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Abstract—Recent breakthroughs in atomically precise manufacturing
are paving the way for Field-coupled Nanocomputing (FCN) to become
a real-world post-CMOS technology. This drives the need for efficient
and scalable physical design automation methods. However, due to the
problem’s NP-completeness, existing solutions either generate designs of
high quality, but are not scalable, or generate designs in negligible time
but of poor quality. In an attempt to balance scalability and quality,
we created and evaluated a hybrid approach that combines the best of
established design methods and deep reinforcement learning. This paper
summarizes the obtained results.

I. INTRODUCTION

Latest technology advancements in Field-coupled Nanocom-
puting (FCN) [1], e. g., in the form of Silicon Dangling
Bonds (SiDBs) [2] and multi-million dollar investments by enter-
prises such as Quantum Silicon Inc. emphasize the need for novel
approaches to the physical design of FCN to keep pace. However,
state-of-the-art solutions for layout mapping of logic functions are at
risk of falling behind these rapid domain shifts: Optimal solutions
for the placement and routing of a netlist onto a layout can only be
obtained for small functions using exact approaches with exponential
runtime behavior [3]. On the other hand, scalable algorithms [4] are
tailored toward specific layout topologies, and as such are able to
determine solutions for larger input functions, but of sub-par quality.

In an attempt to address this problem, we created and evaluated
a solution that utilizes established design automation techniques
in a hybrid setup with deep reinforcement learning. To this end,
we take advantage of recent developments in the field of machine
learning-aided design automation for gate placement [5] in combina-
tion with efficient multi-path signal routing based on scalable path
finding and fast approximations to graph coloring [6]. In this work,
Proximal Policy Optimization (PPO) [7] is used to learn the placement
of logic elements, which is further accelerated by incorporating an
action mask calculated based on the structure of the netlist and the last
partial placement, ensuring valid and compact solutions. Furthermore,
the routing of placed gates is incorporated directly into the placement
step using the aforementioned established routing strategies.

The results (outlined in Section III) further highlight the
possibility of solving even larger functions with the pre-
sented approach, which is necessary for the emergence of
FCN as a post-CMOS technology. An open-source implemen-
tation based on the fiction framework [8] is available at
https://github.com/simon1hofmann/rl_fiction.

II. A HYBRID APPROACH FOR PLACEMENT & ROUTING

In this section, the proposed hybrid placement and routing algo-
rithm, which includes the routing of a placed gate directly in the
reinforcement learning loop, is described by means of Figure 1.

1) Netlist Preparation: At the beginning of a training cycle, the
order of the gates to be placed is obtained via topological sorting.
The next gate in the netlist to be placed is marked green.
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Fig. 1. The novel approach masks out invalid coordinates proposed by the
action and value networks to determine promising placements. After each
placement, color routing tries to route the new gate with its predecessors.

2) Action/Value Networks: A one-hot encoded vector of the next
gate id is fed into the action and value networks, which have the
same input dimension as the number of gates, two hidden layers of
size 64, and an output dimension equal to the number of coordinates
in the layout. The output, in the form of a probability distribution,
predicts the most promising layout coordinates to place the current
gate at. In Figure 1, the three positions with the highest probability
are highlighted in green.

3) Action Masks: Based on the netlist structure, the current partial
placement, the position of preceding and already placed gates, con-
straints imposed by the layout topology, information flow directions,
and validity of the partial placement (e. g., the gate is not trapped,
input/output pins are at the border, etc.), an action mask can be
created that masks invalid subsequent placements.

4) Masked Policy: The action mask sets the probability of coordi-
nates that are invalid for placement to 0, forcing the agent to place the
gates only at valid positions. In Figure 1, the action mask allows only
one of the three most probable coordinates, resulting in the choice
of this position, as it now has the highest probability.

5) Color Routing: After each placement step, the placed gate must
be connected to its predecessors without conflicting with the existing
wiring and without violating the information flow directions. To this
end, we employ an established multi-path FCN routing algorithm
called color routing [6], whose steps are outlined in Figure 1. First,
the k shortest paths from the two predecessors to the placed gate
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TABLE I
COMPARATIVE EXPERIMENTAL EVALUATION OF THE STATE OF THE ART AGAINST THE PROPOSED HYBRID ALGORITHM.

BENCHMARK CIRCUIT [9], [10] EXACT APPROACH [3] HEURISTIC APPROACH [4] PROPOSED APPROACH

Name I / O |G| w × h = A t w × h = A t w × h = A t ∆A

2:1 MUX 3 / 1 9 3 × 4 = 12 < 1 6 × 8 = 48 < 1 3 × 4 = 12 < 1 −75%
XOR 2 / 1 9 3 × 6 = 18 < 1 5 × 8 = 40 < 1 3 × 6 = 18 < 1 −55%
XNOR 2 / 1 11 3 × 6 = 18 < 1 6 × 9 = 54 < 1 3 × 6 = 18 4 −67%
Half Adder 2 / 2 14 4 × 6 = 24 < 1 9 × 10 = 90 < 1 4 × 6 = 24 4 −73%

Parity Gen. 3 / 1 18 4 × 8 = 32 < 1 9 × 14 = 126 < 1 8 × 8 = 64 2 −49%
Parity Check. 4 / 1 26 6 × 8 = 48 2 12 × 20 = 240 < 1 11 × 11 = 121 9 −50%
clpl 11 / 5 30 3 × 15 = 45 1 18 × 26 = 468 < 1 12 × 12 = 144 31 −69%
XOR5 R1 5 / 1 40 7 × 11 = 77 11 14 × 33 = 462 < 1 15 × 15 = 225 26 −51%

cm82a 5 / 3 68 timeout limit reached 26 × 51 = 1326 < 1 25 × 25 = 625 210 −53%
2bitAdderMaj 5 / 2 82 timeout limit reached 26 × 64 = 1664 < 1 29 × 29 = 841 180 −49%
xor5Maj 5 / 1 102 timeout limit reached 30 × 79 = 2370 < 1 40 × 40 = 1600 2520 −32%
parity 16 / 1 150 timeout limit reached 48 × 120 = 5760 < 1 50 × 50 = 2500 3550 −57%

Runtime values are in seconds; the timeout limit is 24h; w, h and A are the width, height and resulting area of the layout respectively; the final column
compares the area difference ∆A between the heuristic and the proposed hybrid approach.

are enumerated. From these paths, an edge intersection graph (EPG)
is created, and colored using an efficient approximation to vertex
coloring. A valid routing can be extracted from the said coloring.
For the experiments in Section III, k has been set to 50.

6) Update Partial Placement: The agent receives a reward of +1
only if the routing is successful, i. e., conflict-free. Additionally, the
reward is scaled according to the resulting layout area as a syn-
chronous goal to penalize area overhead. Furthermore, if the routing
step was successful, the agent utilizes the updated partial placement
to compute the next action mask for subsequent gates. Otherwise,
it attempts a different placement and returns to step 5. Depending
on the number of placement steps, the action and value networks
are updated using PPO [7]. The validity of partial placements is
constantly monitored to prematurely terminate unpromising runs, thus
facilitating the initiation of a fresh layout. This practice improves the
efficacy of the proposed approach.

III. EXPERIMENTS

This section presents the results obtained by the proposed hybrid
physical design algorithm using a set of benchmark circuits that
are common in the domain [9], [10] and compares its effectiveness
against the state of the art [3], [4]. Table I summarizes the obtained re-
sults. Due to the NP-completeness of the physical design problem, the
exact approach [3] is constrained by its exponential runtime behavior.
Consequently, we applied a time-out limit of 24 h, which was already
reached when applied to the moderately-sized cm82a benchmark,
which comprises 68 gates. At the same time, the heuristic approach
can handle that in negligible time, but requires almost a factor of
6 more area. In contrast, the proposed hybrid approach provides a
balance between efficiency and quality. Notably, even the challenging
parity function, encompassing 150 gates, can be effectively solved in
under 1 h, achieving a significant layout reduction of 57%.

The findings confirm the previously raised issues pertaining to the
subpar scalability of the exact approach and the unsatisfactory quality
of the heuristic approach. However, by balancing the contradicting
demands of scalability and quality, the proposed approach seamlessly
integrates the strengths of both methods, thus paving the way for
future investigations in the domain of design automation for FCN.
Impressively, across all functions in the two benchmark sets presented
in Table I, the proposed hybrid approach yields a substantial area
reduction, ranging from 32% to 75%, with an average improvement
of 57% relative to the heuristic method.

IV. CONCLUSION

As Field-coupled Nanocomputing is becoming a reality, efficient
physical design automation methods are needed to adapt to evolving
technology. In this work, we present the first results of such an
approach to overcome the bottleneck of today’s state of the art and
provide a balance between quality and scalability. The proposed
hybrid algorithm for FCN physical design demonstrates remarkable
proficiency in obtaining valid circuit layouts for logic functions of
up to 150 gates within 1 h. Notably, while optimal solutions can
only be obtained for functions with a maximum of approximately
45 gates, the proposed approach facilitates the generation of layouts
for all circuits in the benchmark sets, underscoring its versatility
and broad applicability. The amalgamation of deep reinforcement
learning with established physical design strategies culminates in a
powerful tool for the creation of compact and valid FCN circuit
layouts. Prospective endeavors will center on the extension of this
approach to diverse layout topologies and clocking schemes, enabling
rigorous comparisons with other heuristics [9], [10], and the scaling
of the approach to accommodate functions comprising thousands of
gates. Intriguingly, the proposed approach can also be harnessed for
the design of sequential circuits. This LBR paper serves as an initial
step toward the efficient creation of circuit layouts for FCN.
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