [33], [35]. When using such methods to check

equivalence of instantiated circuits, one can exploit the degrees of

freedom in the parameters to try to create such structures. As

shown in our experimental evaluations later in Section 5, this can

significantly decrease the complexity of checking the resulting

parameter-free instance.

Based on previous assumptions, if the rotation angles are of the

form 𝛼𝑘 =
(∑𝑝−1

𝑖=0
𝑐𝑖𝜃𝑖

)
+ 𝑑𝑘 for some constant 𝑑𝑘 , then one can

try to instantiate the angles 𝛼𝑘 to a predefined value by solving a

linear system. This system has as many equations as there are

parameterized angles in the circuits. When choosing the angles to

solve for, one has to distinguish two cases in checking

non-equivalent circuits:

• The error in the circuit appears in one of the parameter-free

gates. In this case, one can try to solve for 𝛼𝑘 = 0, for all

parameterized angles. This effectively removes the entire

parameterized gates—leading to a simpler circuit.

• The error in the circuit appears in one of the

parameterized gates. In this case, removing the gates from

the circuit would mask the error and lead to false

conclusions. Then, one can still try to solve for rotation

angles of 0. Nevertheless, when solving the linear system,

some of the equations will, in practice, not have a solution

precisely because of erroneous optimizations. The gates

that cannot be removed will, therefore, usually be the ones

containing an error.

In general, the linear system can be overdetermined and may

not have a solution. It is NP-hard in general to find a solution such

that the maximal number of equations are satisfied [36]. One can

still try to satisfy equations in a greedy fashion which, although

not optimal, can be done in polynomial time.

4.3 Completeness Proof
If both the ZX-checker and the previously described instantiation

method fail to show that two parameterized circuits are not

equivalent, then it cannot be concluded with absolute certainty

that the circuits are equivalent. However, in the following, we

prove that it suffices to randomly instantiate the parameters and

check the equivalence of the resulting parameter-free circuits. The

core observation is that, statistically, two random instantiations

can be proven to almost never produce a subsequent false positive.
Here, “almost never” means that out of the infinitely many choices

for the real-valued parameters 𝜃𝑖 , the probability of choosing a

combination of values that results in a false positive is 0.

Tom Peham, Lukas Burgholzer, and Robert Wille

The following assumes a familiarity with complex analysis and

measure theory to keep the proofs as concise as possible. Any reader

unfamiliar with these concepts might skip to the last paragraph of

this section.

The following lemma will be the workhorse in the proof of

Theorem 4.2.

Lemma 4.1. Let 𝑓 : C𝑛 → C be an analytic function, 𝜆𝑛 be the
Lebesgue measure on R𝑛 , and 𝑍 (𝑓) = {𝑥 ∈ R𝑛 | 𝑓 (𝑥) = 0} the set of
real zeros of 𝑓 . If 𝜆𝑛 (𝑍 (𝑓)) > 0 then, 𝑓 = 0.

Proof. Since 𝜆𝑛 (𝑍 (𝑓)) > 0 implies that 𝑍 (𝑓) contains an

accumulation point, this lemma follows directly from the identity

principle for analytic functions. □
The converse of this lemma states that a non-trivial analytic

function can have only countably many real zeros. With this lemma,

we can now show the desired result.

Theorem 4.2. Let 𝐺 (𝜃) and 𝐺 ′ (𝜃) be two non-equivalent
quantum circuits with parameter vector 𝜃 ∈ (−𝜋, 𝜋]𝑛 . Suppose that
all rotation angles in the gates of 𝐺 (𝜃) and 𝐺 ′ (𝜃) are linear
functions of 𝜃 . Then, P{𝜃 | 𝐺 (𝜃) = 𝐺 ′ (𝜃)} = 0.

Proof. Due to the assumption on the angles of 𝐺 (𝜃) and

𝐺 ′ (𝜃), all matrix entries of their respective gate matrices are of the

form 𝑒𝑖
∑𝑛

𝑖=0 𝑐𝑖𝜃𝑖+𝑑 , which is a complex analytic function in 𝜃 . The

system matrices𝑈 (𝜃) and𝑈 ′ (𝜃) are the product of the respective
gate matrices of the circuits 𝐺 and 𝐺 ′

. Therefore, all entries of 𝑈

and 𝑈 ′
are analytic in 𝜃 . Without loss of generality, consider the

𝑖, 𝑗-th entries 𝑢𝑖, 𝑗 (𝜃), 𝑢′𝑖, 𝑗 (𝜃). Then, 𝑢𝑖, 𝑗 (𝜃) − 𝑢′
𝑖, 𝑗
(𝜃) is also

analytic. By Theorem 4.1, the set of zeros of 𝑢𝑖, 𝑗 (𝜃) − 𝑢′
𝑖, 𝑗
(𝜃) has

measure zero. Therefore, the probability of choosing random

parameters in (−𝜋, 𝜋]𝑛 such that 𝑢𝑖, 𝑗 (𝜃) = 𝑢′
𝑖, 𝑗
(𝜃) is 0. Since this

holds for one matrix entry, it follows immediately that

P{𝜃 | 𝐺 (𝜃) = 𝐺 ′ (𝜃)} = 0. □
The attentive reader might argue that this fact negates the need

for the previously discussed methods. While this is true in theory,
our experimental evaluations clearly demonstrate that, in practice,

equivalence checking of circuits with random rotations is a

computationally difficult task. It is, therefore, only used as a last

resort in the proposed equivalence checking method.

5 EXPERIMENTAL EVALUATION
To evaluate the equivalence checkingmethod proposed in this work,

it has been implemented using a combination of C++ and Python.

In order to utilize the ZX-calculus, a parameterized version of the

rules in Fig. 3 and the resulting equivalence checking method have

been implemented. For verifying instantiated circuits the approach

presented in [18] has been used. The resulting implementation

is publicly available under https://github.com/cda-tum/qcec. The

resulting tool works as a push-button method, requiring few lines

of code and no expert knowledge on verification. To demonstrate

the effectiveness of the proposed method, we conducted a broad

set of experiments discussed in the following.

5.1 Setup
To test a wide range of parameterized ansatz circuits, the proposed

method was evaluated on the entire available library of

parameterized ansatz circuits provided by the Qiskit circuit

library [24]. The circuits have been created with varying depths

and different entanglement patterns (linear, circular, full, and

SCA).

In order to also evaluate the proposed method on non-equivalent

circuits, two kinds of errors were injected into the compiled circuits.

The first type of error were incorrect applications of control and

target qubits in two-qubit gates. The goal of the first type of error

was to mimic situations where the control and targets of certain two-
qubit gates have been erroneously exchanged—a common mistake

that can happen in compilers. To this end, every two-qubit gate had

a low chance (0.5%) of being flipped. The second type of error was

concerned with errors in the parameters. Many optimizations on

rotation gates involve phase shifts in the rotation angles of a gate.

Therefore, with a low probability (1%), each parameterized angle

had a chance of having an erroneous phase shift applied to it.

All circuits have been compiled using qiskit-terra 0.21.0 with

optimization level O2. The target devices for compilation were the

20-qubit ibmq-singapore, the 27-qubit ibmq-cairo, the 65-qubit ibmq-
manhattan and the 127-qubit ibmq-washington devices. The circuits
have been compiled to the next smallest viable architecture.

5.2 Results and Discussion
Table 1 shows the runtime (𝑡) of the proposed approach for circuits

with varying numbers of qubits (𝑛), parameters (#𝑝𝑎𝑟𝑎𝑚), and

gates for both the original (𝐺) and compiled version (𝐺 ′
) of each

equivalent ansatz circuit
1
. All considered circuits were

successfully verified completely with the ZX-calculus, and no

instantiation was necessary. As can be seen from these results, the

proposed approach scales to the largest quantum systems available

today and is capable of verifying the compilation results of any of

the variational algorithms that are currently being explored for

near-term applications.

Table 2 compares the instantiation approach proposed in

Section 4.2 with random instantiation for both considered types of

errors. The table shows runtimes for both the proposed

instantiation method using linear systems (𝑡
lin
) and random

instantiation (𝑡
rand

). These are listed along with the number of

errors (#𝑒𝑟𝑟) for flipped two-qubit gate errors (Flipped) and phase

shift errors (Shift). While the state-of-the-art method from [18]

used to conduct the equivalence check of the instantiated circuits

quickly runs into the set timeout of 1h when using random

instantiation, the instantiation approach through solving linear

systems allows to conclude the non-equivalence for a much larger

range of circuits—in many cases within fractions of a second. This

underlines the point made at the end of the previous section that,

while random instantiations would be “good enough” for

equivalence checking parameterized circuits in theory, they are

hardly practical.

6 CONCLUSION
This paper proposes a methodology that, for the first time, allows

for checking the equivalence of parameterized quantum circuits.

The proposed equivalence checking methodology is complete, i.e.,

it can check equivalence for any pair of quantum circuits. This is

achieved by combining a ZX-calculus approach working directly

on parameterized circuits and an instantiation strategy to create

parameter-free circuits that are efficiently checkable by existing

equivalence checking methods. The resulting tool has been

demonstrated to be capable of verifying the compilation of any of

1
Due to space restrictions, only a representative sample of the results is provided. All

results are available at https://github.com/cda-tum/qcec

https://github.com/cda-tum/qcec
https://github.com/cda-tum/qcec

Equivalence Checking of ParameterizedQuantum Circuits

Table 1: Equivalent ansatz circuits
Benchmark 𝑛 #param |𝐺 | |𝐺 ′ | 𝑡 [s]

TwoLocal-Circular 27 837 3295 13683 2.95

EfficientSU2-Full 27 837 12232 115099 2.11

ExcitationPreserving-FSIM-Circular 27 837 5455 9292 7.18

ExcitationPreserving-ISWAP-Circular 27 1647 12205 21913 490.59

ExcitationPreserving-ISWAP-SCA 27 567 4105 7736 13.98

ExcitationPreserving-ISWAP-Full 27 3807 49465 130977 219.36

ExcitationPreserving-FSIM-Linear 27 1607 10475 20358 9.20

ExcitationPreserving-FSIM-Linear 27 2397 15685 32577 19.11

ExcitationPreserving-ISWAP-Linear 27 1617 11785 25423 31.76

RealAmplitudes-Full 65 715 21581 226474 18.92

TwoLocal-Circular 65 1365 5331 24257 23.08

RealAmplitudes-Full 65 1365 43031 445940 31.44

ExcitationPreserving-FSIM-SCA 65 2015 13131 23878 585.24

ExcitationPreserving-FSIM-SCA 65 3965 26131 46974 1903.53

EfficientSU2-Full 65 1365 44396 446607 14.98

ExcitationPreserving-ISWAP-SCA 65 1365 9881 20770 165.96

ExcitationPreserving-ISWAP-Circular 65 455 3056 6929 11.41

TwoLocal-SCA 65 715 2731 13197 20.70

TwoLocal-Full 65 260 19046 105511 14.14

TwoLocal-SCA 127 508 1779 11093 2.41

ExcitationPreserving-FSIM-Linear 127 1264 7818 16202 8.97

RealAmplitudes-Circular 127 508 1017 8611 0.82

EfficientSU2-SCA 127 508 1525 9729 0.14

RealAmplitudes-Full 127 508 24639 287203 12.34

TwoLocal-Circular 127 508 1779 11109 1.61

RealAmplitudes-Linear 127 508 1014 7000 1.55

ExcitationPreserving-FSIM-Circular 127 1270 7875 17454 12.98

RealAmplitudes-SCA 127 508 1017 8972 0.98

ExcitationPreserving-FSIM-SCA 127 1270 7875 17316 423.05

Table 2: Non-equivalent circuits with different instantiations
Benchmark n #param |𝐺 | |𝐺 ′ | Flipped Shift

#err 𝑡
lin
[s] 𝑡

rand
[s] #err 𝑡

lin
[s] 𝑡

rand
[s]

ExcitationPreserving-FSIM-Full 15 690 6061 8487 48 0.19 1178.81 9 0.20 668.49

RealAmplitudes-Full 15 60 391 1735 10 0.02 77.73 2 0.20 83.12

ExcitationPreserving-ISWAP-Full 15 375 4486 6090 24 0.21 636.63 6 0.22 542.35

TwoLocal-Full 20 40 631 1432 9 0.01 >3600 1 0.33 0.60

ExcitationPreserving-FSIM-Circular 35 560 3571 6666 21 0.15 >3600 13 0.14 >3600

ExcitationPreserving-ISWAP-Circular 35 385 2696 5557 30 0.12 >3600 6 0.12 >3600

RealAmplitudes-Full 35 210 3221 27718 117 0.16 >3600 3 0.16 >3600

EfficientSU2-Full 35 210 3431 28055 151 0.18 >3600 2 0.18 >3600

EfficientSU2-Full 35 140 2101 17705 77 0.11 >3600 1 0.10 >3600

ExcitationPreserving-FSIM-Linear 35 550 3476 4836 26 0.13 >3600 8 0.12 >3600

ExcitationPreserving-FSIM-Linear 35 344 2114 2930 8 0.10 >3600 8 0.12 >3600

TwoLocal-Full 35 70 1891 9261 44 0.16 >3600 2 0.13 >3600

TwoLocal-Full 35 105 3711 19152 92 0.43 >3600 2 0.25 >3600

TwoLocal-Full 35 140 5531 27878 128 1.21 >3600 2 0.43 >3600

ExcitationPreserving-ISWAP-Full 35 665 8436 19992 93 2.03 >3600 11 2.15 >3600

ExcitationPreserving-FSIM-Full 35 1260 11411 25245 124 2.03 >3600 35 11.40 >3600

ExcitationPreserving-ISWAP-Full 35 1295 16801 41715 211 7.79 >3600 26 204.66 >3600

EfficientSU2-Full 40 160 2701 19823 91 0.28 >3600 2 0.28 >3600

TwoLocal-Full 40 160 7221 37293 192 2.31 >3600 1 0.73 >3600

ExcitationPreserving-FSIM-Circular 40 640 4081 5681 29 0.16 >3600 10 0.16 >3600

ExcitationPreserving-ISWAP-Linear 40 435 3011 4001 24 0.15 >3600 2 0.12 >3600

ExcitationPreserving-FSIM-Linear 40 630 3986 5546 21 0.18 >3600 12 0.15 >3600

RealAmplitudes-Full 40 160 2541 22750 95 0.25 >3600 2 0.21 >3600

ExcitationPreserving-FSIM-Linear 45 710 4496 6256 40 0.22 >3600 14 0.18 >3600

ExcitationPreserving-FSIM-Circular 45 450 2791 5827 37 0.15 >3600 13 0.14 >3600

ExcitationPreserving-ISWAP-Linear 45 490 3396 4511 23 0.19 >3600 4 0.16 >3600

ExcitationPreserving-ISWAP-Circular 45 495 3466 7921 40 0.24 >3600 11 0.20 >3600

ExcitationPreserving-FSIM-Circular 45 720 4591 9010 41 0.23 >3600 10 0.21 >3600

ExcitationPreserving-ISWAP-Circular 45 315 2116 4975 23 0.14 >3600 10 0.14 >3600

EfficientSU2-Circular 45 270 811 4330 19 0.13 >3600 6 0.10 >3600

ExcitationPreserving-FSIM-Linear 50 494 3044 4220 28 0.16 >3600 14 0.14 >3600

𝑛: Number of qubits #param: Number of distinct parameters |𝐺 |: Gate count of uncompiled ansatz |𝐺 ′ |: Gate count of compiled ansatz

𝑡 : Runtime of ZX-checker #err: Number of errors 𝑡
lin

: Runtime with linear system instantiation 𝑡
rand

Runtime with random instantiation

the variational ansatz circuits currently being explored for

near-term quantum applications—even for the largest available

quantum architectures.

Acknowledgements
This work received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 101001318), was part of

the Munich Quantum Valley, which is supported by the Bavarian

state government with funds from the Hightech Agenda Bayern

Plus, and has been supported by the BMWK on the basis of a

decision by the German Bundestag through project QuaST.

REFERENCES
[1] F. Arute et al., “Quantum supremacy using a programmable superconducting

processor,” Nature, 2019.
[2] H.-S. Zhong et al.,Quantum computational advantage using photons, 2020. arXiv:

2012.01625.

[3] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill, Provably efficient
machine learning for quantum many-body problems, 2022. arXiv: 2106.12627.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM J. Comput., 1997.
[5] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Proc.

of the ACM, 1996.

[6] S. J. Devitt, K. Nemoto, and W. J. Munro, “Quantum error correction for

beginners,” Rep. Prog. Phys., 2013.
[7] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, 2018.

[8] M. Cerezo et al., Variational quantum algorithms, 2020. arXiv: 2012.09265.
[9] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum

computational chemistry,” Rev. Mod. Phys., 2020.
[10] D. Egger et al., “Quantum Computing for Finance: State-of-the-Art and Future

Prospects,” IEEE Transactions on Quantum Engineering, 2020.
[11] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas,

“From the Quantum Approximate Optimization Algorithm to a Quantum

Alternating Operator Ansatz,” Algorithms, 2019.
[12] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-

era quantum devices,” in Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2019.

[13] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to IBM

QX architectures using the minimal number of SWAP and H operations,” in

Design Automation Conf., 2019.
[14] A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of quantum

circuit compilation,” in Int’l Symp. on Combinatorial Search, 2018.
[15] B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,” in Int’l

Conf. on CAD, 2020.

[16] L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the IBM Qiskit

quantum circuit compilation flow,” in Int’l Conf. on Quantum Computing and
Engineering, 2020.

[17] M. Amy, “Towards large-scale functional verification of universal quantum

circuits,” in International Conference on Quantum Physics and Logic, 2019.
[18] L. Burgholzer and R. Wille, “Advanced equivalence checking for quantum

circuits,” IEEE Trans. on CAD of Integrated Circuits and Systems, 2021.
[19] A. Kissinger and J. van de Wetering, “Reducing T-count with the ZX-calculus,”

Phys. Rev. A, 2020.
[20] W. Chun-Yu, T. Yuan-Hung, J. Chaio-Shan, and J. Jie-Hong, “Accurate

BDD-based Unitary Manipulation for Scalable and Robust Quantum Circuit

Verification,” in Design Automation Conf., 2022.
[21] D. Janzing, P. Wocjan, and T. Beth, ““Non-identity check” is QMA-complete,”

Int. J. Quantum Inform., 2005.
[22] J. van de Wetering, ZX-calculus for the working quantum computer scientist,

2020. arXiv: 2012.13966.

[23] B. Coecke and A. Kissinger, “Picturing quantum processes,” in Diagrammatic
Representation and Inference, 2018.

[24] G. Aleksandrowicz et al., “Qiskit: An open-source framework for quantum

computing,” Zenodo, 2019.
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2010.

[26] P. Niemann, A. Zulehner, R. Drechsler, and R. Wille, “Overcoming the Tradeoff

Between Accuracy and Compactness in Decision Diagrams for Quantum

Computation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2020.
[27] L. Zhou, N. Yu, and M. Ying, “An applied quantum Hoare logic,” in Conference

on Programming Language Design and Implementation, 2019.
[28] E. D’hondt and P. Panangaden, “Quantum weakest preconditions,”

Mathematical. Structures in Comp. Sci., 2006.
[29] M. Lewis, S. Soudjani, and P. Zuliani, Formal Verification of Quantum Programs:

Theory, Tools and Challenges, 2021. arXiv: 2110.01320 [quant-ph].
[30] R. Tao et al., Giallar: Push-button verification for the Qiskit quantum compiler,

2022. arXiv: 2205.00661 [quant-ph].
[31] L. Li, F. Voichick, K. Hietala, Y. Peng, X. Wu, and M. Hicks, Verified Compilation

of Quantum Oracles, 2022. arXiv: 2112.06700 [quant-ph].
[32] R. Rand, J. Paykin, D.-H. Lee, and S. Zdancewic, “ReQWIRE: Reasoning about

Reversible Quantum Circuits,” Electron. Proc. Theor. Comput. Sci., 2019. arXiv:
1901.10118 [cs].

[33] T. Peham, L. Burgholzer, and R. Wille, “Equivalence checking paradigms in

quantum circuit design: A case study,” in Design Automation Conf., 2022.
[34] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated optimization

of large quantum circuits with continuous parameters,” npj Quantum Inf, 2018.
[35] L. Burgholzer, R. Raymond, I. Sengupta, and R. Wille, “Efficient construction of

functional representations for quantum algorithms,” in Int’l Conf. of Reversible
Computation, 2021.

[36] V. Guruswami and P. Raghavendra, “Hardness of Solving Sparse

Overdetermined Linear Systems: A 3-Query PCP over Integers,” Electron
Colloq. Comput Complex, 2009.

https://arxiv.org/abs/2012.01625
https://arxiv.org/abs/2106.12627
https://arxiv.org/abs/2012.09265
https://arxiv.org/abs/2012.13966
https://arxiv.org/abs/2110.01320
https://arxiv.org/abs/2205.00661
https://arxiv.org/abs/2112.06700
https://arxiv.org/abs/1901.10118

