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ABSTRACT
While conventional computing technologies reach their limits, the

demand for computation power keeps growing, fueling the inter-

est in post-CMOS technologies. One promising contestant in this

domain is Field-coupled Nanocomputing (FCN), which conducts com-

putations based on the repulsion of physical fields at the nanoscale.

However, to realize a dedicated functionality in this technology

design methods are needed that create corresponding FCN lay-

outs. While several methods for FCN layout generation have been

proposed in the past, the underlying complexity requires them to

resort to heuristic approaches—leading to results of sub-par quality

and offering room for improvement. In conventional CMOS design,

post-layout optimizationmethods are available to exploit this poten-

tial for further improvement. Unfortunately, no such methods exists

yet for FCN. In this work, we are addressing this gap and introduce

the first post-layout optimization approach for FCN. Experimental

evaluations show the benefits of the approach: Applied to layouts

generated by two complementary state-of-the-art methods, the pro-

posed post-layout optimization allows for a further area reduction

of 50.79% and 20.00% on average, respectively—confirming the

potential of post-layout optimization for FCN.

CCS CONCEPTS
• Hardware→ Quantum dots and cellular automata; Place-
ment;Wire routing.

1 INTRODUCTION
While the demand for computational capabilities is experiencing

continuous growth, the limits ofMoore’s Law are becoming evident.

Furthermore, projections indicate that, by 2030, the information and

telecommunications sector could account for 51 % of global electric-

ity consumption and 23% of global greenhouse gas emissions [4].

Hence, suitable alternatives are needed.

A potential solution for the future of green computing at the

nanoscale is Field-coupled Nanocomputing (FCN), which operates

by leveraging the repulsion of physical fields instead of electric cur-

rent. One of the most extensively studied approaches in the realm

of FCN is Quantum-dot Cellular Automata (QCA), which was first

conceived in 1993 by Lent et al. [19]. In recent times, FCN has re-

ceived a significant boost in popularity with several breakthroughs

in fabrication including the successful experimental demonstration

of a functional sub-30 nm
2
OR gate [1, 2, 18, 23]. This breakthrough

was achieved by utilizing Silicon Dangling Bonds (SiDBs) [1] on a

hydrogen-passivated silicon surface [11, 23]. Notably, the implemen-

tation of SiDBs offers substantial scaling improvements compared to

other approaches, such as molecular QCA implementations, while

∗
Also with Software Competence Center Hagenberg (SCCH).

also providing enhanced flexibility in their utilization [18]. These

advancements have further contributed to the growing interest in

FCN, leading to substantial investments, amounting to millions of

dollars, in research enterprises like Quantum Silicon Inc.
But despite these accomplishments, the effectiveness of FCN tech-

nologies also relies on our ability to properly and efficiently design

corresponding layouts—in particular to address scalability and com-

putational throughput of upcoming FCN circuits. Unfortunately,

conventional design methodologies for chip layout generation in

the CMOS domain cannot be directly applied to FCN circuitry due

to unique constraints imposed by the technology. Consequently,

the design automation community proposed various alternative

approaches including heuristic combinatorial methods [33], the

utilization of SAT and SMT solvers [30, 35], hand-crafted tech-

niques [9], and methods based on machine learning [14].

However, due to the exponential nature of the problem [32], most

of these methods use heuristics (exceptions are exact methods such

as [30, 35], but those are applicable to rather small functions only).

Because of that, the generated layouts are often of sub-par quality

and offer room for potential. This is similar to corresponding meth-

ods in the CMOS realm which is why a post-layout optimization
run is usually employed there after initial layouts have been deter-

mined [5, 7]. For FCN design, no such methods exist yet and the

corresponding potential remained untapped thus far.

In this work, we are addressing this gap by introducing the first

post-layout optimization method for FCN. The proposed scheme

conducts the following steps (covered in detail later in Section 4):

(1) Enhancing gate placement by removing routing to adjacent

gates, exploring alternative placements, and utilizing the

A
∗
search algorithm [12] for rerouting.

(2) Detecting and removing excess wiring while considering

path balancing and synchronization constraints.

(3) Relocating output pins to the borders of the reduced layout.

These steps reduce layout area and critical path and, hence, in-

crease the achievable throughput. The resulting layouts are better

suited for subsequent processes such as physical simulation [8]

or fabrication [18]—enhancing the overall efficiency of the design

process.

Experimental evaluations confirm the benefits of post-layout

optimization for FCN. In fact, applied to layouts generated by two

complementary state-of-the-art methods (namely ortho [33] and

NanoPlaceR [14]) a further area reduction of 50.79% and 20.00%

can be obtained on average, respectively.

The remainder of this paper is structured as follows: Section 2 re-

views technical background on selected FCN technologies. Section 3

introduces the optimization ideas based on the physical design flow

for FCN technologies. The corresponding steps (also summarized

above) are then described in detail in Section 4. The results obtained
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(a) Polarization states of
individual cells.

(b) Wire segment.

Figure 1: Elementary QCA cells and wire segment.

Figure 2: QCA majority gate. Figure 3: 2DDWave.

by our experimental evaluations of the methods are summarized in

Section 5. Finally, Section 6 concludes the paper.

2 BACKGROUND
Field-coupled Nanocomputing (FCN), a promising class of post-

CMOS technologies, offers a potential solution to the increasing

demand for computing power while addressing environmental con-

cerns. These technologies enable circuit operation at the nanoscale

without the need for electrical current flow, thus mitigating power

consumption and increasing greenhouse gas emissions [3].

First, Section 2.1 focuses on one of the most extensively studied

FCN technologies, QCA. Subsequently, in Section 2.2, an overview

of recent breakthroughs in fabrication achieved with SiDBs is pre-

sented. Finally, Section 2.3 summarizes the technology constraints

imposed by FCN.

2.1 Quantum-dot Cellular Automata
In the QCA technology, the fundamental building block is known

as a cell which serves a role analogous to that of a transistor in

traditional electronics. Similar to transistors, cells in QCA can store

and manipulate information. Each cell is capable of holding a single

bit of information in the form of a charge state. By combining

multiple cells, complex structures can be formed to compute any

Boolean function, thereby providing logic-in-memory functionality.

A QCA cell consists of four quantum dots arranged in a square

frame on a substrate, as illustrated in Figure 1a. The binary values 0

and 1 are encoded using polarization in the form of electron con-

figurations. The polarization of QCA cells generates electric fields

that influence neighboring cells, causing their polarization to align

accordingly. This phenomenon allows for the propagation of infor-

mation and the execution of computations. For instance, a simple

arrangement of adjacent QCA cells forms a binary wire segment, as

depicted in Figure 1b. Furthermore, by placing a QCA cell adjacent

to three input cells, the majority-of-three (MAJ3) function can be

implemented, as shown in Figure Figure 2, resulting in complete

gate libraries, e. g., QCA ONE [26].

2.2 Silicon Dangling Bonds
SiDBs can be generated by selectively removing hydrogen atoms

from a passivated silicon (H-Si(100)-2×1) surface [11] using a scan-

ning tunneling microscope [1]. This fabrication process yields

atomically-sized, chemically identical quantum dots that can be

manufactured with unparalleled precision, thanks to recent break-

throughs in the domain [17, 23–25, 37]. SiDB cells only require two

quantum dots in arrangements called Binary-dot Logic (BDL) [18].
An SiDB OR gate with a footprint of less than 30 nm

2
was success-

fully demonstrated using the BDL concept [18].

The Bestagon library [36] provides respective standard gates,

some of which are designed using reinforcement learning [21].

Efficient and accurate simulation of these gates can be performed

using physical simulators like SiQAD [22] or QuickSim [8].

2.3 Technology Constraints
Several constraints in FCN technologies limit circuit layouts, e. g.,

planarity, and consequently limited crossing capabilities, making

wire routing challenging. Additionally, balanced wire paths are re-

quired for signal synchronization. FCN circuits must be partitioned

into uniform regions activated periodically by external fields for

signal stability and information flow regulation; a concept called

Clocking [13, 20], which is crucial for combinational and sequential

circuits alike in the FCN domain.

QCA uses square tiles for clock partitioning, while SiDB employs

hexagonal tiles [16, 36]. The default clocking system consists of

four consecutive clock signals, enabling a pipeline-like flow from

tiles under the control of clock 1 to those under clock 2, clock 3,

and, finally, clock 4 before returning to 1 [13, 20].

Clock signal distribution via buried electrodes in the substrate is

a debated topic, with various clocking schemes proposed [6, 10, 29],

with the most promising being 2DDWave, illustrated in Figure 3. On
the 2DDWave clocking scheme, information only flows from left to

right and top to bottom, therefore offering only acyclic and linear

information propagation. Each gate can receive input signals from

its top and left border, and output information through its right and

bottom border. These special characteristics lead to the development

of tailored heuristics that can conduct physical design for arbitrarily

large logic networks in negligible time on the 2DDWave scheme.

3 MOTIVATION
FCN layouts, as mentioned earlier, possess distinct characteristics

that set them apart from conventional CMOS-based computing

systems. These unique features introduce significant challenges

in the physical design of FCN technologies, including constraints

related to planarity and signal balancing, as discussed in Section 2.3.

The placement and routing problems in FCN are known to be

NP-complete [32], making the search for optimal solutions chal-

lenging even for small circuits. Heuristic algorithms, like those

discussed in e. g. [9, 14, 33], offer more efficient solutions by im-

posing restrictions on the search space. These algorithms may not

guarantee finding the optimal solution, but they provide practical

and scalable approaches that can handle larger layouts.

To improve the quality of layouts generated by heuristic solu-

tions, this work presents multiple optimization algorithms that can
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Figure 4: FCN physical design flow.

be applied after the initial placement and routing step in the physi-

cal design flow, which directly influences subsequent processes as

outlined in Section 3.1. The underlying idea for these optimization

algorithms is based on relocating gates in the layout and reducing

wiring, and is discussed in Section 3.2.

3.1 Physical Design Flow
In the typical physical design flow for FCN technologies, as illus-

trated in Figure 4, first, a physical design algorithm, which can be

optimal or heuristic, generates a technology-independent gate-level

layout from a given logic network that was obtained by previous

logic synthesis and optimization. This layout is agnostic of any

specific FCN implementation and can be effectively modeled using

various technologies such as QCA, SiDBs or iNML, by mapping

all gates and wires to their respective cell-level implementations

defined by a technology-specific gate library [26, 27, 36]

Utilizing a 45 ° turn [15], any Cartesian, 2DDWave-clocked [29]

layout can be transformed into a hexagonal configuration to accom-

modate Y-shaped SiDB gates. A recent addition to heuristic design

algorithms is the ortho algorithm [33]. Designed specifically for

the 2DDWave clocking scheme, this algorithm generates layouts by

employing an approximation of orthogonal graph drawing. Notably,
it demonstrates remarkable proficiency in automatically designing

layouts for large-scale FCN circuits comprising hundreds of mil-

lions of tiles. The algorithm achieves this by effectively coloring the

logic network with two colors, which act as a direction assignment

during placement. Based on the coloring, ortho places the logic

network gates in topological order, while, for each gate, adding a

new row or column to the layout to trivialize wire routing and path

balancing.

The application of the ortho algorithm is depicted in Figure 5

based on the parity generator function. Nevertheless, it is essential

to acknowledge that due to its reliance on approximations, the

resulting layout may be larger than the exact solution, necessitating

potential optimizations.

Reducing the area of gate-level layouts directly yields a corre-

sponding reduction in the area of cell-level layouts. Consequently,

the optimization of layouts generated by ortho or other heuristic
algorithms not only directly diminishes the dimensions of QCA,

SiDBs, iNML and other FCN technologies, but also contributes to

an amplified throughput due to the resultant reduction in critical

path length.

(a) Colored logic net-
work representing a par-
ity generator function.
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(b) Resulting layout on the 2DDWave clock-
ing scheme. For each gate to be placed, either
a new row or column is added.

Figure 5: Green lines indicate placing a node to the south of
its predecessors and red lines to the east.
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(a) The AND gate to be
moved is indicated in
yellow.
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(b) After removing the
wiring, the AND gate is
repositioned.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(c) If a new wiring is
found, the AND gate
gets rewired.

Figure 6: Snapshot of the layout from Figure 5b illustrating
the optimization idea.

3.2 Optimization Idea
Using the 2DDWave clocking scheme, information within the layout

flows horizontally from left to right and vertically from top to

bottom. Consequently, to effectively reduce the layout area, gates

should be positioned as close as possible to the top-left corner.

The strategic positioning of a gate is essential as it impacts the

placement of all subsequent gates in the design due to the acyclic

flow of information.

The core concept of the optimization algorithm involves shifting

gates to better positions. This process unfolds through a series of

steps: starting with the removal of the existing wiring, then deter-

mining more strategically advantageous placements, and finally

identifying a new valid location using the A
∗
algorithm to assess

the potential for rerouting.
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Algorithm 1: FCN Post-Layout Optimization

Input: FCN gate-level layout 𝐿

Output: Optimized layout

1 improvement ← true
2 while improvement do
3 foreach gate ∈ 𝐿 do
4 remove initial wiring of gate
5 coordinates← list of potentially better coordinates to place gate
6 foreach 𝑐 ∈ coordinates do
7 move gate to 𝑐 // Figure 6b

8 wiring ← A
∗
-search

9 if wiring ≠ ∅ then
10 route 𝑔 using wiring // Figure 6c

11 end if
12 end foreach
13 if wiring = ∅ then
14 move gate back to its initial coordinate

15 restore initial wiring of gate
16 end if
17 end foreach
18 if no gate moved then
19 improvement ← false
20 end if
21 end while
22 remove excess wiring // Figure 8

23 relocate outputs // Figure 9

24 return 𝐿

Example 3.1. The optimization idea is illustrated with a snapshot
of the layout from Figure 5b: In Figure 6a, the gate to be moved is
colored yellow. After removing the wiring to its predecessors and
successor, possible new coordinates are calculated. After moving the
gate to a new coordinate, for example as shown in Figure 6b, A∗ is
used to determine if paths from the predecessors to the gate and from
the gate to its successor exist. If a new wiring is found, it is applied to
the layout, otherwise, the old wiring is restored.

4 PROPOSED OPTIMIZATION ALGORITHM
This section constitutes the main contribution of this paper, which

is an optimization algorithm composed of three stages:

(1) Moving gates to improved positions, as described in Sec-

tion 4.1, (2) removing excess wiring, as illustrated in Section 4.2,

and, (3) relocating outputs, as shown in Section 4.3. Algorithm 1

presents an overview of the proposed approach and is referenced

by the corresponding line number in the following subsections.

4.1 Moving Gates
In the first stage, placed gates are relocated based on the idea pre-

sented in Section 3.2.

After disconnecting a gate from its preceding and succeeding

gates (line 4), new potential positions are determined based on

the location of its preceding gates on the layout (line 5), similar to

the procedure used by NanoPlaceR [14]. The gate is then moved

to a better location (line 7), i. e., a coordinate closer to the top left

corner, and A
∗
is used to check for viable reconnection with its

preceding and succeeding gates (line 8) and rewired (line 10) if

one is found (line 9). If no suitable wiring can be found for any of

the possible positions (line 13), the gate is reverted to its original

position (line 14), and the wiring is restored (line 15).
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(a) In the first iteration, every gate
can be moved to a position closer to
the top left corner.
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(b) In the second iteration, only the
location of three gates is further op-
timized.

Figure 7: Moving gates of the layout from Figure 5b.

Example 4.1. In Figure 7, again, the parity generator function from
Figure 5b is used. In the first iteration, all gates can be moved to a
better position, freeing up space at the bottom of the layout, as seen
in Figure 7a. In the second iteration, only three gates can be moved,
terminating the optimization, as in the third iteration, zero gates can
be moved (line 18). Figure 7b shows the optimized layout, with gates
in only six out of the 14 rows. Note that the output pin will be moved
later (line 23).

4.2 Removing Excess Wiring
In the presence of solely vertical wires within a row or horizontal

wires within a column of a 2DDWave-clocked layout, it is permis-

sible to delete that row or column entirely without breaching any

synchronization constraints (line 22). The reason is that such a row

or column merely introduces a one-tile delay in the information

flow from top to bottom or left to right. Consequently, its removal

does not adversely affect the overall synchronization of the system,

which is achieved by removing all wires in the aforementioned row

or column and moving all subsequent gates and wires up or to the

left, generating an empty row or column at the bottom or right of

the layout.

Example 4.2. In Figure 8, the cell-level layout of a circuit after
several iterations of moving gates is shown. Each row that only has
wires going from north to south and column that only has wires going
from west to east is marked red in Figure 8a. In Figure 8b, these wires
were removed, which reduced the number of rows and columns by 16
and 2, respectively.

4.3 Relocating Outputs
To further optimize the layout area, we can relocate output pins by

tracing back along their connections to their predecessors (line 23).

Since all output pins must be placed in the rightmost column or

lowest row, we can determine a bounding box that encompasses

all gates except the outputs. This bounding box calculation helps
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(a) Rows and columns with wires that
can be deleted are marked red.

(b) After deletion, all subsequent
rows and columns are moved up or to
the left.

Figure 8: The removal of rows and columns that only contain
wires reduces layout area.

(a) Paths from outputs to their pre-
ceding gates are marked green.

(b) Output pins are moved relocated
based on their path.

Figure 9: Repositioning outputs to lay on the new border.

us establish the maximum distance each output can be moved

backward.

Example 4.3. In Figure 9, again, the optimized layout from Fig-
ure 8b is used. All paths from outputs to their preceding gates are
marked green in Figure 9a. Based on these paths, the outputs can be
moved back to a position that lies on the border of the smaller layout
in Figure 9b.

5 EXPERIMENTAL EVALUATION
The optimization method proposed in this work has been imple-

mented in C++17 on top of the fiction framework [31] as part of the

Munich Nanotech Toolkit (MNT).
1
Additionally, the optimization

algorithm has been made accessible via fiction’s CLI as command

optimize. Having this solution established, results from any phys-

ical design algorithm for Cartesian 2DDWave-clocked layouts can

be optimized with the proposed method.

To demonstrate its advantages, we utilized two heuristic ap-

proaches, namely ortho [33] and NanoPlaceR [14] as representatives

for existing algorithms for the design of FCN circuits, optimized the

generated layouts using the proposed methodology, and verified the

equivalence of the obtained layouts using the formal verification

technique proposed in [34]. All methods have been evaluated using

a broad variety of well-established benchmarks [9, 28].

The resulting data is summarized in Table 1, which lists the

benchmark configurations as well as layout characteristics of the

two heuristic approaches before and after the optimization.

With the proposed post-layout optimization method, quality

of designs generated using the ortho method increased signifi-

cantly, with an average layout area reduction of approximately

50.79%. For layouts produced with the reinforcement learning-

based NanoPlaceR, an average area reduction of 20.00% could be

achieved, since physical designs created with that method exhibit

considerably lower area costs to begin with. For small benchmarks,

the layouts obtained by NanoPlaceR were already optimal, leav-

ing no room for further improvement through the optimization

algorithm (first five rows of Table 1).

Overall, the application of the optimization algorithm to layouts

generated by NanoPlaceR yielded the smallest layouts across all

benchmark functions except for parity, for which a combination of

ortho and the optimization algorithm yielded the best outcome.

6 CONCLUSION
As Field-coupled Nanocomputing (FCN) becomes a reality, optimiza-

tion methods applicable after the placement and routing step are

needed to further improve physical designs generated by heuristic

algorithms. This work presented a new optimization method for

FCN layouts using the 2DDWave clocking scheme. The code is pub-

licly available and was integrated into fiction as part of the Munich
Nanotech Toolkit (MNT). The proposed approach improves existing

heuristic algorithms like ortho and NanoPlaceR by an average of

50.79% and 20.00% with respect to layout area, as demonstrated

with established benchmark sets. The early-stage reduction of lay-

out area during the physical design phase confers notable advan-

tages to subsequent procedures, as it engenders diminished compu-

tational burden for simulations and cost savings in the fabrication

process. Additionally, it reduces delay and increases throughput

due to shorter critical path lengths.
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Table 1: Comparative experimental evaluation of the proposed optimization algorithm.

Benchmark Circuit [9, 28] Ortho [33] Proposed Opt. Difference NanoPlaceR [14] Proposed Opt. Difference

Name 𝐼 / 𝑂 𝐺 𝑤 × ℎ = 𝐴 𝑤 × ℎ = 𝐴 𝑡 Δ𝐴 𝑤 × ℎ = 𝐴 𝑤 × ℎ = 𝐴 𝑡 Δ𝐴

2:1 MUX 3 / 1 9 6 × 7 = 42 6 × 4 = 24 < 1 −42.86 % 3 × 4 = 12 3 × 4 = 12 < 1 —

XOR 2 / 1 9 5 × 7 = 35 5 × 5 = 25 < 1 −28.57 % 3 × 6 = 18 3 × 6 = 18 < 1 —

XNOR 2 / 1 11 6 × 8 = 48 5 × 5 = 25 < 1 −47.92 % 3 × 6 = 18 3 × 6 = 18 < 1 —

Half Adder 2 / 2 14 9 × 8 = 72 5 × 6 = 30 < 1 −58.33 % 4 × 6 = 24 4 × 6 = 24 < 1 —

Full Adder 3 / 2 14 8 × 10 = 80 7 × 7 = 49 < 1 −38.75 % 4 × 7 = 28 4 × 7 = 28 < 1 —

Parity Gen. 3 / 1 18 9 × 13 = 117 8 × 8 = 64 < 1 −45.30 % 7 × 9 = 63 7 × 8 = 56 < 1 −11.11 %
c17 5 / 2 18 10 × 13 = 130 9 × 10 = 90 < 1 −30.77 % 7 × 7 = 49 6 × 7 = 42 < 1 −14.29 %
t 5 / 2 21 10 × 16 = 160 8 × 7 = 56 < 1 −65.00 % 8 × 8 = 64 8 × 6 = 48 < 1 −25.00 %
Parity Check. 4 / 1 26 12 × 19 = 228 9 × 11 = 99 < 1 −56.58 % 9 × 9 = 81 8 × 9 = 72 < 1 −11.11 %
b1_r2 3 / 4 26 13 × 17 = 221 10 × 8 = 80 < 1 −63.80 % 10 × 10 = 100 7 × 10 = 70 < 1 −30.00 %
1bitAdderAOIG 3 / 2 26 12 × 18 = 216 10 × 9 = 90 < 1 −58.33 % 10 × 10 = 100 10 × 8 = 80 < 1 −20.00 %
majority 5 / 1 27 9 × 24 = 216 9 × 15 = 135 < 1 −37.50 % 11 × 11 = 121 11 × 10 = 110 < 1 −9.09 %
newtag 8 / 1 28 12 × 25 = 300 11 × 11 = 121 < 1 −59.67 % 11 × 11 = 121 8 × 11 = 88 < 1 −27.27 %
clpl 11 / 5 30 17 × 25 = 425 9 × 13 = 117 < 1 −72.47 % 11 × 11 = 121 10 × 11 = 110 < 1 −9.09 %
XOR5_R1 5 / 1 40 14 × 32 = 448 11 × 18 = 198 < 1 −55.80 % 14 × 14 = 196 10 × 14 = 140 < 1 −28.57 %
1bitAdderMaj 3 / 1 45 14 × 35 = 490 14 × 28 = 392 < 1 −20.00 % 18 × 18 = 324 17 × 16 = 272 < 1 −16.05 %
cm82a 5 / 3 68 26 × 48 = 1248 18 × 21 = 378 < 1 −69.71 % 25 × 25 = 625 19 × 19 = 361 < 1 −42.24 %
2bitAdderMaj 5 / 2 82 27 × 62 = 1674 22 × 36 = 792 < 1 −52.69 % 29 × 29 = 841 23 × 28 = 644 < 1 −23.42 %
xor5Maj 5 / 1 102 31 × 78 = 2418 27 × 48 = 1296 < 1 −46.40 % 40 × 40 = 1600 34 × 38 = 1292 < 1 −19.25 %
parity 16 / 1 150 48 × 119 = 5712 37 × 53 = 1961 8 −65.67 % 50 × 50 = 2500 46 × 47 = 2162 1 −13.52 %
Average Difference −50.79 % −20.00 %

Runtime values are in seconds; 𝑤 , ℎ and 𝐴 are the width, height and resulting area of the layout respectively (lower is better); the area

difference Δ𝐴 compares the layout before and after optimization. For the first five benchmark functions, NanoPlaceR found the optimal

layout already, therefore, no further optimization is possible. The average difference is calculated based on all sub-optimal layouts.

[3] N.G. Anderson and S. Bhanja (Eds.). 2014. Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer.

[4] A. Andrae and T. Edler. 2015. On Global Electricity Usage of Communication

Technology: Trends to 2030. Challenges 6 (2015), 117–157.
[5] V. Bertacco et al. 2005. Post-Placement Rewiring and Rebuffering by Exhaustive

Search for Functional Symmetries. In ICCAD. 56–63.
[6] C. Campos et al. 2016. USE: A Universal, Scalable and Efficient clocking scheme

for QCA. IEEE TCAD 35 (2016), 513–517.

[7] Y. T. Chang et al. 2010. Post-Placement Power Optimization with Multi-Bit

Flip-Flops. In ICCAD. 218–223.
[8] J. Drewniok et al. 2023. QuickSim: Efficient and Accurate Physical Simulation of

Silicon Dangling Bond Logic. In IEEE-NANO. 817–822.
[9] G. Fontes et al. 2018. Placement and Routing by Overlapping and Merging QCA

Gates. In ISCAS. 1–5.
[10] M. Goswami et al. 2020. An Efficient Clocking Scheme for Quantum-dot Cellular

Automata. Int. J. Electron. Lett. 8, 1 (2020), 83–96.
[11] M.B. Haider et al. 2009. Controlled Coupling and Occupation of Silicon Atomic

Quantum Dots at Room Temperature. Phys. Rev. Lett. 102 (2009), 046805. Issue 4.
[12] P.E. Hart et al. 1968. A Formal Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 2 (1968),

100–107.

[13] K. Hennessy and C. S. Lent. 2001. Clocking of Molecular Quantum-dot Cellular

Automata. J. Vac. Sci. Technol. B 19, 5 (2001), 1752–1755.

[14] S. Hofmann et al. 2023. Late Breaking Results From Hybrid Design Automation

for Field-coupled Nanotechnologies. In DAC. 1–2.
[15] S. Hofmann et al. 2023. Scalable Physical Design for Silicon Dangling Bond

Logic: How a 45
◦
Turn Prevents the Reinvention of the Wheel. In IEEE-NANO.

872–877.

[16] J. Huang et al. 2005. Tile-based QCA Design Using Majority-like Logic Primitives.

JETC 1, 3 (2005), 163–185.

[17] T. Huff et al. 2017. Atomic White-Out: Enabling Atomic Circuitry through

Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface.

ACS nano 11 9 (2017), 8636–8642.
[18] T. Huff et al. 2018. Binary atomic silicon logic. Nat. Electron. 1, 12 (2018), 636–643.
[19] C.S. Lent et al. 1994. Quantum Cellular Automata: The Physics of Computing

with Arrays of Quantum Dot Molecules. In PhysComp. 5–13.
[20] C.S. Lent and P.D. Tougaw. 1997. A Device Architecture for Computing with

Quantum Dots. Proc. IEEE 85, 4 (1997), 541–557.

[21] R. Lupoiu et al. 2022. Automated Atomic Silicon Quantum Dot Circuit Design

via Deep Reinforcement Learning. ArXiv abs/2204.06288 (2022).

[22] S.S.H. Ng et al. 2020. SiQAD: A Design and Simulation Tool for Atomic Silicon

Quantum Dot Circuits. IEEE TNANO 19 (2020), 137–146.

[23] N. Pavliček et al. 2017. Tip-induced passivation of dangling bonds on hydro-

genated Si(100)-2×1. APL 111, 5 (2017), 053104.

[24] J.L. Pitters et al. 2011. Charge Control of Surface Dangling Bonds Using Nanoscale

Schottky Contacts. ACS nano 5 (2011), 1984–9.
[25] M. Rashidi et al. 2018. Initiating and Monitoring the Evolution of Single Electrons

Within Atom-Defined Structures. PRL 121 (2018), 166801.

[26] D.A. Reis et al. 2016. A Methodology for Standard Cell Design for QCA. In ISCAS.
2114–2117.

[27] F. Riente et al. 2017. ToPoliNano: A CAD Tool for Nano Magnetic Logic. IEEE
TCAD 36, 7 (2017), 1061–1074.

[28] A. Trindade et al. 2016. A Placement and Routing Algorithm for Quantum-dot

Cellular Automata. In SBCCI. 1–6.
[29] V. Vankamamidi et al. 2006. Clocking and Cell Placement for QCA. In IEEE-NANO,

Vol. 1. 343–346.

[30] M. Walter et al. 2018. An Exact Method for Design Exploration of Quantum-dot

Cellular Automata. In DATE. 503–508.
[31] M. Walter et al. 2019. fiction: An Open Source Framework for the Design of

Field-coupled Nanocomputing Circuits. arXiv:1905.02477

[32] M. Walter et al. 2019. Placement and Routing for Tile-based Field-coupled

Nanocomputing Circuits is NP-complete. J. Emerg. Technol. Comput. Syst. 15, 3,
Article 29 (2019), 10 pages.

[33] M. Walter et al. 2019. Scalable Design for Field-Coupled Nanocomputing Circuits.

In ASP-DAC (Tokyo, Japan). 197–202.

[34] M. Walter et al. 2020. Verification for Field-coupled Nanocomputing Circuits. In

DAC. 1–6.
[35] M. Walter et al. 2021. One-pass Synthesis for Field-coupled Nanocomputing

Technologies. In ASP-DAC. 574–580.
[36] M. Walter et al. 2022. Hexagons Are the Bestagons: Design Automation for

Silicon Dangling Bond Logic. In DAC. 739–744.
[37] R.A. Wolkow et al. 2013. Silicon Atomic Quantum Dots Enable Beyond-CMOS

Electronics. In Field-Coupled Nanocomputing.

https://arxiv.org/abs/1905.02477

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum-dot Cellular Automata
	2.2 Silicon Dangling Bonds
	2.3 Technology Constraints

	3 Motivation
	3.1 Physical Design Flow
	3.2 Optimization Idea

	4 Proposed Optimization Algorithm
	4.1 Moving Gates
	4.2 Removing Excess Wiring
	4.3 Relocating Outputs

	5 Experimental Evaluation
	6 Conclusion
	References

