
QuickSim: Efficient and Accurate
Physical Simulation of Silicon Dangling Bond Logic

Jan Drewniok1, Marcel Walter2, Samuel Sze Hang Ng3, Konrad Walus4, and Robert Wille5

Abstract— Silicon Dangling Bonds have established them-
selves as a promising competitor in the field of beyond-CMOS
technologies. Their integration density and potential for en-
ergy dissipation advantages of several orders of magnitude
over conventional circuit technologies sparked the interest of
academia and industry alike. While fabrication capabilities
advance rapidly and first design automation methodologies have
been proposed, physical simulation effectiveness has yet to keep
pace. Established algorithms in this domain suffer either from
exponential runtime behavior or subpar accuracy levels. In this
work, we propose a novel algorithm for the physical simulation
of Silicon Dangling Bond systems based on statistical methods
that offers both a time-to-solution and an accuracy advantage
over the state of the art by more than one order of magnitude
and a factor of more than three, respectively, as demonstrated
by an exhaustive experimental evaluation.

I. INTRODUCTION & MOTIVATION

Recent years have seen an increase in scientific interest in
the Silicon Dangling Bond (SiDB) logic platform—an emerg-
ing computational beyond-CMOS nanotechnology [1]–[5].
Of particular significance are its sub-nanometer elementary
devices that allow for an integration density improvement of
several orders of magnitude over current CMOS fabrication
nodes [1], [2], [4]–[7], [9]; and its properties to compute
Boolean logic without the flow of electrostatic current but,
instead, via the Coulombic repulsion of charges [2], [6].
By this, SiDB logic promises ultra-low energy dissipation
and establishes itself as a highly-anticipated green competitor
in the beyond-CMOS domain [6], [9]–[11]. Moreover, it has
been proposed as a candidate for the integration of quantum
computers [12], and—since SiDBs are fabricated on silicon
as well—with conventional CMOS circuitry [5].

Motivated by this, the scientific community has already
proposed gate and circuit libraries [13]–[19] as well as
design automation solutions [13], [15], [20], [21] for SiDB
logic. But also commercially, this technology gains more and
more interest as confirmed, e. g., by the recently founded
Quantum Silicon Inc. which aspires to be among the first
industry adopters of SiDBs and already secured multi-million
dollar investments for this purpose [22], [23]. However,

1Jan Drewniok is with the Chair for Design Automation, Technical
University of Munich, Germany. Email: jan.drewniok@tum.de

2Marcel Walter is with the Chair for Design Automation, Technical
University of Munich, Germany. Email: marcel.walter@tum.de

3Samuel Sze Hang Ng is with the Department of Electrical and Computer
Engineering, University of British Columbia, Vancouver, Canada.
Email: samueln@ece.ubc.ca

4Konrad Walus is with the Department of Electrical and Computer
Engineering, University of British Columbia, Vancouver, Canada.
Email: konradw@ece.ubc.ca

5Robert Wille is with the Chair for Design Automation, Technical Uni-
versity of Munich, Germany, and Software Competence Center Hagenberg
GmbH, Austria. Email: robert.wille@tum.de

the rapid advancement of SiDB fabrication capabilities that
goes along with these developments [1]–[4] puts pressure on
both design and simulation tools to keep pace. Particularly
physical simulation, the foundation of system validation,
poses a challenge. To reliably predict the behavior of any
given system of n SiDBs, a high-dimensional optimization
problem must be solved to capture all physically relevant
effects. In its essence, 3n charge configurations have to
be enumerated, checked for physical feasibility, and their
individual energies simulated such that the lowest of those
can be picked—constituting a highly non-trivial (in fact,
exponential) problem.

Thus far, only two approaches addressing this prob-
lem have been proposed in the literature: Exhaus-
tiveGS (ExGS) [14], [17], which performs an exhaustive
search of the entire (exponential) search space, and SimAn-
neal [13], which employs probabilistic sampling and, hence,
offers a heuristic approach that trades runtime for complete-
ness. Accordingly, ExGS is severely limited in its runtime
efficiency, while SimAnneal only provides an approximation
and, hence, is not guaranteed to determine an optimal (i. e.,
perfectly accurate) solution.

In this paper, we propose a novel algorithm (QuickSim)
that aims to be both efficient and accurate. To this
end, we are making use of effective search space prun-
ing by incorporating ideas from statistical methods like
max-min diversity distributions [24]. Exhaustive experimen-
tal evaluations (covering the simulation of common logic
operations, established gate libraries, as well as random
instances to demonstrate the performance on future lay-
outs) confirm that, the resulting approach leads to a
time-to-solution advantage of more than one order of magni-
tude. At the same time, it outperforms SimAnneal in terms
of solution accuracy by more than a factor of four on
randomly-generated SiDB layouts and by roughly a factor
of three on established gate layouts.

The remainder of this work is structured as follows: In
an effort to establish this paper as a self-contained article,
Section II reviews preliminaries on SiDB systems. Section III
discusses existing simulation approaches. Section IV intro-
duces QuickSim in detail. Section V comprises of a case study
that highlights the benefits of QuickSim over the state of the
art. Finally, Section VI concludes the paper.

II. PRELIMINARIES

This section first provides an overview of the SiDB logic
platform. Afterward, the physical simulation of SiDBs is
elaborated on.

mailto:jan.drewniok@tum.de
mailto:marcel.walter@tum.de
mailto:samueln@ece.ubc.ca
mailto:konradw@ece.ubc.ca
mailto:robert.wille@tum.de


HSi SiDB
TipDesorbed H

(a) SiDB fabrication

7.68 Å  2.34 Å  
TipSiDB

(b) Top view

(c) Well-separated SiDBs (d) Interacting SiDBs

(e) BDL wire segment transmitting a binary 1

(f) OR-gate (10) (g) AND-gate (10)

Fig. 1: Elemental SiDB logic components

A. The SiDB Logic Platform

SiDBs are fabricated on a Hydrogen-passivated Sili-
con (H-Si(100)-2×1) surface. Using the atomically-sharp
probe of a Scanning Tunneling Microscope (STM), a volt-
age can be applied that breaks the bond between silicon
and hydrogen with atomic precision [2]–[4], [25]–[27]. The
split-off hydrogen atom is then desorbed to the probe and
leaves behind an open, i. e., dangling, valence bond; an
SiDB as illustrated in Fig. 1a. A top view on Fig. 1a is
schematically shown in Fig. 1b, where the teal-colored dot
represents the SiDB. It also illustrates the basic principle of
the fabrication process of an SiDB layout where, after the first
SiDB is generated, the tip moves to a new Si-dimer to desorb
the next hydrogen atom to generate a second SiDB. Each
SiDB created this way acts as a chemically-identical quantum
dot that can confine a maximum of two electrons due to
its sp3-orbital [28]. Thus, each SiDB is either negatively,
neutrally, or positively charged, i. e., in precisely one of three
different states.

Moreover, the SiDBs’ charge transition energy levels lie
within the bandgap: intuitively, this means that their states are
stable unless disturbed by the presence of other charges [8],
[29]. In n-doped systems with a near-surface depletion region,
SiDBs are able to maintain their quantum dot property but
tend to be negatively charged due to the raised Fermi energy.
This precise property is exploited in order to use SiDBs
in the creation of logic elements such as gates [6]. In fact,
SiDBs can be created in pairs of metastable configurations
such that the state of one SiDB depends on and influences
the other’s via band bending; a concept coined Binary-Dot
Logic (BDL) [6].

Fig. 1b to Fig. 1g depict top-down views of SiDBs drawn
as teal halos on an H-Si surface, where hydrogen atoms
are visualized by gray dots. In Fig. 1c, two SiDBs are
created with a spacing of ≈ 2 nm such that their interaction is

limited and both assume a negative charge state. In contrast,
SiDBs that are placed with just a single dimer in between,
as illustrated in Fig. 1d, strongly interact and thus share
a single electron in superposition due to their symmetry
if not externally excited. However, in the presence of an
external charge, the electron will assume the position with
maximum distance to said charge to minimize the system’s
total electrostatic potential energy. This concept is illustrated
in Fig. 1e, where an additional SiDB is placed on the left
and acts as a perturber that inflicts Coulombic pressure
on the first BDL pair, which then does the same to the
next BDL pair. Thus, a sequence of BDL pairs acts as a
binary wire that transmits information exclusively via the
repulsion of electrical fields [6]. The same concept can be
utilized to realize, e. g., an OR-gate as shown in Fig. 1f (here,
illustrated using the binary input 10; the repulsion leads to
output 1). Both, an SiDB wire consisting of eight SiDBs as
well as an OR-gate (total size smaller than 30 nm2) were
already experimentally realized in a lab by Huff et al. [6].
Additionally, further gates can be realized using this concept
as, e. g., the AND-gate shown in Fig. 1g.

B. Physical Simulation

To explore this new emerging technology and to validate
designs of novel circuits, the physical simulation of SiDB
layouts is of immense interest. To predict the state that will
be assumed by an arbitrary arrangement, i. e., a layout, of
multiple SiDBs, an electrostatic potential simulation must
be conducted. The electrostatic potential Vi,j at position i
generated by an SiDB in state nj ∈ {−1, 0, 1} at position j
is given by [6], [26]

Vi,j = − qe
4πϵ0ϵr

· e
−

di,j
λtf

di,j
· nj , (1)

where λtf defines the Thomas-Fermi screening length and ϵr
the dielectric constant which were experimentally extracted
to be 5 nm and 5.6, respectively [6]. Moreover, ϵ0, qe and di,j
are the vacuum permittivity, the electron charge (qe = −e;
e: elementary charge), and the Euclidean distance between
position i and j, respectively. As can be seen from Eq. (1),
all SiDB states influence each other and, by this, form an
interwoven system. A layout’s total electrostatic potential
energy E is then calculated by using the superposition prin-
ciple of the electrostatic potential, i. e.:

E = −
∑
i<j

Vi,j · ni · qe (2)

The expected state of an SiDB layout is given by the
metastable charge configuration with the lowest energy.
Therefore, in order to determine the said state, Eq. (2) has
to be minimized—yielding a high-dimensional optimization
problem. On top of that and in order to guarantee a valid
simulation result, the physical constraint of metastability must
be met. Metastability can be described by the combination
of two criteria, namely population stability and configuration
stability. Both must be obeyed to guarantee simulation result
validity.



a) Population Stability: The charge state of each SiDB
must be consistent with the energetic charge transition levels
µ− and µ+ relative to the Fermi energy. The energy of the
SiDB’s charge transition level at position i depends on the
local electrostatic potential Vlocal,i at that position defined by:

Vlocal,i =
∑
j,j ̸=i

Vi,j (3)

Intuitively, this means that an SiDB is preferably neutrally
charged when adjacent SiDBs are negatively charged and vice
versa. This relation is formally expressed by the following
conditions: SiDB- when µ− + Vlocal,i · qe < 0, SiDB+ when
µ+ + Vlocal,i · qe > 0, and SiDB0 otherwise.

b) Configuration Stability: If there is no feasible
single-electron hop event between arbitrary SiDBs leading to
a lowering of the system’s total electrostatic potential energy,
the charge state fulfills the configuration stability. In other
words, if this constraint is not satisfied, there would exist a
state of lower electrostatic potential energy that the system
would spontaneously converge to.

Overall, the charge configuration with the lowest electro-
static potential system energy that is also physically valid,
i. e., satisfies metastability, is called the system’s ground state.
It represents the charge configuration of a given SiDB system
at low temperature and, by this, its physical behavior. Hence,
the goal of any physical simulation technique is to determine
the said ground state for a given SiDB layout.

III. MOTIVATION

In this section, SiDB simulation approaches from the
literature are reviewed first. Afterward, the obstacles that arise
when attempting to balance the runtime and accuracy of these
algorithms are discussed.

A. Previously Proposed Simulation Approaches
As outlined above, the physical simulation of SiDB logic

poses a high-dimensional optimization problem that, due to
its exponential complexity, is computationally intractable.
Since simulation constitutes a core capability of any de-
sign automation flow for SiDB-based logic, managing this
complexity is a key priority. However, only a few automatic
solutions for the physical simulation of SiDBs exist so far,
and they are either of high runtime/poor scalability (due to
the exponential search space) or of a rather poor accuracy
(due to aggressive approximations). Two methods represent
the current state of the art: ExhaustiveGS (ExGS) [14], [17]
and SimAnneal [13].

1) ExGS: Since every SiDB can either be negatively, neu-
trally, or positively charged, a layout consisting of n SiDBs
can exhibit 3n unique charge configurations. ExGS enumer-
ates all of them, determines if they are physically valid, and,
if this is the case, computes the electrostatic potential energy
of the layout via Eq. (2). This eventually allows obtaining
the charge configuration with minimal energy.

Since ExGS covers the entire search space exhaustively, it
is guaranteed to always determine the system’s ground state.
At the same time, however, this requires the traversal of the
entire exponential search space and, hence, even in the best
case takes an exponential runtime to do so. Thus, ExGS is
practically applicable to small layouts only.

2) SimAnneal: In contrast to ExGS, SimAnneal is a
heuristic algorithm that generates approximate results. As
the name suggests, it employs the strategy of simulated
annealing [30], which is a probabilistic technique for approx-
imating the global optimum of a given objective function
which, in this case, is the electrostatic potential energy of
closely-placed SiDBs. SimAnneal is a powerful algorithm
that is capable of correctly determining the SiDBs’ charge
distribution of many layouts. Moreover, since SimAnneal
is a physically-inspired algorithm, it inherently captures the
charge configuration of SiDBs. On the downside, it is a
probabilistic heuristic that requires many simulation steps
to result in the ground state. Especially, when many charge
configurations lead to a similar electrostatic potential system
energy close to the ground state, long runtimes are required.

B. Trade-off between Efficiency and Accuracy

As elaborated on above, the goal of physical simulation
algorithms for SiDB layouts is to determine the system’s
ground state. Probabilistic heuristics like SimAnneal usually
run a number of times on the same input hoping that the
ground state is determined at least once. To evaluate their
performance in doing so, their required runtime could be used
as a measure. However, in probabilistic algorithms, single
runtime ts and result accuracy ps(ts) are strongly correlated,
i. e., more single runs of, e. g., SimAnneal, increase the
likelihood of determining a layout’s ground state and vice
versa. Hence, single runtime alone is not a meaningful metric
as accuracy should also be considered. This trade-off is
captured by the Time-To-Solution (TTS) metric that provides
the total runtime needed to derive a solution of a certain
confidence level η [31]. More precisely, TTS is defined by:

TTS (ts) = ts · R(ts),with (4)

R(ts) =

{
ln(1−η)

ln(1−ps(ts))
ps(ts) ∈ (0, η)

1 ps(ts) ∈ [η, 1]
(5)

ExGS constitutes the extreme case of this trade-off: The
single runtime is maximal (as the entire search space is
traversed), but the accuracy obtained is 100 % (since all possi-
bilities are considered). Thus, ExGS’ TTS is large compared
to SimAnneal’s. In contrast, SimAnneal’s accuracy is lower
than ExGS’, whereas its single runtime is smaller by several
orders of magnitude. Since the single runtime influences
the accuracy, small runtimes lead to a small accuracy and
vice versa. Therefore, an ideal trade-off between these two
attributes is desired to yield an efficient simulation. Overall,
neither of the existing solutions—ExGS or SimAnneal—
provide such a satisfactory trade-off between efficiency and
accuracy. In this work, we address this shortcoming.

IV. PROPOSED ALGORITHM: QuickSim

In this section, we propose a novel algorithm for physical
simulation of SiDB layouts. We start by sketching the general
idea on a more abstract level. Afterward, we go into more
detail and present the algorithm implementing the proposed
idea.
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Fig. 2: Illustration of the general idea (µ− = −0.15 eV)

A. General Idea

The proposed algorithm QuickSim for physical SiDB sim-
ulation aims to provide a significantly improved trade-off
between single runtime and result accuracy. To this end,
we are making use of effective search space prun-
ing by incorporating ideas from statistical methods like
max-min diversity distributions [24]. This leads to a new
simulation algorithm that works fundamentally differently
than the state of the art. More precisely, while previously
proposed approaches alter the given system’s electron number
several times during one simulation run, considering all pos-
sible charge configurations in the case of ExGS or effectively
randomly guessing configurations in the case of SimAnneal,
we propose to iteratively and purposefully distribute electrons
on the basis of insights provided by physical principles.
Given the electrons’ tendency to always occupy SiDBs that
are placed the farthest distance away from one another
(to minimize their electrostatic potential energy), we can
infer that any given number of electrons must settle in an
equally-spaced allocation across the SiDBs. In other words,
the electrostatic potential energy of a system is minimized
when the electron distribution’s diversity is maximized. We
can create such max-min diversity distributions by iteratively
filling up placed SiDBs with electrons starting from the
neutral state such that each newly introduced charge has a
maximal distance from all others. Conducting this iteration
once with every SiDB as the starting point and, along the way,
computing both the system’s electrostatic potential energy
and metastability, we obtain an algorithm that is less proba-
bilistic and less sensitive to hyperparameters than SimAnneal.
Additionally, it requires fewer simulation steps to achieve the
same accuracy, which considerably reduces its TTS.

B. Implementation Details

The details of QuickSim are exemplified given the pseu-
docode from Alg. 1 and 2 and visualized in Fig. 2. The
algorithm starts with an empty electron distribution D, i. e.,

Algorithm 1: Physical Simulation
Input: SiDB Layout L comprised of n dangling bonds
Input: Physical parameters P = {µ−, µ+, λtf , ϵr}
Input: Number of cycles c
Output: Electron distribution D and system energy E

1 E∗ ←∞
2 D∗ ← [D0 = 0, . . . , Dn = 0]
3 for cycle ← 1 to c do
4 foreach db ∈ L do
5 D ← [db = −1]
6 for i← 1 to n− 1 do
7 D ← ADJACENT-SEARCH(L,D)
8 E ← energy of L given D and P // Eq. (2)
9 if D is phys. valid given P and E < E∗ then

10 D∗ ← D
11 E∗ ← E
12 break
13 end if
14 end for
15 end foreach
16 end for
17 return (D∗, E∗)

Algorithm 2: Adjacent-Search
Input: Partial electron distribution D
Output: Extended electron distribution D′

1 d∗ ← {minp∈D dist(u, p) | u ∈ L \D}
2 d̃← maxd∈d∗ d

3 S ← {u | u ∈ L \D, d∗u ≥ d̃ · α}
4 Randomly select one db′ ∈ S
5 return D ∪ [db′ = −1]

all SiDBs in the given layout L are set to be neutrally charged
(Alg. 1, Line 2). For each SiDB in the layout as the starting
point (Alg. 1, Line 4), electrons are successively distributed
while maximizing diversity. To this end, the initial SiDB db is
assigned an electron, i. e., flipped to a negative charge (Alg. 1,
Line 5). From there, Alg. 2 is iteratively called (Alg. 1,
Line 7) to determine other SiDBs with maximum distance
to all negatively charged ones (Alg. 2, Lines 1–2). These are
enumerated within a threshold given by the value α (Alg. 2,
Line 3). While α is represented as a variable factor between
0 and 1, the algorithm was found to perform best when
picking α = 0.7. Out of the possible candidates, one SiDB is
randomly selected (Alg. 2, Line 4) and assigned an electron
(Alg. 2, Line 5). The newly resulting electron distribution D
in the layout L is utilized to compute its electrostatic potential
energy E under the physical parameters P , i. e., µ−, µ+, λtf

and ϵr (Alg. 1, Line 8). If D is physically valid under P
(cf. Section II-B) and if E is smaller than the best energy
value found so far (Alg. 1, Line 9), this constitutes a better
candidate for the overall simulation result, thus, both D and E
are kept as current best (Alg. 1, Lines 10–11). This entire
procedure is repeated c times (Alg. 1, Line 3) and the best
result found is returned (Alg. 1, Line 17).

V. EXPERIMENTAL EVALUATIONS

To demonstrate the applicability and performance of
QuickSim in comparison to the state of the art, we im-
plemented QuickSim and conducted exhaustive experimen-
tal evaluations. This section summarizes and analyzes our
findings. To this end, we first describe the experimental
setup. Afterward, we provide the respectively obtained results



from experimental simulations considering three different
classes of SiDB layouts, namely 1) randomly-generated,
2) machine learning (ML)-generated, and 3) established ones
from the literature. Finally, the obtained results are discussed.

A. Experimental Setup
In order to properly evaluate the trade-off between effi-

ciency and accuracy as well as to showcase how QuickSim
overcomes this, we performed Time-To-Solution (TTS, as de-
fined in Section III-B) evaluations. To this end, we considered
the two state-of-the-art physical simulation algorithms (ExGS
and SimAnneal as reviewed in Section III-A) as well as
QuickSim. As benchmarks, we considered a variety of SiDB
layout classes whose details are reviewed in the following
section. To determine ps(ts) as introduced in Section III-B,
the simulations have been conducted 10 000 times and the
success number (of correct simulation results) was collected.
Thus, ps(ts) = #success/10 000. For the whole evaluation, the
confidence level has been set to η = 99.7%.

For comparisons, the SimAnneal implementation as pro-
vided by SiQAD [13] was utilized, whereas ExGS and
QuickSim are custom implementations. All code has been im-
plemented in C++ on top of the fiction1 framework [32] which
is part of the Munich Nanotech Toolkit (MNT) and compiled
with AppleClang 14.0.0. For convenient applicability, we
made QuickSim available on GitHub as an open-source plugin
for SiQAD.2 Additionally, all obtained experimental data is
also publicly accessible.3 All experiments were performed on
a macOS 12.6 machine with an Apple Silicon M1 Pro SoC
with 32 GB of integrated main memory.

Since SimAnneal offers a range of hyperparameters that
can be tuned to a problem instance at hand, we considered
the TTS data for SimAnneal in two configurations: default,
i. e., as set out-of-the-box, and optimized, i. e., manually tuned
settings for improved TTS on the considered benchmark set.
Thus, QuickSim’s performance can be compared against a
setting that provides an even better simulation performance
than supplied by [13]. It can be concluded that reducing
the number of annealing cycles by one order of magnitude
from 10 000 (def.) to 1 000 (opt.), results in optimized TTS
values—providing a highly optimized baseline against which
we compare QuickSim in this work. For both ExGS and
QuickSim we apply default parameters, for ExGS that entails
using two-state simulation and for QuickSim α = 0.7 and
c = 80.

B. Considered Layouts and Obtained Results
In the first series of evaluations, we considered

randomly-generated gate layouts. While the simulation of
readily available gate libraries has more practical value (and,
hence, is considered as well below), this allows demonstrating
the performance of the respective simulations for potential fu-
ture gate libraries showcasing the broad applicability. To this
end, we considered the 2-in-1-out and 2-in-2-out-templates
that have recently been proposed in [15] and are considered
promising SiDB candidates for fabrication. Our benchmark

1https://github.com/cda-tum/fiction
2https://github.com/cda-tum/mnt-siqad-plugins
3https://github.com/cda-tum/mnt-quicksim-results

TABLE I: Physical simulation of randomly-generated layouts

BENCHMARK
PHYSICAL SIMULATION

EXGS [17] SIMANNEAL [13] QuickSim

Name #SiDBs #inst. TTS default optimized default

acc. TTS acc. TTS acc. TTS

2-1 20− 23 114 172.31 40.6 29.59 25.8 11.43 82.6 1.18

2-2 21− 25 114 452.09 16.1 363.52 11.9 28.72 79.7 1.73

Mean 28.4 18.9 81.2

Total 624.40 393.11 40.15 2.91

TABLE II: Physical simulation of ML-generated layouts

BENCHMARK
PHYSICAL SIMULATION

EXGS [17] SIMANNEAL [13] QuickSim

Name #SiDBs #inst. TTS default optimized default

acc. TTS acc. TTS acc. TTS

OR 19− 23 68 2680.08 59.8 12.52 38.9 10.23 86.0 0.54

AND 25 25 2086.82 18.1 27.59 15.0 21.47 66.4 1.60

NOR 20− 23 20 1312.83 26.0 10.55 15.4 2.72 99.6 0.05

NAND 20− 23 16 1300.58 45.7 7.79 37.3 22.12 94.9 0.07

CX 29 4 577.00 21.5 21.45 13.2 12.52 29.0 0.56

HA 31 4 433.91 17.8 20.03 15.1 3.98 17.5 4.45

FO2 27 2 65.42 21.4 0.78 22.8 0.12 23.3 0.38

XOR 21− 23 5 4.49 30.0 2.09 32.4 0.28 95.0 0.02

XNOR 25 4 2.97 20.4 6.54 25.0 8.94 72.8 0.16

Mean 29.0 23.9 65.0

Total 8464.07 109.34 82.38 7.83

set contains 114 random implementations for each template
with a range of SiDBs per layout from 20 to 25. In a second
series of evaluations, we considered SiDB layouts generated
using the machine learning approach presented in [20]. In
contrast to the randomly-generated instances, these imple-
ment common logic operations such as AND, OR, NAND,
NOR, etc. Hence, these instances provide a representative
use case for physical simulation applied in the evaluation of
new gate libraries. This benchmark set contains a total of
148 novel SiDB layouts. As above, we simulated them with
all three approaches and compared their TTS. To this end,
each gate has been simulated in up to five configurations:
with input perturbers specifying one of the possible 2n input
combinations as well as without any input perturbers at
all. However, some ML-generated gates are very sensitive
to a change in physical parameters and sometimes do not
work correctly for all input combinations (00,01,10,11).
Hence, a further series of evaluations are conducted. In a
third series of evaluations, all 12 gate layouts from [15] are
simulated. They represent a library of established gates in
the SiDB domain. The simulation is conducted identically
to the one in the evaluation of the ML-generated layouts.
All obtained results are summarized in Table I, Table II,

and Table III for the randomly-generated, ML-generated, and
established layouts, respectively. In each table, the first three
columns provide the name of the benchmark, their SiDB
range, and the number of simulated layouts (instance count).
Afterward, the accuracy and the accumulated TTS values
(in sec.) for all considered simulation approaches (and their
configurations) are stated. Since ExGS is an exact algorithm
and, thus, always returns the ground state, the accuracy is
not listed in the table to avoid redundancy. Furthermore, to
ensure a sophisticated evaluation of QuickSim, TTS gained
with optimized settings is collected in addition to the TTS
of SimAnneal in default settings as discussed before provid-
ing a highly optimized baseline against which we compare
QuickSim. In the tables’ last two rows, the mean value of the

https://github.com/cda-tum/fiction
https://github.com/cda-tum/mnt-siqad-plugins
https://github.com/cda-tum/mnt-quicksim-results


TABLE III: Physical simulation of established gate layouts

BENCHMARK [15] PHYSICAL SIMULATION

EXGS [17] SIMANNEAL [13] QuickSim

Name #SiDBs #inst. TTS default optimized default

acc. TTS acc. TTS acc. TTS

Double Wire 28− 30 5 1149.21 2.3 35.80 1.9 4.87 65.2 0.30

CX 27− 29 5 618.88 17.5 21.00 14.5 13.07 64.0 0.25

HA 24− 26 5 54.82 2.8 4.27 2.2 0.38 96.3 0.04

AND 21− 25 5 24.31 31.1 2.33 20.2 1.49 90.5 0.03

XOR 21− 23 5 5.65 38.0 2.13 24.2 0.42 96.0 0.02

OR 21− 23 5 5.57 61.4 0.71 41.8 0.14 97.7 0.01

XNOR 21− 23 5 5.56 36.0 1.99 34.3 0.13 90.7 0.03

FO2 20− 21 3 1.28 67.2 0.26 48.2 0.05 98.9 0.01

NOR 19− 21 5 1.20 40.2 1.35 23.0 0.81 95.0 0.02

NAND 19− 21 5 1.19 56.9 0.67 38.3 0.13 99.7 0.01

INV 18− 19 6 0.53 78.1 0.35 52.7 0.09 83.6 0.01

Wire 15− 17 6 0.08 84.0 0.24 39.0 0.13 86.9 0.00

Mean 43.0 28.4 88.7

Total 1868.28 71.10 21.71 0.73

accuracies and the sums of the individual accumulated TTS
are collected, respectively.

C. Discussion

All obtained results confirm the discussions from Sec-
tion III-B: ExGS obtains the ground state simulation result in
a single run, but also requires the largest runtime. SimAnneal
is faster but, even after a tedious tuning of the number
of annealing cycles for SimAnneal to minimize TTS, a
substantial amount of iterations are still required and accuracy
is far from satisfactory. Overall: ExGS has high TTS and
SimAnneal low accuracy. In contrast, QuickSim achieves sim-
ulation performances that excel in both accuracy and TTS—
outperforming ExGS and SimAnneal on all three evaluations.
While, in comparison to SimAnneal, QuickSim’s simulation
accuracy is increased by more than a factor of three, its TTS
is improved by more than one order of magnitude at the
same time because its increased accuracy does not negatively
impact its runtime. Compared to ExGS, its TTS is reduced by
several orders of magnitude, while the simulation accuracy is
only slightly lower, again emphasizing the overcoming of the
trade-off between efficiency and accuracy.

VI. CONCLUSIONS

The recent advancement in the design automation and
fabrication capabilities of Silicon Dangling Bonds (SiDBs)
as an emerging computational beyond-CMOS technology
was fueled by scientific and commercial interest. In order
to keep pace with the progress made in this area, physical
simulation is a key tool as it poses the foundation of any
design validation workflow.

In this work, the novel algorithm QuickSim for physical
simulation of SiDB layouts was proposed that outperforms
the current state-of-the-art algorithm SimAnneal by more than
one order of magnitude and more than a factor of three in
terms of time-to-solution (TTS) and accuracy, respectively.
These results were revealed by an exhaustive experimental
evaluation on three different sets of SiDB layouts: 1) ran-
domly generated, 2) machine learning-generated, and 3) es-
tablished ones from the literature, which constitutes a total of
436 test cases. In an effort to support open research and open
data, we made the algorithm’s implementation, all evaluation
data, and the test scripts publicly available. Future work
aims to further improve the performance of the simulator,

as well as to add other features such as the consideration of
temperature (which, as recently explored in [33], plays an
important role in this technology).
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