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Abstract—Quantum computing is fast evolving as a technology
due to recent advances in hardware, software, as well as the
development of promising applications. To use this technology for
solving specific problems, a suitable quantum algorithm has to be
determined, the problem has to be encoded in a form suitable for
the chosen algorithm, it has to be executed, and the result has to
be decoded. To date, each of these tedious and error-prone steps is
conducted in a mostly manual fashion. This creates a high entry
barrier for using quantum computing—especially for users with
little to no expertise in that domain. In this work, we envision
a framework that aims to lower this entry barrier by allowing
users to employ quantum computing solutions in an automatic
fashion. To this end, interfaces as similar as possible to classical
solvers are provided, while the quantum steps of the workflow are
shielded from the user as much as possible by a fully automated
backend. To demonstrate the feasibility and usability of such
a framework, we provide proof-of-concept implementations for
two different classes of problems which are publicly available
on GitHub (https://github.com/cda-tum/MQTProblemSolver) as
part of the Munich Quantum Toolkit (MQT). By this, this work
provides the foundation for a low-threshold approach realizing
quantum computing solutions with no or only moderate expertise
in this technology.

I. INTRODUCTION

Quantum computing devices are rapidly evolving and ma-
turing with the increase of the number of available quantum
computers as well as their number of qubits, error rates de-
creasing, and operations becoming faster. In parallel, numerous
Software Development Kits (SDKs), such as Google’s Cirq [1],
IBM’s Qiskit [2], Quantinmuum’s TKET [3], and Rigetti’s
Forest [4], are being developed to make use of the available
quantum computing hardware. Even specialized SDKs for
certain purposes are available, e.g., Xanadu’s Pennylane [5] for
differentiable quantum computing. These developments spark
interest in quantum computing from academia and industry—
leading to potential applications in various domains such as
physics [6], chemistry [7], finance [8], and optimization [9].

So far, many works aiming to solve specific problems
by utilizing quantum computing follow a similar workflow
consisting of four steps:

1) Selecting a suitable quantum algorithm.
2) Encoding the specific problem into a quantum circuit.
3) Executing it on a quantum device.
4) Decoding the solution from the quantum result.

While this has led to several promising quantum computing
applications (triggering a substantial momentum for quantum
computing in general), realizing the respective solutions comes
with two major challenges: First, for all four steps, expertise
in quantum computing is required. Without that, neither a
quantum algorithm can be selected if the user is not aware
of its prerequisites, nor can the problem be encoded, or the
resulting quantum circuit be executed and the solution be
extracted. Naturally, most of the users from those application
domains are not trained experts in quantum computing which
poses a huge roadblock in the further utilization and adoption
of quantum computing. Second, especially during the encoding
and decoding, many tedious and error-prone tasks have to be
conducted—resulting in a huge manual effort to actually solve
problems using quantum computing. Both aspects combined
lead to a high entry barrier to employ quantum computing and
make its utilization very challenging.

In this work, we envision a framework that simplifies the
realization of quantum computing solutions—particularly for
users from the various application domains. To this end, we
exploit the fact that the current workflow summarized above
actually offers tangible opportunities to shield the user as
much as possible from the intricacies of quantum computing.
This is accomplished by keeping the interfaces for both, the
problem input and the solution output formats, as similar as
possible to classical solvers and by providing guidance for the
quantum algorithm selection procedure. Using this as a basis,
the remaining steps (encoding, executing, and decoding) are
then covered in a fully automated fashion.

To demonstrate the feasibility and usability of such a
framework, a proof-of-concept implementation—which is
publicly available on GitHub (https://github.com/cda-tum/
MQTProblemSolver) as part of the Munich Quantum Toolkit
(MQT)—has been realized for two different problem classes:
Satisfiability Problems (SAT problems) and Graph-based Op-
timization Problems. For both, corresponding case studies
confirmed the benefits from a user’s perspective. By this, this
work provides the foundation for a low-threshold approach
of realizing quantum computing solutions with no or only
moderate background in this technology.
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The rest of this work is structured as follows: Section II
gives a short introduction to quantum computing. Based on
that, a detailed explanation of the mentioned workflow of
realizing quantum computing solutions for specific problems
is given in Section III. Afterwards, the tangible opportuni-
ties to automate and simplify this workflow are identified
in Section IV—motivating the envisioned framework. Based
on that, the proof-of-concept implementations are described
in Section V and evaluated from a user’s perspective in
Section VI. Section VII concludes this work.

II. QUANTUM COMPUTING

In order to keep this work self-contained, this section gives
a short introduction to quantum computing. Compared to
classical computing, where each bit can have a value of 0
or 1 representing its state, a quantum bit or qubit may also be
in a superposition of those values, i.e., the quantum state |ϕ⟩
of a qubit can be written as

|ϕ⟩ = α0 |0⟩+ α1 |1⟩ =
[
α0 α1

]T
with amplitudes α0, α1 ∈ C such that |α0|2+|α1|2 = 1. For n
qubits, their state is composed of 2n amplitudes αi ∈ C with
i from 0 to 2n − 1. Again, the quantum state can be written
as a superposition of all its basis states, i.e.,

|ϕ⟩ =
2n−1∑
i=0

αi |i⟩ =
[
α0 . . . α2n−1

]T
with

∑
i

|αi|2 = 1.

Analogously to classical computing and its logical gate
operations, computations on quantum computers are conducted
using quantum gates which alter the state of the qubit. The cor-
responding functionality of a quantum gate can be described
by a unitary matrix; its effect on a quantum state can be
determined by multiplying the matrix representation and the
currently considered state representation.

Three prominent gates acting on a single qubit are the
Hadamard (H), the Pauli-X (X), and the Pauli-Z (Z) gate
which are defined by the matrices

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, and Z =

[
1 0
0 −1

]
.

A prominent representative acting on two qubits (typi-
cally referred to as control and target qubits) is the
controlled-not (CNOT) gate. If the control qubit is |1⟩, the
CNOT gate switches the amplitudes of the target qubit. In
principle, any operation can be controlled by arbitrarily many
qubits. A corresponding multi-controlled operation is only
applied, if all control qubits are |1⟩. An example for such
a multi-controlled operation is the multi-controlled-Z (MCZ)
gate. If all the control qubits are |1⟩, the MCZ gate applies a Z
gate to the target qubit. Those two operations with the second
respectively the nth qubit being the target qubit are defined
by the matrices

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and MCZ =


1 0 . . . 0

0
. . . . . .

...
...

. . . 1 0
0 . . . 0 −1

 .

|0⟩
|0⟩

H

Fig. 1. Exemplary quantum circuit starting in state |00⟩.

The state of a quantum system cannot be directly observed.
Instead, a measurement collapses the state to one of the
(classical) basis states |i⟩—each with probability |αi|2—which
can then be read out.

Quantum algorithms are typically described in the form of
a quantum circuit, i.e., a sequence of gates that are applied to
the qubits of a quantum system.

Example 1. Fig. 1 shows an exemplary quantum circuit with
two qubits that first applies a Hadamard gate, followed by a
CNOT gate. In the end, the qubits are measured.

III. REALIZING QUANTUM COMPUTING SOLUTIONS

This section gives an overview of the main steps to be
conducted when aiming to solve a specific problem using
quantum computing. Based on that, the remainder of this work
will then deal with how to automate this workflow or, at least,
aid the user during this process. In order to properly illustrate
those steps as well as the proposed solution, a running example
is used, which is introduced in the following.

Example 2. Kakuro, a cross-sum riddle, is an example of a
SAT problem and is composed of a grid structure with M rows
and N columns, where each row and column shall add up to
a given sum. Additionally, numbers within each row and each
column must be distinct. A simple Kakuro riddle instantiation
with a grid structure of 2× 2 is shown in Fig. 2a, where the
goal is to determine a, b, c, and d such that the respective
sums add up to 1. Thus, all those variables are to be assigned
either 0 or 1. A solution to this problem is characterized by
satisfying the constraints a ̸= b, b ̸= d, and c ̸= d.

A. Quantum Algorithm Selection

The first step towards solving a problem using quantum
computing is to choose a proper quantum algorithm which is
suitable for the considered problem. Without going into the
details of quantum algorithms (for this, we refer to the given
references), some prominent representatives are

• Grover’s Algorithm [10], which is suited for unstructured
search (problems),

• Quantum Phase Estimation (QPE, [11]), which provides
the foundation of Shor’s Algorithm [12] used for integer
factorization, or

• Variational Quantum Algorithms (VQAs, [13]), e.g., Vari-
ational Quantum Eigensolver (VQE) and Quantum Ap-
proximate Optimization Algorithm (QAOA), which allows
for hybrid classical-quantum computing while also being
suited for combinatorial optimization problems, such as
the Max-Cut Problem.
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(a) Initial problem. (b) Quantum circuit. (c) Histogram. (d) Solution.

Fig. 2. Workflow from an initial problem instance to a valid solution using quantum computing.

Example 3. Finding a solution for a SAT problem such
as the Kakuro riddle can be interpreted as finding an as-
signment of all variables subject to some constraints. Being
an unstructured search problem, Grover’s algorithm is a
very suitable choice for this. The corresponding quantum
circuit is composed of three blocks: State preparation, a
problem-specific oracle, and the diffusor. To utilize Grover’s
algorithm for solving a SAT problem, all constraints describ-
ing a valid variable assignment must be encoded within the
oracle, while the state preparation and diffusor blocks are
problem-independent. Together, the oracle and the diffusor
constitute one Grover iteration. Each application of such an
iteration increases the probability of obtaining correct solu-
tions from the measurements—a technique called amplitude
amplification. If n qubits are used and the underlying problem
has k possible solutions, the maximal amplification is achieved
after ⌊π

4

√
2n

k ⌋ iterations.

B. Encoding

After an algorithm is selected, the actual problem instance
must be encoded in the form of a quantum circuit, such that
the chosen quantum algorithm can determine a solution for
that specific problem instance. The encoding fashion highly
depends on the chosen algorithm and its inner working mech-
anisms. While some quantum algorithms, such as VQE and
QAOA, follow a rather generic general fashion, others, such
as Grover’s algorithm, are far more problem-specific.

Example 4. In order to apply Grover to the 2 × 2 Kakuro
riddle shown in Fig. 2a, all three constraints mentioned in
Example 2 need to be encoded in an oracle as described in
Example 3. The resulting circuit is shown in Fig. 2b. Since
each of the variables only assumes values in {0, 1}, a single
qubit can be used to represent each of the variables a to d—
amounting to four qubits. The three inequality constraints are
then encoded through single CNOT gates (as annotated in
Fig. 2b). Additionally, a flag qubit is introduced to indicate
whether a variable assignment satisfies all constraints. An
MCZ gate (indicated by the four black dots) is used for exactly
this purpose and flips the phase of the flag qubit whenever
all constraints are satisfied. Afterwards, all constraints are
uncomputed—a prerequisite for Grover to function properly.
With four qubits representing the open variables and two
possible solutions, two Grover iterations are necessary (as
indicated by the dashed rectangle and “×2” in Fig. 2b).

C. Executing

Afterwards, the resulting quantum circuit is executed. In
essence, executing a quantum circuit means repeatedly initial-
izing a quantum system (typically to the all-zero state |0...0⟩),
applying all the operations of the circuit, and measuring the
final state. This corresponds to sampling from the probability
distribution described by the amplitudes of the final state
and can either be performed on a classical computer (using
quantum circuit simulators such as [2], [14]–[18]) or on
actual quantum computers (such as from IBM, Rigetti, AQT,
Google, Oxford Quantum Computing, or IonQ). In either case,
the result after the execution is a histogram describing the
distribution of the measured results.

Example 5. The execution of the circuit from Example 4
yields an outcome distribution (referred to as a histogram) as
illustrated in Fig. 2c. While most of the states have a very low
probability of around 0.4%, the two highlighted states (|0110⟩
and |1001⟩) occurred in around 47% of the executions.

D. Decoding

Based on the histogram obtained from the circuit execution,
the solution to the problem must be decoded. In general, the
solutions determined by the quantum algorithm are represented
by the bitstrings in the histogram that occurred most fre-
quently. The amount of post-processing necessary to transform
these quantum solutions to classical solutions of the real
problem greatly varies depending on the algorithm itself and
the complexity of the encoding that was chosen to realize the
quantum algorithm.

Example 6. The two bitstrings 0110 and 1001 that occurred
most frequently in the histogram shown in Fig. 2c encode the
solutions to the 2× 2 Kakuro riddle. Since every variable has
been encoded as a single qubit, it is easy to read out the
solutions a = 0, b = 1, c = 1, d = 0 and a = 1, b = 0, c = 0,
d = 1. This eventually lead to the solutions shown in Fig. 2d.

IV. ENVISIONED FRAMEWORK

In this work, we envision a framework for developing
quantum computing solutions that aims to shield users from
the intricacies of quantum computing while at the same
time providing them with all that is needed to realize their
desired solution. To this end, the workflow as reviewed in
Section III offers several tangible opportunities: To begin with,
the original problem description is purely classical and, given



a suitable quantum algorithm, its encoding into a quantum
circuit can be fully automated. In a similar fashion, also the
execution and decoding step need not be handled by the user
but can rather be embedded into an automated workflow as
well. This yields the desired solution which can be returned
to the user—again in a classical format. In doing so, all
tedious and error-prone tasks involving huge manual effort
are conducted by the framework itself instead of the user.

Overall, this leads to a framework as sketched in Fig. 3
which realizes a quantum computing solution for a given
problem in four steps:

1) Problem Specification: The user is asked to classify the
problem as well as to insert the particular instance of the
problem. To this end, problems are grouped into over-
arching problem classes (such as SAT or graph-based
optimization). For each problem class, corresponding
interfaces are provided that allow the user to specify
particular instances of the problem class. This is very
similar to the inputs of classical solvers and, hence, does
not require any quantum expertise at all.

2) Algorithm Selection: The user needs to select which
quantum algorithm should be used to solve the problem.
While this certainly requires some quantum computing
expertise, the framework can actively support the user
in this process. In fact, after choosing the problem
class, often only a very selected number of algorithms
remain appropriate to solve an instance of that class.
For example, if a SAT problem has been specified,
Grover’s algorithm or QAOA seem to be the most
promising algorithms. A corresponding a-priori selection
can be conducted by quantum computing experts and,
afterwards, accordingly incorporated into the framework.
By this, the user is properly guided and shielded from
the quantum domain as much as possible.

3) Solving: With the problem specification and the quantum
algorithm set, the quantum computing solution can be
realized. This requires the encoding, execute, and decod-
ing steps reviewed above. Interestingly, all those steps
can actually be conducted in an automatic fashion and,
hence, completely shielded from the user. This builds
on various demonstrations of problems being translated
to the quantum realm, e.g., [6]–[9], and defers dealing
with the intricacies of quantum computing from the
user to the quantum computing expert developing the
framework.

4) Solution Processing: Finally, the decoded solution is
provided to the user in a format as it would have been
provided by a classical solver.

This results in a frontend relying on classical descriptions
and formats, where the user has to provide the problem
instance and subsequently receives the solution; and a heavily
automated backend that takes care of the encoding, executing,
and decoding tasks. This keeps the user (who obviously only
interacts with the frontend) in the classical domain (indicated
by the green color in Fig. 3) and as much as possible shielded
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from the quantum domain (indicated by the red color in Fig. 3).
Eventually, this vision of a framework may enable users

to utilize the benefits of quantum computing with no or only
moderate background in this technology. However, implement-
ing such a framework is no easy task: Interfaces, algorithm
templates, automatic encoding, and decoding solutions, etc.
need to be developed for a broad variety of problem classes.
Moreover, naive implementations will certainly not be suf-
ficient for practical use cases as they would lead to a sub-
stantial overhead today’s quantum computers cannot handle.
As a consequence, the development of efficient encodings
and quantum circuit realizations [19]–[26] as well as meth-
ods properly compiling the resulting quantum circuits using
the most promising compilation options [27] have received
substantial interest recently. Overall, providing a fully-fledged
implementation of the envisioned framework is clearly out of
scope for this work and more of a long-term goal.

However, to allow for initial studies on the principal feasi-
bility of the proposed vision, we realized two proof-of-concept
implementations of the envisioned framework: One for
the SAT problem class covered above; and one for the
class of graph-based optimization problems. While these
proof-of-concept implementations are certainly not optimized
and scalable for practically relevant instances, they showcase
that the concepts envisioned above are indeed feasible and
can be extended to various problem classes. However, this
comes with a large one-time development effort for each
problem class for the quantum computing experts extending
the framework.

V. PROOF-OF-CONCEPT IMPLEMENTATIONS

In this section, we describe these proof-of-concept im-
plementations. Based on that, Section VI then showcases
that a framework as proposed above (even in simple
proof-of-concept implementations) indeed allows for a realiza-
tion of quantum computing solutions with no or only moderate
quantum computing expertise.



A. Satisfiability Problems

As a first proof-of-concept implementation, we considered
SAT problems and realized the respective components of the
framework that are needed to provide support for this problem
class. To this end, we created a Python skeleton defining the
interfaces sketched in Fig. 3. Based on that, the respective
components have been realized as follows:

First, we created the respective interface for SAT
problems—requiring a dedicated input mask for defining the
variables and constraints of arbitrary SAT instances. This
interface is by no means different to the interfaces of classical
tools from related domains and communities (e.g., based on
SAT [28], [29], SMT [30]–[32], or ILP [33]). Hence, the huge
set of description means, parsers, etc. developed in the past
can be easily reused. In this implementation, we eventually
decided to provide support for specifying small SAT problems
formulated as a list of constraints.

Next, templates of possible quantum algorithms suited to
tackle the problem are provided. As already discussed above
in Example 3, Grover’s algorithm is particularly suited for
this class of problems while QAOA might also be a possible
choice. For Grover’s algorithm, a corresponding template is
created, such that the general structure of the quantum algo-
rithm is utilized for the subsequent encoding. This template
consists of a state preparation, an oracle, and a diffuser
(building) block.

To fill these blocks, automatic methods have been im-
plemented that take the problem description in the form of
the constraints list and construct the corresponding quantum
circuit. More precisely, qubits are allocated for each variable in
the constraints. From that, the state preparation and diffusion
building blocks can already be fully instantiated (as they only
depend on the number of qubits used). Then, the main task
lies in encoding the given classical constraints in the form of
an oracle, i.e., in terms of quantum gates. Since quantum gates
(and quantum computing itself) are inherently reversible—
while many classical functions are not—dedicated synthesis
techniques need to be applied for that matter [34]. In our
proof-of-concept implementation, each constraint is synthe-
sized on a separate qubit employing existing techniques for
reversible logic synthesis (such as quantum adders [35]–[37]).
Then, all constraints are combined using an MCZ gate (similar
to the encoding of the Kakuro riddle in Example 4).

After constructing the entire circuit from the given problem
description in a fully automated fashion, it can now directly be
passed to any device capable of its execution—either an actual
quantum computer (e.g., from IBM, Rigetti, AQT, Google,
Oxford Quantum Computing, or IonQ) or a classical quantum
circuit simulator (e.g., [2], [14]–[18]). For the purpose of
this work, we opted for the MQT DDSIM-simulator (taken
from [15]) as a simple and easy to incorporate solution to gen-
erate the respective outcome distributions for the constructed
circuits.

Since the number of solutions to the original problem
might not be known a-piori (and, hence, the optimal number

of Grover iterations cannot be statically determined), the
proposed implementation dynamically adjusts the number of
iterations until a definite result is obtained. Given the most
probable measurement results, the respective variable assign-
ments are then inferred in a similar fashion as in Example 6.
Accordingly, the determined variable assignments are returned
to the frontend, which visualizes them in a format familiar to
the user.

B. Graph-based Optimization Problem:
Travelling Salesman Problem

To demonstrate the flexibility and expandability of the
envisioned framework, a proof of concept for a different
problem class (namely graph-based optimization problems)
has additionally been implemented.

Analogously to the previous implementation, we designed
the respective interface for defining graph-based optimization
problems by providing means to specify the graph-defining
weighted adjacency matrix and the objective function. Again,
this interface is similar to the interface of classical solvers for
this type of problem.

For the proof-of-concept implementation, we particularly
considered the Travelling Salesman Problem (TSP) as an
objective function. In simple words, solving a TSP means
to determine the shortest path visiting all nodes and ending
at the starting node while each node is passed exactly once.
More formally, the solution to the TSP is given by the
shortest Hamiltonian cycle of the graph. The Quantum Phase
Estimation (QPE, [11]) algorithm has been determined as a
suitable technique for solving this problem on a quantum
computer based on the encoding technique presented in [38].

The QPE algorithm allows to efficiently estimate the phase
of one of a unitary matrix U ’s eigenvalues, i.e., estimates
θ such that U |ψ⟩ = e2πiθ |ψ⟩ for a given eigenstate |ψ⟩.
Similar to Grover’s algorithm, where the encoding mainly
concerns the design of the oracle part of the algorithm, the
essential part of solving a problem with QPE is designing
the unitary operator U so that the answer to the problem lies
in the phase of its eigenvalues. For a TSP problem with N
nodes, N⌈log2N⌉ qubits are allocated to encode all possible
Hamiltonian cycles. Next, the adjacency matrix is encoded
by constructing a unitary matrix that encodes the respective
weights as phases on its diagonal. By design, the Hamiltonian
cycles of the graph (encoded as states |ψ⟩) are eigenstates
of this constructed operator U and the corresponding phase
reflects the length of the cycle—the lower the phase, the
shorter the cycle.

In the execution step, the QPE algorithm is applied to each
unique Hamiltonian cycle—again utilizing the same quantum
circuit simulator as before. Each execution run produces an
estimate for the length of the corresponding Hamiltonian
cycle. Accordingly, the path corresponding to the smallest
measured phase is returned to the frontend as the solution
to the problem—ready to be visualized and shown to the user.
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VI. CASE STUDIES: USER’S PERSPECTIVE

Eventually, the steps described in the previous section led
to a proof-of-concept implementation of the ideas proposed
in Section IV which are publicly available on GitHub (https:
//github.com/cda-tum/MQTProblemSolver) as part of the Mu-
nich Quantum Toolkit (MQT). In this section, the resulting
framework realization is evaluated from a user’s perspective
in order to demonstrate that the proposed approach indeed
allows one to utilize quantum computing for solving classi-
cal problems with no or only moderate quantum computing
expertise. For that, problem instances from both the SAT and
the graph-based optimization problem classes are exemplary
solved.

A. SAT Problem: Kakuro Riddle

Consider again the Kakuro riddle that was used as a running
example throughout this work. Fig. 4a shows a slightly more
complex instantiation of such a riddle. The goal is to determine
values for a to d such that the sums add up to 4 and
respectively 5.

Using the proposed framework, the user first has to identify
the corresponding problem class (here, obviously SAT) and
provide the instance. For the latter, the classical constraints
shown in Fig. 4b are passed to the framework and Grover’s
algorithm is selected as the quantum algorithm. All of that
happens on a purely classical basis as it would have if the
problem were to be solved using classical solvers. Afterwards,
with the push of a button, the framework determines the
variable assignment for a to d shown in Fig. 4c—completely
shielding the user from all the tedious and error-prone quantum
steps. The solved Kakuro instance is shown in Fig. 4d.

B. Graph-based Optimization Problem: TSP

In a similar fashion, the TSP shown in Fig. 4e can be
automatically solved in a push-button fashion using the im-
plemented framework. Remember, that the goal of the TSP
is to determine the shortest path traversing all nodes exactly
once and returning to the start.

All that is required from the user is the adjacency matrix
of the graph and the selection of TSP as an objective function
as shown in Fig. 4f—again sticking to purely classical and
common description means. After selecting the QPE algorithm
for solving the problem, with the push of a button, the
framework determines the classical solution as reflected in
Fig. 4g. This corresponds to the traversal of the graph as shown
in Fig. 4h (indicated by the red edges).

VII. CONCLUSIONS

In this work, we envisioned a framework that allows users
from various domains with little to no quantum computing ex-
pertise to use quantum computing for solving their problems.
To achieve that, we shielded the user from most quantum com-
puting steps and, instead, proposed corresponding automatic
solutions for them. To this end, interfaces are employed that
are as similar as possible to the interfaces of classical solvers
for the respective problems. The feasibility and usability of
such a framework has been demonstrated by proof-of-concept
implementations and corresponding case studies for two dif-
ferent problem classes which are publicly available on GitHub
(https://github.com/cda-tum/MQTProblemSolver).

While these case studies confirmed the potential of the
envisioned framework, developing a fully-fledged implemen-
tation will require significant further efforts in many dimen-
sions: Further problem classes need to be supported, generic
implementations of further quantum algorithms need to be
provided, and highly efficient encoding techniques need to
be developed in order to allow the resulting framework to
be of practical use. While this clearly is out of scope for
this work and actually constitutes an ambitious long-term
goal, this work lays the foundations for the design automation
community to work towards this vision—eventually providing
a low-threshold solution for utilizing quantum computing in
real-world applications without the necessity of being an
expert in quantum computing.

https://github.com/cda-tum/MQTProblemSolver
https://github.com/cda-tum/MQTProblemSolver
https://github.com/cda-tum/MQTProblemSolver
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