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ABSTRACT
Silicon Dangling Bonds (SiDBs) constitute a beyond-CMOS compu-

tational nanotechnology platform that enables higher integration

density and lower power consumption than contemporary CMOS

nodes. Recent manufacturing breakthroughs in the domain sparked

the interest of academia and industry alike in the race for a green

computation future at the nanoscale. However, as the fabrication of

SiDBs requires atomic precision, SiDB logic systems are inherently

susceptible to environmental defects and material variations, which

inevitably occur. The Operational Domain is a methodology to evalu-

ate the resilience of SiDB logic against physical parameter variations.

However, state-of-the-art implementations require a quadratic num-

ber of exponentially complex physical simulator calls to assess the

operational domain. This paper presents two novel algorithms to

obtain operational domains in an efficient fashion: one based on

flood fill, and one based on contour tracing. Experimental evalua-

tions confirm that they reduce the number of required simulator

calls by 70.87 % and 95.29 %, respectively. Particularly contour trac-

ing achieves the shift from a quadratic to a linear relation, thereby

reducing the complexity and paving the way for realizing reliable

SiDB-based computing systems.

CCS CONCEPTS
• Hardware→ Quantum dots and cellular automata; Single
electron devices; • Computing methodologies→ Simulation
tools; Quantum mechanic simulation.

1 INTRODUCTION
As challenges mount for further miniaturization of modern tran-

sistor technologies, increasing focus has been directed towards the

search for alternative platforms that promise higher integration

density and lower power consumption than contemporary CMOS

fabrication nodes. Experimental demonstration of a 5 × 6 nm2
OR

gate made of Silicon Dangling Bonds (SiDBs) [15] ushered in a new

technological platform upon which nanoscale logic devices can be

implemented. These SiDBs can be fabricated at atomically precise

locations on the spatially periodic hydrogen-passivated Silicon (100)-

2×1 (H-Si(100)-2×1) surface using the tip of a Scanning Tunneling Mi-
croscope (STM) [1, 22], and exhibit the ability to hold discrete charge

states including negative, neutral, and positive states [11, 23, 24].

∗
Also with Software Competence Center Hagenberg (SCCH).

The demonstrated ability to construct functional logic devices at the

limit of scaling displays promises for it as a contender to form the

basis for future beyond-CMOS computing systems.

The advent of this novel logic platform has generatedwide-ranging

research interest into prospective computational devices based on

SiDBs. Design automation capabilities have been rapidly developed

to support the SiDB technological stack. For SiDB layout valida-

tion and simulation, the computer-aided design tool SiQAD [19]

has been developed. Additionally, multiple physical simulators like

PoisSolver [6], QuickSim [9], and QuickExact [8] have been proposed.

For design automation, the fiction framework [27] with various spe-

cialized algorithms [12, 13, 26, 28–32] as well as an automated SiDB

layout designer based on reinforcement learning [17] have been es-

tablished. The existence of these tools facilitate the rapid exploration

of new SiDB logic designs [2–4, 19, 25] and applications [5, 10, 18, 20].

As one of the first industry adopters, the research enterprise Quan-
tum Silicon Inc. could recently secure multi-million dollar invest-

ments in their efforts as a commercial propeller of the SiDB technol-

ogy [34, 35].

However, as an application that requires atomically precise fabri-

cation, SiDB technology is inherently prone to environmental defects

and inhomogeneity in physical systems, both of which have been

shown to disturb gate operation [7, 16, 21]. Research into improv-

ing the resilience of SiDB logic against such imperfections in the

fabrication process is still in its infancy. The Operational Domain
was proposed as a methodology to evaluate the extent of physical

parameter variations that a logic gate is able to tolerate by plotting

the logical correctness of a gate’s behavior across a predetermined

range of physical parameters [19, 25]. However, existing implemen-

tations of operational domain evaluation apply grid search, which
takes a quadratic number of sample points in the parameter space.

Compounding the problem, each sampled point requires calling sim-

ulation models that, in the worst case, scale exponentially with SiDB

count. The high runtime incurred by these unfavorable scaling trends

hinder the development of design rules that would steer designers

towards more resilient SiDB logic devices.

This work sets out to reduce the quadratic complexity, thus min-

imizing the number of costly simulator calls that must be taken

in order to obtain the complete operational domain for any given

SiDB logic layout, independent of the underlying simulation engine.

Thereby, we enable the SiDB research community to develop insights
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into logic gate stability and to establish new design rules that encour-

age robust SiDB logic design. To this end, we propose two efficient

strategies for obtaining operational domains, which are based on

flood fill and contour tracing, and that are reducing simulation calls

by 70.87% and 95.29%, respectively, when compared against grid

search.

The remainder of this paper is structured as follows: in an effort

to establish this work as a self-contained paper, Section 2 reviews

the background on SiDB logic, physical simulation, and operational

domains required for the comprehension of the proposed novel-

ties. Section 3 discusses the state of the art on operational domains.

Afterward, Section 4 proposes two novel strategies to reduce the

complexity of operational domain computation, which are exper-

imentally evaluated in Section 5. Finally, Section 6 concludes the

paper.

2 PRELIMINARIES
In this section, we provide the background information necessary for

the comprehension of the remainder of this work. First, in Section 2.1,

we provide an overview of the SiDB logic platform, highlighting its

potential as a promising beyond-CMOS technology. Afterward, in

Section 2.2, we delve into the physical simulation of SiDBs, focusing

in particular on how material-specific parameters play a crucial role

in the behavior of SiDB-based gates. Understanding this influence

is critical for this work, as slight changes can significantly affect

the gate performance, making it essential to define the Operational
Domain in Section 2.3.

2.1 Silicon Dangling Bond Logic
SiDBs are atomically-sized, chemically identical quantum dots fabri-

cated on n-doped hydrogen-passivated silicon (H-Si(100)-2×1). To
create an SiDB, a voltage is applied locally to the sample using an

atomically sharp Scanning Tunneling Microscope (STM) tip, which

breaks the covalent bond between a hydrogen and a silicon atom. The

hydrogen atom is desorbed to the tip, leaving behind the 𝑠𝑝3-orbital

of the silicon, which constitutes an SiDB. The fabrication process is

illustrated in Figure 1a as a ball-and-stick model side view, and in

Figure 1b as a top view on the crystal lattice. An SiDB can either be

negatively (fully occupied), neutrally (half occupied), or positively

(empty) charged. This charge state depends on the local electrostatic

potential, which shifts the charge transition levels with respect to

the Fermi-energy 𝐸𝐹 .

The distinctive characteristic inherent in SiDBs renders them

particularly suited for employment as fundamental atomic build-

ing blocks of nanoscale logic devices [14, 15, 33]. In Figure 1c, an

SiDB-based binary wire is illustrated where electrostatic interaction

results in one neutrally charged and one negatively charged SiDB

within each Binary-Dot Logic (BDL) pair (green rectangles). The dis-

crete charge state engendered by this process, signifying the binary

value 1 in this context, propagates along the wire (from left to right

in this case). Hence, within the SiDB framework, the representation

of binary information hinges on the positioning of electrons. This

principle can also be harnessed for the construction of logical gates.

Example 1. The SiDB layout illustrated in Figure 2a constitutes
a 2-input OR gate. By utilizing a binary input of 10, the repulsive
interactions arising from electrostatic coupling among SiDBs yield an
output state of 1 as expected.

It is noteworthy that Huff et al. [15] achieved the successful fabri-

cation of an eight-SiDB BDL wire as well as an OR gate, the latter

occupying a total area of less than 30 nm
2
.

(a) SiDB fabrication on the H-Si(100)-
2×1 surface (side view).

(b) SiDB fabrication on the H-Si(100)-
2×1 surface (top view).CB

VBVlocal,4
Location

Energy
0.76 nm

(c) Energy landscape of seven interacting SiDBs.

Figure 1: The SiDB logic platform.

The inherent adaptable quality of the charge states within SiDBs

constitutes a pivotal advantage within the realm of logic circuits.

This adaptability facilitates the creation of compact and efficient

designs, thereby underscoring their potential as a promising tech-

nology transcending the confines of CMOS.

2.2 Physical Simulation
Conducting physical simulations of SiDB layouts is essential for

determining layout behavior and enabling rapid prototyping with-

out the need for costly and time-consuming fabrication endeavors.

Given the electrostatic nature of SiDB interactions, the simulation of

electrostatic potentials finds ubiquitous application as a first-order

approximation to model these systems. As known from charges in

free space or dielectric materials, the physical potential energy be-

tween two entities decays with 1/𝑑 (where 𝑑 is the distance). For

SiDBs, however, an additional exponential fraction is considered due

to electrostatic screening caused by free charges as experimentally

confirmed by Huff et al. [16]. More precisely, the electrostatic poten-

tial 𝑉𝑖, 𝑗 at position 𝑖 generated by an SiDB in state 𝑛 𝑗 ∈ {−1, 0, 1} at
position 𝑗 is given by [15, 16]

𝑉𝑖, 𝑗 = −
𝑞𝑒

4𝜋𝜖0𝜖𝑟
· 𝑒
− 𝑑𝑖,𝑗

𝜆tf

𝑑𝑖, 𝑗
· 𝑛 𝑗 , (1)

where 𝑞𝑒 , 𝜖0, and 𝜖𝑟 define the electron charge (𝑞𝑒 = −𝑒 ; 𝑒 : elementary
charge) as well as the vacuum and the relative permittivity, respec-
tively. Furthermore, 𝑑𝑖, 𝑗 describes the distance between position 𝑖

and 𝑗 . As said, due to electrostatic screening, the distance is scaled

(divided) by the Thomas-Fermi screening length 𝜆tf [15]. Via applica-

tion of the superposition principle, the total electrostatic potential

energy is given by

𝐸 = −
∑︁
𝑖< 𝑗

𝑉𝑖, 𝑗 · 𝑛𝑖 · 𝑞𝑒 . (2)

As reviewed in Section 2.1, the interactions among SiDBs are

fundamentally grounded in electrostatic forces. Consequently, these

interactions prompt adjustments in the charge transition levels of

the SiDBs. Such adjustments, in turn, can yield alterations in their
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charge states, such as a transition from the negative to the neutral

or even from the neutral to the positive state; particularly under

potent electrostatic influences. Therefore, in a layout comprised of 𝑑

SiDBs, where in theory 3
𝑑 possible charge distributions exist, not all

are physically valid. The criterion for physical validity encompasses

the simultaneous fulfillment of two pivotal conditions, namely Pop-
ulation Stability and Configuration Stability, as introduced by Ng et
al. [19]. For a given charge distribution to attain the status of being

physically valid, adherence to both conditions is required.

Population Stability: The charge state of an individual SiDBwithin

an assembly of SiDBs cannot be arbitrary. This restraint is attributed

to the electrostatic interaction, which shifts the charge transition

levels and thus changes the charge state. The electrostatic interaction

can be formally expressed by the local electrostatic potential at each

position 𝑖

𝑉𝑙𝑜𝑐𝑎𝑙,𝑖 =
∑︁
𝑗, 𝑗≠𝑖

𝑉𝑖, 𝑗 . (3)

Depending on the strength of the electrostatic interaction, the SiDB

is in one of the three distinct charge states: negative, neutral, and

positive. Ultimately, the Population Stability is defined by the fol-

lowing three conditions: SiDB- if 𝜇− + 𝑉local,𝑖 · 𝑞𝑒 < 0, SiDB+ if

𝜇+ +𝑉local,𝑖 · 𝑞𝑒 > 0, and SiDB0 otherwise, for each SiDB 𝑖 .

Configuration Stability: Configuration Stability describes that for

any two arbitrary SiDBs there is no single-electron hop event that

reduces the total electrostatic potential energy of the system. Other-

wise, if there were a state of lower electrostatic energy, the system

would move toward it.

In the context of a given SiDB arrangement, it is customary for

several physically valid charge distributions to exist. According to

Equation 2, the total electrostatic potential energy depends on the

given charge distribution. At low temperatures, physical systems

tend to attain equilibrium in the state characterized by the minimum

energy. Consequently, it is only necessary to identify the ground
state—the charge distribution corresponding to the lowest energy

level—rather than exploring all physically valid charge distributions.

2.3 Operational Domains
SiDBs are inherently prone to inhomogeneity in physical systems,

which have been shown to disturb gate operation [16]. This circum-

stance is caused by the dependence of the electrostatic interaction on

the material-specific parameters 𝜖𝑟 and 𝜆tf as given by Equation 1.

Consequently, any changes in these values significantly influence

the behavior of a given SiDB gate.

Example 2. The influence of the relative permittivity 𝜖𝑟 is illus-
trated in Figure 2 at the example of the OR gate from [19] with an
input pattern of 10 applied. While the SiDB gate computes the correct
logic output of 1 in Figure 2a for the standard values 𝜆tf = 5 nm and
𝜖𝑟 = 5.6, a slight reduction of 𝜖𝑟 to 5.5 leads to a stronger electrostatic
interaction, and thus, reduces the charge population of the ground state.
Hence, as illustrated in Figure 2b, this results in the incorrect logic
output of 0, rendering the gate non-operational.

The so-called Operational Domain was proposed as a method-

ology to evaluate the extent of physical parameter variations that

an SiDB logic gate is able to tolerate by plotting the logical cor-

rectness of that gate’s behavior across a predetermined range of

physical parameters [19, 25]. Given an SiDB layout 𝐿 and a Boolean

function 𝑓 : B𝑛 → B𝑚 , the operational domain of 𝐿 under 𝑓 in

the (𝜖𝑟 , 𝜆tf )-space is defined as the set of coordinate points (𝜖𝑟 , 𝜆tf )

1 01
(a) Operational at 𝜖𝑟 = 5.6.

0 0X
(b) Non-operational at 𝜖𝑟 = 5.5.

Figure 2: Influence of the relative permittivity 𝜖𝑟 on the logic
operation of an SiDB OR gate [19] with input pattern 10.

for which 𝐿 implements 𝑓 . To determine whether 𝐿 implements 𝑓

at any given coordinate point (𝑥,𝑦), this point can be sampled, i. e.,
by conducting 2

𝑛
physical simulations—one for each possible input

pattern of 𝐿—with 𝜖𝑟 = 𝑥, 𝜆tf = 𝑦.

Example 3. An operational domain plot of the OR gate from Figure 2
can be seen in Figure 3a, where purple indicates operational, i. e., correct
gate logic, and gray indicates non-operational, i. e., that at least one of
the 2𝑛 simulations of that sample point yielded incorrect logic behavior.

3 RELATEDWORK
Past research on SiDB logic implementations have evaluated the

operational domains of various gate layouts as a way to gauge their

robustness against environmental variations [18, 19, 21, 25]. In [19,

25], the logic gates were first manually designed to satisfy a target set

of physical parameters in the (𝜖𝑟 , 𝜆tf )-space, the operational domains

were then computed to study the extent of parameter variation

tolerable by the gates. In those works, parameter bounds in the 𝜖𝑟
and 𝜆tf dimensions both spanned a full order of magnitude.

In [21], operational domains were studied with a focus on a pa-

rameter window set to ±0.25 of the target 𝜖𝑟 and 𝜆tf parameters in

log-space with 20 samples evenly distributed in each dimension. The

bounds were chosen to be more limiting than previous studies due

to an assumption that, during fabrication of a H-Si(100)-2×1 surface,
the specimen can be tuned to the chosen physical parameters with

only minor deviations across the surface.

While earlier works presented the operational domain of each

input configuration separately [18, 19, 25], for the purpose of evaluat-

ing the logic stability of a logic gate as a whole, only the intersection

of the operational domains across all input configurations is relevant.

The operational domain evaluation in [21] took the intersection of

operational domains within the chosen parameter window and dis-

tilled it down to a single figure of merit in the form of a success

rate based on the portion of operational samples out of all sampled

points.

Since the operational domain is defined over continuous variables,

any attempt to programmatically determine it, will, by definition,

yield an approximation. All mentioned works have employed grid
search (see Figure 3a) throughout the entire parameter space, which

takes a quadratic number of sample points in the 𝜖𝑟 and 𝜆tf dimen-

sions. Given that for each sample point 2
𝑛
simulations are required,

and that exact simulation scales exponentially with the SiDB count,
1

1
While simulation algorithms with polynomial time complexity exist, their results in

of themselves constitutes approximations, their results in of themselves constitute

approximations with a confidence level that increases with sampling count, but does

not eliminate uncertainty [9, 18].
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(a) Grid search: 32 400 samples. (b) Random sampling: 2500 samples. (c) Flood fill: 7998 samples. (d) Contour tracing: 1118 samples.

Figure 3: Operational domain plots of the SiDB OR gate from Figure 2 in the (𝜖𝑟 = [1, 10], 𝜆tf = [1, 10])-space obtained with four
different techniques. Purple indicates correct logic operation, gray indicates that at least one binary input combination expressed
faulty behavior.

using grid search for finding the operational domain presents a bar-

rier against incorporating it into the development of design rules. A

viable method to reduce simulation calls and still reach an approxi-

mation is by employing random sampling (see Figure 3b). However,

this method merely offsets the runtime by a resolution trade-off,

which conceals important details.

This paper sets out to reduce the quadratic complexity of oper-

ational domain computation by greatly decreasing the simulation

calls required to obtain operational domains without diminishing

result resolution by proposing two novel algorithms that can utilize

any physical simulator as a backend by guiding simulation sampling

in efficient ways.

4 REDUCING THE COMPLEXITY
This section constitutes the main contribution of this work. As out-

lined in the preceding parts, conventional operational domain com-

putation suffers from high complexity in the case of grid search

or low resolution in the case of random sampling. In this section,

we introduce two novel algorithms, one based on flood fill in Sec-

tion 4.1 and one based on contour tracing in Section 4.2 to reduce the

complexity of operational domain computation.

4.1 Flood Fill
In conventional operational domain computation—depending on

the range selection of parameter ranges to sweep over—most of the

area investigated by grid search and random sampling is likely to

be non-operational. This wastes precious resources by conducting

numerous samples that add little benefit since they do not uncover

any part of the operational domain of the layout under examination

as seen in the gray areas/samples of Figure 3a and Figure 3b.

From the scientific efforts conducted in the field of operational

domain research, it has been observed that most operational domains

consist of large connected, i. e., continuous areas [19, 21, 25] as seen,
e. g., in Figure 3a. Consequentially, once several starting points in

the operational regions are found, we can expand from these points

in all directions until we discover a non-operational point, where we

stop the search in that direction. This way, we guarantee a minimal

number of non-operational samples for each area that was discovered

by the initial random sampling, reducing the overall complexity of

the operational domain computation by a significant factor.
2

2
In the event that the operational domain contains smaller fragments that eluded

detection during the initial sampling—thus being absent from the final plot—such regions

inherently remain inconsequential to designers, given that gate resilience necessitates

substantiate operational areas.

Algorithm 1: Flood Fill

Input: SiDB layout 𝐿
Input: Boolean function 𝑓 : B𝑛 → B𝑚
Input: Physical simulation parameters 𝑃
Input: Parameter range 𝑅𝜖𝑟 = 𝑥1, . . . , 𝑥𝑘
Input: Parameter range 𝑅𝜆tf = 𝑦1, . . . , 𝑦𝑙

Input: Number of random samples 𝑠
Output: (Partial) operational domain of 𝐿

1 OpDom← ∅
2 𝑆 ← set of all operational points obtained with 𝑠 random samples

3 𝑄 ← empty queue

4 foreach (𝑠𝑥 , 𝑠𝑦 ) ∈ 𝑆 do
5 add all of (𝑠𝑥 , 𝑠𝑦 ) ’s undiscovered adjacent points to𝑄

6 end foreach
7 while𝑄 is not empty do
8 (𝑞𝑥 , 𝑞𝑦 ) ← get and remove first element of𝑄

9 if (𝑞𝑥 , 𝑞𝑦 ) was already simulated then
10 continue

11 end if
12 status← simulate 𝐿 with 𝑃 and (𝑞𝑥 , 𝑞𝑦 ) under 𝑓
13 OpDom[ (𝑞𝑥 , 𝑞𝑦 ) ] ← status
14 if status = operational then
15 add all of (𝑞𝑥 , 𝑞𝑦 ) ’s undiscovered adjacent points to𝑄

16 end if
17 end while
18 return OpDom

To this end, we propose an algorithm based on flood fill detailed in
Algorithm 1. We begin with 𝑠 uniformly-distributed random samples

across the given parameter ranges to determine operational starting

points in Line 2. If the operational domain is not fully connected,

these might lie in different operational regions. We then initialize a

queue with the starting points’ adjacent points from the search space

in Line 5. While this queue still contains elements, we sample each

point from the queue (Line 12),
3
enter the obtained operational status

to the operational domain (Line 13), and add its adjacent unexplored

points to the queue (Line 15) in case the point was found to be

operational. Finally, the (partial) operational domain is returned in

Line 18.

A resulting operational domain plot of the proposed flood fill

algorithm can be found in Figure 3c. As can be seen, only a few

non-operational sample points are scattered across the plane while

the operational area was completely recovered with only a one-pixel

wide non-operational border around it. Consequently, the number of

required samples was significantly reduced compared to grid search

(cf. Figure 3a) while obtaining a perfect reconstruction of the opera-

tional area in contrast to random sampling (cf. Figure 3b). While this

3
We propose to utilize caching to avoid simulating a point multiple times, e. g., Line 9.
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holds true for most scenarios, in the worst case, the computational

complexity of flood fill is still quadratic: exactly when the entire

parameter space is operational.

4.2 Contour Tracing
While flood fill is able to shave off a considerable amount of non-
operational samples of the complexity of operational domain com-

putation, those calls were potentially less severe than the remaining

operational samples. The reason for this observation is simple: to

deem a sample point operational, the given layout has to perform

the intended Boolean function 𝑓 under all 2
𝑛
input combinations,

requiring 2
𝑛
simulator calls. However, when any input combination

is found to violate 𝑓 , this sample can be terminated prematurely with

a non-operational status result. In a nutshell, each non-operational

sample is up to 2
𝑛
times cheaper to compute than each operational

sample.

Consequently, it is desirable tominimize the number of operational
samples to take as well without losing operational domain precision.

To this end, we can observe that most operational domain areas do

not contain holes [19, 21, 25], i. e., constitute non-interrupted shapes.
It is, therefore, sufficient to determine the operational domain’s outer

edges and to assume the enclosed area to be completely operational,

thereby saving on costly simulator calls.

To this end, we propose a second algorithm based on contour tracing
to efficiently find the operational domain edges detailed in Algo-

rithm 2. The main idea is that from any point within an operational

domain area, we can move to its edge in a straight line and trace the

contour via Moore neighborhood search—an established method that

considers up to eight adjacent points, the so-called Moore neighbor-
hood, for each contour point.

We, thus, start again with a uniformly-distributed initial random

sampling to find a set of starting points in Line 2. These might lie in

different operational areas if the operational domain is not connected.

From each point that is not already enclosed, we traverse in a straight

line to the domain’s edge (Line 7) and start tracing the contour

by determining the Moore neighborhood (Line 10), i. e., the eight

surrounding points in Cartesian space, and search for operational

points within it (Line 14). As before, we employ caching to prevent

sampling points multiple times. For each discovered operational

point, we advance the Moore neighborhood (Line 16 and Line 20)

until we reach the starting contour point again (Line 11).

A resulting operational domain plot of the proposed contour

tracing algorithm can be found in Figure 3d, where we only plotted

the points that were in fact investigated by the algorithm. We can see

that the entire contour of the operational areawas fully reconstructed

with only the trace of the starting point falling within the domain

and a few cheaper non-operational sample points on the outside

border. For hole-free operational domains, we can deem all points

inside of the contour to be operational without having to investigate

the vast majority of them. In contrast to flood fill, contour tracing

requires only a linear amount of sample points because it merely

considers the operational domain’s outline. Thus, it reduces the

quadratic complexity of operational domain computation.

5 EXPERIMENTAL EVALUATION
This section presents the results of an experimental evaluation of the

two proposed operational domain computation algorithms against

the state-of-the-art grid search technique. Section 5.1 introduces the

applied experimental setup, Section 5.2 presents the obtained results,

and Section 5.3 elaborates on the extracted findings.

Algorithm 2: Contour Tracing
Input: SiDB layout 𝐿
Input: Boolean function 𝑓 : B𝑛 → B𝑚
Input: Physical simulation parameters 𝑃
Input: Parameter range 𝑅𝜖𝑟 = 𝑥1, . . . , 𝑥𝑘
Input: Parameter range 𝑅𝜆tf = 𝑦1, . . . , 𝑦𝑙

Input: Number of random samples 𝑠
Output: (Partial) operational domain of 𝐿

1 OpDom← ∅
2 𝑆 ← set of all operational points obtained with 𝑠 random samples

3 if no operational point was found then
4 return OpDom
5 end if
6 foreach (𝑠𝑥 , 𝑠𝑦 ) ∈ 𝑆 that is not already enclosed by a contour do
7 start ← contour point attained by moving in a straight line from (𝑠𝑥 , 𝑠𝑦 )
8 𝑐 = (𝑐𝑥 , 𝑐𝑦 ) ← start
9 𝑏 ← non-operational point adjacent to 𝑐

10 𝑛 ← next clockwise point from 𝑏 in 𝑐’s Moore neighborhood

11 while 𝑛 ≠ start do
12 status← simulate 𝐿 with 𝑃 and (𝑐𝑥 , 𝑐𝑦 ) under 𝑓
13 OpDom[ (𝑐𝑥 , 𝑐𝑦 ) ] ← status
14 if status = operational then
15 𝑏 ← 𝑐

16 𝑐 ← 𝑛

17 else
18 𝑏 ← 𝑛

19 end if
20 𝑛 ← next clockwise point from 𝑏 in 𝑐’s Moore neighborhood

21 end while
22 end foreach
23 return OpDom

5.1 Experimental Setup
The operational domain algorithms discussed and proposed in this

work have been implemented in C++17 on top of the fiction frame-

work [27] as part of the Munich Nanotech Toolkit (MNT).
4
We took

the SiDB layouts from [19] as benchmarks and evaluated each of

them in the (𝜖𝑟 = [1, 10], 𝜆tf = [1, 10])-space while logging the

required samples and simulator calls. All evaluations were run on a

Manjaro 23 machine with an AMD Ryzen 7 PRO 5850U CPU with

1.90GHz (up to 4.40GHz boost) and 32GB DDR4 main memory.

5.2 Results
The experimentally obtained results are summarized in Table 1. The

left part denoted Benchmark [19] lists the layouts under considera-

tion with their respective number of SiDBs. The right part denoted

Operational Domain Algorithm consists of the three sections

Grid Search, Proposed Flood Fill, and Proposed Contour Tracing, which
all follow the same structure: from left to right, they list the num-

ber of samples taken in the (𝜖𝑟 , 𝜆tf )-space (Samples), the ratio of

operational samples (Op.), and the required number of simulator

calls (Sim.). The row Total sums up the number of samples and simu-

lator calls across all instances of a respective column, and the row

Difference lists the relative difference of those values compared to

grid search as the baseline.

To reiterate, each sample necessitates up to 2
𝑛
simulator calls with

the option for premature termination as soon as a non-operational

input combination is detected. For this reason, the NAND layout

required the lowest amount of simulator calls, because it possesses

the smallest operational domain that only extends 2 % of the sampled

parameter space.

As can be seen, the proposed flood fill algorithm already reduces

the number of required samples by 87.11% to achieve the same

operational domain resolution as grid search. However, as postulated

4
The code is publicly available at https://github.com/cda-tum/fiction.

https://github.com/cda-tum/fiction
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Table 1: Comparison of operational domain computation in
the number of required samples and simulator calls.

Benchmark [19]

Operational Domain Algorithm

Grid Search Proposed Flood Fill Proposed Contour Tracing

Name SiDBs Samples Op. Sim. Samples Op. Sim. Samples Op. Sim.

AND 11 32 400 0.22 62 102 7285 0.96 28 778 789 0.47 2653

NAND 13 32 400 0.02 48 756 909 0.56 3033 807 0.36 2523

OR 11 32 400 0.23 61 058 7998 0.95 31 024 1118 0.45 3097

XOR 13 32 400 0.03 52 637 1432 0.72 5148 844 0.40 2800

XNOR 14 32 400 0.09 51 389 3264 0.91 12 389 732 0.42 1921

Total 162 000 275 942 20 888 80 372 4290 12 994

Difference ±0 % ±0 % −87.11 % −70.87 % −97.35 % −95.29 %

in Section 4.2, the drop in the number of simulator calls by 70.87 % is

marginally less significant. Nevertheless, this slight shortcoming is

compensated for by the proposed contour tracing algorithm, which

requires a total of 97.35 % fewer samples that result in 95.29 % fewer

simulator calls to detect the operational domains’ edges.

5.3 Discussion
As evident by the experimental data, we have successfully reduced

the complexity in SiDB operational domain computation. This achieve-

ment makes investigations by the scientific community into this field

of research feasible for the first time.

The proposed flood fill algorithm achieved the reconstruction

of the complete operational domains while requiring less than a

third of the simulator calls, a notable achievement that facilitates

a comprehensive evaluation of the resilience of SiDB logic gates.

Additionally, the proposed contour tracing algorithm has shown its

effectiveness in contouring the edges of the operational domains

in a linear amount of samples, requiring over 95% fewer simulator

calls. While flood fill constitutes a generic algorithm, contour tracing

relies on assumptions about the nature of operational domains. It is

important to acknowledge that further investigation is warranted

to ascertain the universality of these assumptions across varying

scenarios.

A significant strength of the contribution lies in its ability to re-

main independent of the intricacies of employed physical simulators.

As the field continues to evolve and introduces novel simulation

models or faster engines, our methodology remains applicable by

swapping out the simulator backend.

6 CONCLUSION
The emergence of Silicon Dangling Bonds (SiDBs) as a novel logic
platform holds significant promise for advancing beyond-CMOS com-

puting systems. Recent fabrication breakthroughs enabled atomically

precise construction of nanoscale logic devices with unparalleled

integration density and power consumption. As research interest in

SiDB-based computational devices surges, the susceptibility of SiDB

logic to environmental defects and fabrication variations necessitates

the development of strategies to enhance its resilience against distur-

bance. This paper addressed this challenge by introducing two novel

approaches for efficiently computing operational domains, which

are essential for evaluating the resilience of SiDB logic gates. These

strategies, based on flood fill and contour tracing, reduce the number

of simulation calls required for operational domain assessment by

70.87% and 95.29%, respectively, thereby reducing the complexity

and empowering the SiDB community to feasibly investigate oper-

ational domain research. By that, this work paves the way for the

realization of SiDB-based computing systems that can operate reli-

ably in the face of inherent material and fabrication imperfections,

ushering in a new era of nanoscale logic design.
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