
Exploiting Reversible Computing for Verification
Potential, Possible Paths, and Consequences

Lukas Burgholzer

Institute for Integrated Circuits,

Johannes Kepler University Linz, Austria

lukas.burgolzer@jku.at

Robert Wille

Chair for Design Automation,

Technical University of Munich, Germany

Software Competence Center Hagenberg GmbH, Austria

robert.wille@tum.de

ABSTRACT

Today, the verification of classical circuits poses a severe challenge

for the design of circuits and systems. While the underlying (expo-

nential) complexity is tackled in various fashions (simulation-based

approaches, emulation, formal equivalence checking, fuzzing,model

checking, etc.), no “silver bullet” has been found yet which allows to

escape the growing verification gap. In this work, we entertain and

investigate the idea of a complementary approach which aims at

exploiting reversible computing. More precisely, we show the poten-

tial of the reversible computing paradigm for verification, debunk

misleading paths that do not allow to exploit this potential, and

discuss the resulting consequences for the development of future,

complementary design and verification flows. An extensive empir-

ical study (involving more than 30 million simulations) confirms

these findings. Although this work cannot provide a fully-fledged

realization yet, it may provide the basis for an alternative path

towards overcoming the verification gap.

1 INTRODUCTION

Verification is an essential step of today’s design flow for circuits

and systems which checks whether an obtained implementation

realizes the desired specification or not. In the past decades, sev-

eral approaches have been developed which include, besides many

others, simulation-based verification (see, e.g., [1]–[5]), emulation

(see, e.g., [6], [7]), formal equivalence checking (see, e.g., [8]–[11]),

fuzzing (see, e.g., [12], [13]), andmodel checking (see, e.g., [14], [15]).

However, all of these approaches suffer from the steadily increas-

ing complexity of circuits triggered by the accomplishments of the

semiconductor industry in further miniaturizing feature sizes and

increasing transistor counts. In fact, the number of transistors that

can be physically implemented on a chip still grows faster than

the ability to fully exploit them during the design and, especially,

to (efficiently) verify the resulting circuits (commonly known as

verification gap).

Thus far, no “silver bullet” has been found for this yet and there

is a certain chance that we might not be able to escape this situation

by solely focusing on iteratively improving existing methods for

verification. Instead, in addition to the current state of the art, we

most likely will need further, more complementary changes on the

major pillars of today’s design and verification algorithms.

In this work, we entertain such an approach and investigate

whether the concept of reversible computing might provide such

a complementary alternative. Reversible computing is a comput-

ing paradigm which is solely based on bijective operations, i.e.,

reversible 𝑛-input 𝑛-output functions that map each possible input

pattern to a unique output pattern. As a result, in circuits based on

reversible logic all computations can be reverted (i.e., the inputs can

be obtained from the outputs and vice-versa). Recently, reversible

computing found great interest, mostly because of its application in

quantum computing [16], but also in the domain of low-power de-

sign [17], encoders [18], [19], and adiabatic circuits [20], [21], where

it is exploited that no information is lost in reversible computation.

We believe that, besides these applications, this paradigm also

offers distinct characteristics to improve verification and potentially

shows an alternative route towards escaping the verification gap.

This is mainly motivated by observations that errors in reversible

circuits often seem to be easier to detect than in classical circuits

(discussed in more detail later in Section 2). Moreover, additional

characteristics such as an increased controllability and observability

of corresponding reversible circuits [22], [23] as well as recent

findings in the verification of quantum circuits [24]–[26] (which,

as stated above, share characteristics with reversible circuits) seem

to support this idea. However, thus far, all this latent potential has

not yet evolved into a true alternative.

In this work, we shed light on why this is the case and whether

reversible computing indeed may provide an alternative or not. To

this end, we first show the potential of reversible computing for

the verification of circuits and systems in Section 2. Afterwards,

we debunk misleading paths that actually do not allow to exploit

this potential in Section 3—leading to a better understanding of the

issue and an identification of what is needed in order to leverage

the potential. Those findings are eventually confirmed by means

of an intensive empirical study (including more than 30 million

simulations), whose results are summarized in Section 4. Overall,

this does not yet lead to a fully-fledged realization of this alterna-

tive verification flow, but may provide the basis for an alternative

path towards overcoming the verification gap. Accordingly, we

conclude this paper with a discussion of the consequences of these

findings for the development of future, complementary design and

verification flows in Section 5.

2 BACKGROUND & MOTIVATION

In order to provide the basis for this work, this section first reviews

classical circuits and briefly sketches the key challenge in their

verification thus far. Afterwards, we give a short introduction on

the basics of reversible computing and illustrate the raw potential

this alternative computing paradigm might offer for the verification

of circuits.
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𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 = 𝑓 ′

Fig. 1: Classical circuit realizing the functionality 𝑓 ( ®𝑥) = 𝑥3 ·
𝑥2 ·𝑥1 ·𝑥0 using three And gates. A bit-flip error (denoted by )

changes the overall functionality to 𝑓 ′( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0.

This error can only be detected by 2 out of 2
4 = 16 inputs.

2.1 Classical Computing and Verification

As a basis for the discussion on classical circuits, we consider propo-

sitional or Boolean functions 𝑓 : B𝑛 → B𝑚 over the variables

®𝑥 = (𝑥𝑛−1, . . . , 𝑥0). These functions are typically realized as netlists
of logic gates, such as And, Or, Xor, etc.

Example 1. Consider the Boolean function 𝑓 over four variables

given by 𝑓 ( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0. Then, Fig. 1 shows one possible circuit

realization using three cascaded And gates. The output 𝑓 is equal to 1

if and only if ®𝑥 = 11112.

Such netlists are usually the result of sophisticated design flows

in which the desired functionality is originally described using

hardware description languages and, afterwards, transformed (or

synthesized) through various stages of abstraction. During this

process, it is of utmost importance that the original functionality

is preserved throughout all levels of abstraction. Methods such as

reviewed in Section 1 are applied to verify the resulting circuits and,

by this, guarantee its correctness. They, however, frequently suffer

from the underlying complexity of the problem and the hardness

of efficiently detecting errors.

Example 2. Consider again the circuit from Fig. 1 and assume that

a single bit-flip error (denoted by ) affects input 𝑥3. This alters the cir-

cuit’s functionality to 𝑓 ′( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0, which obviously does

not realize the originally intended function anymore. At the same time,

however, this error is really hard to detect. In fact, in the (exponen-

tionally) vast majority of possible input patterns, 𝑓 and 𝑓 ′ generate
the same output pattern. Only for the input patterns ®𝑥 = 01112 and

®𝑥 = 11112, the error can be detected, i.e., only in 2 out of 2
4 = 16

cases. This constitutes the main challenge for any approach checking

the correctness of circuits and systems
1
.

2.2 Reversible Circuits

A Boolean function 𝑓 : B𝑛 → B𝑚 is called reversible if 𝑛 =𝑚 and

each input pattern maps to a unique output pattern, i.e., a reversible

function realizes a bijection or one-to-onemapping. Reversible func-

tions can be realized by reversible circuits in which each variable of

the function is represented by a circuit line. Fan-out and feedback

are not allowed in reversible circuits since they would destroy the

one-to-one characteristic of the reversible function. Consequently,

reversible circuits are realized as a cascade of reversible gates. For

the purpose of this work, we consider so-called Toffoli gates in

the following, which are described by a set of control lines and

1
Obviously, the considered example is rather artificial, but we believe it is sufficient to

make the point.

𝑥3 𝑥3

𝑥2 𝑥2

𝑐1 𝑐1

𝑐0 𝑐0 ⊕ (𝑥3 · 𝑥2 · 𝑥1 · 𝑥0) = 𝑐0 ⊕ 𝑓 ′

𝑥1 𝑥1

𝑥0 𝑥0

Fig. 2: Reversible realization of 𝑓 ( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 using ten

Toffoli gates and six lines. The target function is realized

on the fourth line when initializing 𝑐0 to 0. A bit-flip error

(now denoted by ) on 𝑥3 unconditionally affects the topmost

output. Every input pattern allows to detect this discrepancy.

a target line. A Toffoli gate inverts the value of the target line if

and only if the values of all control lines are 1. For a general intro-

duction, the reader is referred to [27]. This gate type alone already

allows for universal computations, i.e., allows for realizing arbitrary

(reversible) functionality [28].

Example 3. Fig. 2 shows a reversible circuit composed of ten Tof-

foli gates, where solid dots (•) denote control lines and ⊕ marks the

target line of each Toffoli gate (the red components shall be ignored

for the moment). This circuit realizes the Boolean function 𝑓 from

Example 1 in its fourth output when initializing 𝑐0 to 0. If any of

the input values of ®𝑥 is 0, the circuit effectively realizes the identity

function on all its lines—leaving 𝑓 ( ®𝑥) = 0. Only if ®𝑥 = 11112, the

target line is inverted and evaluates to 1.

2.3 Potential for Verification

As sketched in Example 2, it can be notoriously hard to detect errors

in classical circuits—often only a handful of (out of the exponentially

many) input patterns allow to detect certain discrepancies. This

may change when reversible circuits are considered.

Example 4. Consider again the reversible circuit shown in Fig. 2

and assume that, as in Example 2, a single bit-flip error (now denoted

by a red Not gate , i.e., a Toffoli gate without any control lines)

affects 𝑥3. Then, the top line of the circuit is unconditionally affected

by this error and, as such, this error may be detected by all of the

2
4 = 16 possible input patterns for ®𝑥 (and not only in 2 out of 16

cases). Moreover, a single bit-flip error actually may occur in any part

of the reversible circuit and will always be detected by all possible

input patterns. That is, design errors in this circuit are obviously much

easier to detect.

This simple observation illustrates the (raw) potential reversible

computations/reversible circuits might offer to address the chal-

lenges of verification. In the past, it has also been observed that

reversible circuits offer some promising characteristics for testing

(such as 100% controlability and observability; cf. [22]) and in the

domain of quantum computing (which heavily rests on principles

of reversible computation). In fact, it has recently been shown that,

in quantum circuits, even small errors frequently affect the en-

tire functionality and, hence, often can be detected with very few

input patterns only (see [25]). Moreover, alternative verification

approaches have recently been developed that exploit the reversibil-

ity of quantum computation and, by this, are capable of verifying

the results of entire compilation flows [24]. However, thus far, all

this latent potential has not yet evolved into a true alternative for
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the verification of conventional circuits and systems that exploits

reversible computing for verification and, by this, addresses the

challenges discussed in Section 1 in a complementary fashion. This

leaves the questions why this is the case and whether reversible

computing indeed may provide an alternative or not.

3 HOW TO LEVERAGE THIS POTENTIAL?

In this section, we shed light on the question raised above. For the

first time, we conduct a thorough investigation of the true power of

reversible computing as a complementary approach for verification

of circuits and systems. To this end, we explore possible paths to

exploit this potential and illustrate them by examples. Afterwards,

we critically discuss them and eventually show why, after all, this

hardly helps in order to address the verification challenge. By this,

we are debunking misleading paths and provide the basis for using

reversible computing as a complementary approach for verification

in the future.

3.1 Using Reversible Gates

Probably the most straight-forward approach of using reversible

computing is to not use classical gate libraries anymore, but to

restrict the design flow to corresponding reversible gate libraries.

An obvious choice would be Toffoli gates, since they constitute a

universal gate library which can realize arbitrary functions [28].

This, of course, would require corresponding mappings from es-

tablished gate libraries which, however, does not pose a significant

obstacle. In the following, we are illustrating this by considering

a design flow relying on And-Inverter-Graphs (AIGs, [29]) as a rep-

resentative (in a similar fashion, this can be done for other design

flows as well).

An AIG represents a classical circuit/Boolean function as a di-

rected, acyclic graph. Starting from the root notes which represent

primary inputs, each of the graph’s following nodes represents

an And operation that connects to other nodes by possibly com-

plemented (i.e., inverted) edges. Eventually, the graph’s terminal

nodes represent the primary outputs of the circuit. Usually, this can

be realized as a circuit by simply traversing the AIG from top to

bottom and replacing each node (complement edge) with an And

gate (Not gate) or corresponding Nand gate. This process can be

kept almost identical using reversible gates: Rather than And and

Nand gates, simply Toffoli gates can be used, where the respective

inputs (incoming edges) are realized by control lines and the output

is realized by an additional circuit line with constant input 0 (in

case of And) or constant input 1 (in case of Nand) which serves as

target line.

Example 5. The circuit shown in Fig. 1 (without the error) already

resembles an AIG representation of the Boolean function 𝑓 ( ®𝑥) =

𝑥3 ·𝑥2 ·𝑥1 ·𝑥0. It consists of four inputs, one output, and three nodes. A

one-to-one translation of this AIG to a Toffoli gate structure would

result in the reversible circuit shown in Fig. 3. If ®𝑥 = 11112, all control

values of the Toffoli gates evaluate to 1 and, hence, the value of

the fourth line (representing 𝑓 ) is inverted—resulting in the desired

functionality. If any input is 0, the output line remains unchanged.

As a hypothesis, we now assert that this already allows to exploit

the potential sketched in Section 2.3. More specifically, it asserts

that similar errors affect AIG representations of classical circuits

𝑥3

𝑥2

0

0 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 = 𝑓

0

𝑥1

𝑥0

Fig. 3: Reversible circuit translation of the AIG resembled

by the circuit shown in Fig. 1 using three additional circuit

lines initialized with 0 and three Toffoli gates with two

controls each. The target functionality 𝑓 is realized on the

fourth circuit line.

𝑥𝑖 𝑥𝑖

𝑥 𝑗 𝑥 𝑗

0 𝑥𝑖 · 𝑥 𝑗 / 𝑥𝑖 + 𝑥 𝑗

Fig. 4: The difference between a reversible And operation

(circuit without ) and a reversible Or operation (circuit

including ) is as hard to detect as with classical gates.

in different ways than they affect reversible circuits. In order to

probe this hypothesis, the following example explores the effect of a

common type of error on classical as well as reversible descriptions.

Example 6. Consider a classical circuit described as an AIG and a

corresponding reversible circuit (see, e.g., Fig. 1 and Fig. 3). Assume that

an error conceptionally changes one And to an Or. Due to DeMorgan’s

Law (i.e., 𝑥 + 𝑦 = 𝑥 · 𝑦), this manifests in the AIG as a change in the

polarity of all incoming and outgoing edges of the affected node. Such

an error in general affects 50 % of all output patterns of the respective

gate. In the reversible case, an And differs from an Or by the red Not

gates shown in Fig. 4. Since the top two lines are returned to their

original value in both cases, the error only manifests itself on the third

line and, more importantly again in 50 % of all output patterns of the

respective gate. Thus, there is no difference between the classical and

the reversible And/Or per se.

In general, proper reversible gates give rise to the same observ-

able characteristics as their classical counterparts. After all, they are

just another means to represent a Boolean function. Consequently,

it can be concluded that potential benefits of the reversible com-

puting paradigm for verification do not come from simply using

reversible gates. Most likely, the function to be realized itself must

assume more “reversible characteristics”.

3.2 Just Make the Function Reversible

Most of the functions of practical interest are not reversible (they

often differ in their number of inputs/outputs and do not realize

one-to-one mappings). But luckily, an originally desired target func-

tion 𝑓 : B𝑛 → B𝑚 can be made reversible through a process called

embedding [30], [31]. Here, so-called garbage outputs are added that

are used to distinguish equal output patterns. Afterwards, constant

inputs are added to ensure 𝑛 = 𝑚 and, thus, make the function

reversible. An examples illustrates this process:
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0 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 = 𝑓

𝑥1

𝑥0

Fig. 5: Reversible embedding of 𝑓 ( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 using a

single Toffoli gate with four controls—inverting the third

line if all inputs are assigned 1. Thus, if this line is initialized

with a constant 0, it realizes 𝑓 . By leaving the input lines

untouched, the circuit allows to discern all patterns that 𝑓

maps to 0 and, thus, realizes 𝑓 in a reversible fashion.

Example 7. Consider again the function 𝑓 ( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0.

Originally, this function evaluates to 0 in fifteen cases and to 1 in a

single case, i.e., a total of ⌈log
2
(max(15, 1))⌉ = 4 additional (garbage)

outputs are required to uniquely distinguish these output patterns.

The values/functions of these garbage outputs are not relevant (since

we are eventually only interested in 𝑓 , those outputs are usually

treated as don’t cares anyway); but they, of course, have to guarantee

a unique input/output-mapping. Since the original output 𝑓 plus

the four added garbage outputs yield a total of five outputs and to

ensure 𝑛 =𝑚, one more (constant) input is added (to the existing four

inputs)—eventually yielding a reversible function with five inputs and

five outputs in which the originally intended function is embedded

into. A reversible circuit realizing this function is shown in Fig. 5. As

can be seen, this circuit realizes the target function 𝑓 on its third line

(as long as the constant input is assigned 0).

As a hypothesis, we now assert that this allows to exploit the

potential sketched in Section 2.3 in a better fashion than by only

changing the gate library to a reversible one. Recall that we ar-

gued that, in reversible circuits as shown in Fig. 2 and discussed

in Example 3, errors can easily be detected since they would un-

conditionally affect at least one of the outputs. However, as already

stated in the example above, the newly added (garbage) outputs

are often considered “don’t cares” and, hence, their precise out-

put function is usually not known (even embedding methods treat

those garbage outputs as don’t cares in order to allow for a scalable

embedding [32]). Because of this, if an error only propagates to

these garbage outputs, it cannot really be observed or used by a

verification approach. In fact, following this procedure eventually

only gives you yet another description of the originally given tar-

get function. Any verification method (independent of whether it

would rely on simulation, formal methods, or other techniques)

could only reason over the primary inputs and the primary outputs

of the original function—not really providing any further benefit

to the state of the art. Hence, just making the function reversible

certainly does not provide an alternative to classical verification as

well.

3.3 Using the Garbage Outputs

One obvious way to mitigate the problem observed above is, of

course, to make better use of the garbage outputs, i.e., to make

sure that any error which manifests on either output (primary or

garbage) can be used for reasoning during verification. This would

compute uncompute

compute uncompute

𝑥3 𝑥3

𝑥2 𝑥2

0 0

0 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0 = 𝑓 ′

0 0

𝑥1 𝑥1

𝑥0 𝑥0

Fig. 6: Reversible realization of 𝑓 ( ®𝑥) = 𝑥3 ·𝑥2 ·𝑥1 ·𝑥0 uncomput-

ing intermediate results by applying the Compute-netlist in

reverse order—fixing the output pattern to (𝑥3, 𝑥2, 0, 𝑓 , 0, 𝑥1, 𝑥0).
A bit-flip error (denoted by ) on 𝑥3 still unconditionally af-

fects the whole output.

require all garbage outputs to be explicitly defined and known to

the designer/the verification approach. An established way of do-

ing that is by employing so-called uncomputation schemes
2
[34].

Here, the actually desired computations are realized first (using

additional lines if required in order to guarantee reversibility; yield-

ing a Compute-netlist). Once the respective (intermediate) results

of those computations are not required anymore, they are uncom-

puted (which, in reversible computing, can easily be done, e.g., by

symmetrically applying the Compute-netlist in reverse order; yield-

ing an Uncompute-netlist). By this, no “garbage” outputs remain

since all outputs are either primary outputs realizing the target

functionality or reset to an initially known value (either the value

of a primary input or a constant value). Again, an example illustrate

the idea.

Example 8. Fig. 6 shows the resulting circuit when applying the

principle of uncomputation in order to realize 𝑓 ( ®𝑥) = 𝑥3 · 𝑥2 · 𝑥1 · 𝑥0

(again, the red components shall be ignored for the moment). As can

be seen, first the desired computations are conducted (using single

Toffoli gates together with an additional constant input to realize

the pairwise And operations). Once the desired result is realized (in

this case 𝑓 ), the same gates are applied again to uncompute them—

eventually resulting in the values of the primary inputs or the constant

inputs. By this, a reversible circuit results in which all outputs (both,

primary outputs and garbage outputs) are clearly defined and can be

used for reasoning in verification.

Now, the hypothesis is that, following this design scheme (which,

as said above is quite common in the realization of quantum circuits

or of reversible hardware description languages), allows to exploit

the potential sketched in Section 2.3. And indeed, single errors

would frequently manifest on the garbage outputs of a reversible

circuit. Since the functionality of all outputs is known now, this

increased manifestation of errors in the output can be exploited for

increasing the probability of detecting such errors.

However, it remains debatable whether such scenarios would be

realistic in practice. After all, there is no apparent reason why the

Compute-netlist and the Uncompute-netlist should be designed

independently from each other, since the Uncompute-netlist can

2
Uncomputation is especially prominent in quantum computing (in order to avoid un-

wanted entanglement) or in the design of circuits from reversible hardware description

languages [33].
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compute uncompute

compute uncompute

𝑥3 𝑥3

𝑥2 𝑥2

0 0

0 𝑓 ′

0 0

𝑥1 𝑥1

𝑥0 𝑥0

Fig. 7: A design process error equally affecting the compute

as well as the uncompute part of the original circuit shown

in Fig. 6 (denoted by ). This reduces the problem back to

the complexity of the classical case—where only 2 out of 16

possible simulations reveal the discrepancy.

be constructed from the Compute-netlist by just reversing its order.

Then, however, effects of an error in the Compute-netlist which

propagate towards the garbage outputs would be canceled by its

corresponding uncomputation (using the same netlist just in re-

verse order). Eventually, only errors would remain which propagate

through the primary outputs.

Example 9. Consider again the circuit from Fig. 6 and a bit-flip

error affecting the topmost line. Then, as discussed in Section 2.3,

this would unconditionally affect at least one of the outputs (the

topmost in this case) and can be detected by any of the 16 possible

input assignments. However, if such an error is, e.g., the result of

a design process which realizes this particular And operation in a

wrong fashion, it would not yield a circuit as shown in Fig. 6, but

instead a circuit as shown in Fig. 7. Here, the Uncompute-netlist is

not designed from scratch again, but simply the Compute-netlist is

applied in reverse order. By that, the error only propagates towards the

primary output 𝑓 , while it is canceled towards the topmost garbage

output. After all, the error only manifests in 2 out of 16 cases; no

improvement compared to the classical circuit.

Because of this, also using all garbage outputs by merely em-

ploying a straight-forward symmetric uncomputation scheme does

not provide an alternative to classical verification.

3.4 Using Pure Reversible Computing Makes

the Difference

Apparently simple and/or established ways of realizing the origi-

nally desired target function in a reversible fashion seem to mitigate

the potential for verification as sketched in Section 2.3. This may

also explain why using the reversible computing paradigm for veri-

fication has not become mainstream yet; although characteristics

such as discussed in Section 2.3 certainly look intriguing. By clearly

debunking them, we now see what really makes the difference and

what may open a path towards approaches that may be able to use

reversible computing for verification. To that end, let’s re-visit the

example from the very beginning of this paper again:

Example 10. Consider again the reversible circuit shown in Fig. 2.

As discussed in Example 4, a single bit-flip error such as the one

denoted by the red Not gate can be detected by any of the possible

input patterns, i.e., even a randomly generated stimulus will show the

error by a simple simulation. With the discussions from above, we can

now conclude that this is the case, because

• the error’s effect is always fully propagated towards the out-

puts of the circuit due to the reversibility of all gates after

the error (in contrast to conventional circuits, where certain

values at one input of, e.g., an And gate, can “block” the value

of the other input and all possible errors coming from it it)
3
.

• the outputs of the circuit are all clearly defined—leaving no

“garbage” outputs in an unknown don’t care state and, thus,

the complete output can be used for detection and reasoning,

as well as

• the circuit has been realized in an asymmetric fashion elimi-

nating the re-use of (possibly erroneous) building blocks in

reverse order, i.e., the additional effects of an error on certain

lines are not canceled later on in the circuit.

These observations can be generalized for generic errors and

pure reversible circuits (i.e., reversible circuits realizing one-to-one

mappings on all lines): In fact, the probability of triggering a sin-

gle error in a pure reversible circuit and observing its effect at

the circuit’s output is independent of (1) the position where the

error manifests itself as well as (2) the circuit itself. This is the

case, because of the following: Any reversible circuit containing

an error can always be split into a sequence of gates prior as well

as after the error. Since the gates prior to the error also realize

a one-to-one mapping of the circuit’s input values (after all they

just form another reversible circuit), the probability of triggering

the error (i.e., causing an effect on some of the circuit lines) is

not affected by these prior gates. At the same time, if there are no

“garbage” outputs (with don’t care values) and if no cancellation

effects occur by re-using building blocks in reversed order, any gate

after the error cannot reduce its effect on the output (due to the

reversible gates, again, realizing a bijective mapping). Eventually,

in this setting, everything that happens prior as well as after the

error has no influence on the “hardness” of detecting it. While this

cannot be guaranteed that stringently for multiple errors anymore

(indeed, in case of multiple errors, masking effects may occur even

in reversible computations; as witnessed in Example 9), evaluations

(summarized in the next section) show that, in the vast majority of

cases, huge benefits in detection probability can be achieved.

Overall, this shows that, if circuits are designed and/or realized

in a pure reversible fashion, verification gets substantially easier—

providing a path to address some of today’s verification challenges.

To this end, we would need either

(1) dedicated embedding techniques that allow to realize an

(irreversible) Boolean target function in a “purely reversible”

fashion (i.e., techniques which avoid the use of don’t cares

for outputs and the use of methods leading to cancellation

effects as discussed above) and/or

(2) a completely new design and synthesis flow which con-

siders reversible computing right from the beginning of

the circuit design (e.g., starting with reversible specifica-

tions of the target functionality) and, by this, avoids simple

and/or established ways, e.g., for embedding thus far, which

mitigate the potential for verification.

3
Those masking effects are the reason why, in the conventional circuit from Example 2,

the (basically same) error is only detected in 2 out of 16 cases.
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Fig. 8: Potential of reversible computing: number of errors

(𝑥-axis) vs. success rate of detecting these errors (𝑦-axis). Dif-

ferent colors denote the distinct scenarios investigated in

Section 3. Each dot represents the result of a single instance,

whereas the respective lines represent the corresponding av-

erage value. Classical Circuits have the worst success rate;

in many cases close to 0%. Pure Reversible Embedding and

Pure Reversible Circuits show astonishing success rates; in

the “worst” case at ≈ 45% (i.e., almost every second input is

going to detect the error).

We understand that those are bold claims and a realization of

them certainly is out of scope for a single research paper. But the

evaluations summarized in the next section show the potential such

a comprehensive and disruptive endeavor could have for improving

the performance of verification. Motivated by that, we also discuss

afterwards in Section 5 why following such a path, although bold

and ambitious, is not completely impossible.

4 EMPIRICAL EVALUATION

All discussions above have been conducted in a conceptual fashion

only and, for the sake of illustration, have been demonstrated by

rather simple examples thus far. To additionally strengthen our

investigations, we also aimed to confirm our findings by extensive

empirical evaluations. To this end, we considered the possible paths

of exploiting reversible computing (as discussed above) and evalu-

ated their possible impact on the required verification effort. More

precisely, we considered a set of circuits from (classical) benchmark

libraries such as LGSynth91 or ESPRESSO and compared their veri-

fication effort when treating them as the original (classical) circuit

(denoted Classical Circuit in the following) compared to a pure

reversible embedding generated by RevKit [35] (which satisfies

all the requirements discussed in Section 3.4 and is denoted Pure

Reversible Embedding in the following). To additionally evaluate the

verification effort of reversible circuits resulting from a design flow

which considers reversibility from the beginning, we additionally

generated some random reversible functions (the resulting circuits

are denoted Pure Reversible Circuits in the following).
4

4
Since no such design flow exists yet, we needed to resort to random functions. How-

ever, we strongly believe the results on the verification effort will be the same for more

specific functions as well.

Afterwards, for all three types of circuits, we randomly injected

errors in the corresponding realizations and measured how hard it

is to detect these errors. Specifically, for each type of circuit, we

• created 64 differently seeded random instantiations of 1-5

errors which we injected into each of the circuits,

• simulated all circuits with 1024 randomly chosen inputs,

and

• recorded the success rate, i.e., recorded how many of those

1024 inputs allowed to detect this error.

This resulted in more than 30 million conducted simulations which

allows us to derive thorough conclusions about the required verifi-

cation effort of all three types of circuits (classical circuits, purely

reversible embedding circuits, and pure reversible circuits).

Fig. 8 summarizes the obtained results. Here, the x-axis denotes

the number of errors which have been injected while the y-axis

denotes the success rate for each circuit/instance, i.e., how many of

the 1024 randomly chosen inputs for each circuit/instance actually

detected the error(s). Each dot represents the result of a single case,

whereas the respective lines represent the corresponding average

value.

The results clearly confirm the discussions and observations

made in this work: Not surprisingly, classical circuits have the worst

success rate, i.e., many of the injected errors cannot be detected at

all (success rate of 0%) or only with a fraction of the applied inputs
5
.

In contrast, the purely reversible embedding circuits and the pure

reversible circuits have very good success rates. In particular, the

results for pure reversible circuits are astonishing: Here, the “worst”

success rates are at approx. 45%, i.e., almost every second (randomly

generated) input is going to detect the error. This really shows the

potential of reversible circuits for verification as it suggests that

already purely simulation-based verification methods could yield

high coverage. The results for the purely reversible embedding

circuits are slightly worse than that, but still almost all errors can

be detected within few simulations.

Overall, this also empirically confirms the potential of reversible

computing: If all requirements discussed in Section 3.4 are satisfied,

circuits result for which errors can be detected within a couple of

simulations (while, for classical circuits, still a substantial amount

is required or the error can hardly be detected at all).

5 RESULTING INSIGHTS,

CONSEQUENCES, AND CONCLUSIONS

The investigations and evaluations from above confirm that, if a

circuit is realized in a purely reversible fashion, design errors in-

deed can be detected easier (often within few simulation runs).

This certainly would be an improvement compared to the state

of the art, where, e.g., formal verification and model checking

are reaching their limits and errors frequently escape when using

simulation-based verification. At the same time, it is also shown

that this benefit quickly dissolves if the desired target function is

not reversible or only “made reversible” in a naive fashion (e.g.,

by simply using reversible gates, by an embedding which treats

5
Many instances also have a rather high success rate, but verification is hard because

of the “hard to detect”-corner cases, not because of the easy to detect errors.
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garbage outputs as don’t care, or by using straight-forward uncom-

putation schemes). All these insights eventually raise the question

what consequences and conclusions can be derived from that?

Our assessment is that these investigations provide the basis for

an alternative path towards closing the verification gap, namely

by using the reversible computing paradigm rather than solely

relying on evolutionary improvements in the verification of classical

circuits. We are aware that this would be a bold (and most likely

controversy) endeavor: Thus far, most of the established design

flows completely rely on the classical computing paradigm and

provide no or only limited support for reversible circuits. Exploiting

reversible computing for verification would require an enormous

paradigm shift. But developments in other areas show that such

paradigms shifts are not impossible. For example:

• Quantum computing [16] also works completely different

than classical computing, but offers the prospect of solving

hard problems substantially faster than classical circuits.

While first ideas in this direction have been proposed by

Shor [36] and Grover [37] in the last millennium, mean-

while first practical relevant applications are emerging—

triggering an entire community (including “big players”

such as IBM, Google, etc.) to develop corresponding de-

sign flows and realizing the paradigm shift from classical

to quantum.

• Recent developments in low-power design show that im-

provements in this domain are also reaching limits. Accord-

ingly, researchers investigated alternatives as well—with

very promising accomplishments made, e.g., in the devel-

opment of fully-adiabatic and reversible circuits for low-

power design [20], [21]. This also triggered the proposal

of a paradigm shift as, e.g., outlined in the IEEE Spectrum

article “The Future of Computing Depends on Making It

Reversible” [38].

We see no reasons, why similar developments towards a design

flow for circuits and systems (at least for safety-critical applications)

that are easier to verify should not be possible as well. With this

work, we hope to have laid out the basis for such an endeavor.
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