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In efforts to scale the size of quantum computers, modularity plays a central role across most
quantum computing technologies. In the light of fault tolerance, this necessitates designing quan-
tum error-correcting codes that are compatible with the connectivity arising from the architectural
layouts. In this paper, we aim to bridge this gap by giving a novel way to view and construct quantum
LDPC codes tailored for modular architectures. We demonstrate that if the intra- and inter-modular
qubit connectivity can be viewed as corresponding to some classical or quantum LDPC codes, then
their hypergraph product code fully respects the architectural connectivity constraints. Finally, we
show that relaxed connectivity constraints that allow twists of connections between modules pave a
way to construct codes with better parameters.

I. INTRODUCTION

In classical computing it has become standard to
design architectures that divide the necessary pro-
cessing power into smaller components instead of
only increasing the power of a single system [1, 2].
A similar trend can be observed in recent proposals
around scaling quantum computation. A multitude
of quantum computing platforms have natural limi-
tations, e.g., on how many qubits may be contained
within a single ion trap or a superconducting chip,
whereas each instance of such a platform is referred
to as a module [3–7]. Scaling up existing systems
is the main hurdle in current research. Therefore,
modular architectures that consist of many similar
modules will likely be necessary [8–10].

To execute large scale quantum algorithms, fault-
tolerant quantum computation (FTQC) is essen-
tial [11]. A crucial component of FTQC is the
error-correcting code, which describes how to encode
quantum information in a redundant way with the
goal of lowering the error rates of computation [12,
13]. Recent results have shown the existence of
quantum low-density parity-check (QLDPC) codes
with asymptotically good parameters [14–18]. This
is a strong indication that QLDPC codes may play
a key role in lowering the qubit overhead necessary
for FTQC. It is known that well performing QLDPC
codes require “long-range” qubit connectivity if it is
desired to embed the system in some finite dimen-
sional Euclidean space [19]. In fact, the asymptotic
scaling of code parameters is upper bounded by the
scaling of long-range qubit connectivity [20, 21].

When specifically considering the practical set-
ting of modular architectures of a quantum com-
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puter (with a finite number of qubits), we may ex-
pect that some degree of long range interactions
that scale with the code size is physically feasi-
ble [22–25]. These can be long-range interactions
within each module or between the modules them-
selves. Because of this less constrained connectivity,
the question whether it is useful and practical to
favour QLDPC codes of finite size over the surface
code—the current gold standard for many quantum
computing platforms [26–33]—is important. To an-
swer this question, a multitude of aspects of FTQC
need to be considered, such as the implementation
of fault-tolerant logic, decoding, and the code per-
formance. Most of these questions are still open for
QLDPC codes. Previous works have mentioned the
compatibility of QLDPC codes and modular archi-
tectures, but without providing the exact details for
the code construction or the partition of the qubits
into modules [34]. Alternatively, past works have in
detail described the way to use a surface code for
modular architectures [35], but do not consider gen-
eral QLDPC codes.

In this paper, we explore aspects around fault-
tolerance for modular architectures with a focus on
code constructions. In a formal and general way, we
show how QLDPC codes tailored to modular archi-
tecture connectivity constraints can be constructed.
This gives a correspondence between product con-
structions of QLDPC codes and modular architec-
tures by viewing the intra- and inter-modular con-
nectivities as Tanner graphs or equivalently as chain
complexes of classical or quantum LDPC codes.
First, we give a formal perspective on the recently in-
troduced looped pipeline architecture [36]. We prove
that it can be slightly extended to produce a 3D sur-
face code. This immediately shows a valuable con-
tribution of our formalism to practically highly rel-
evant work around modular architectures. We then
extend the construction to more general hypergraph
product codes. Finally, we show that a broader class
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FIG. 1: Here, quantum computing architectures where
modules {Mk} have a defined sparse inter-modular con-
nectivity are considered. Each module contains a finite
and equal number of qubits with the same connectivity
constraints.

of product codes with potentially better code param-
eters can be constructed for architectures that allow
twisted modular connectivity. With this work, we
take a further step towards closing the gap between
physical “low-level” system architecture questions
and recent theoretical breakthroughs around asymp-
totically good quantum codes [14, 15, 17, 18, 37].
Furthermore, we want to emphasize the need for in-
vestigations around practical applications of general
QLDPC codes [38].

The rest of this work is structured as follows.
First, modular architectures and a formal viewpoint
is given in Section II. Notation and fundamental
background is presented in Section III. The looped
pipeline architecture, the 3D surface code construc-
tion, and our firsts main theorem is discussed in Sec-
tion IV. Stepwise generalisations are subsequently
given in Section V where first the intra-modular con-
nectivity is generalised, then Section V B where the
inter-modular connectivity is generalised, and Sec-
tion VI where the allowed connections between the
modules are generalised. Finally, we conclude with
a short discussion and outlook in Section VII.

II. MODULAR ARCHITECTURES

In this paper we consider various qubit connec-
tivity constraints that may arise in a quantum com-
puter based on a modular architecture. Taking the
constraints into account, we provide a novel recipe
on how to construct quantum LDPC codes that re-
spect a certain modular architecture.

Let us first concretely define what we mean by a
modular architecture. Consider a quantum computer
with a (finite) collection of qubits {qN}. In a mod-
ular architecture, each qubit is assigned to one and
only one module, where the (finite) collection of such
modules is given as {Mk}, see Figure 1. We assume
that the modules are equivalent copies of each other.
Therefore, we can partition the collection of qubits

q1 q2 q3 q4 q5 q6 q7
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FIG. 2: Tripartite quantum Tanner graph of a 7 qubit
Steane code. {qi} denote the data qubits, while {cj}
denote the X parity checks (blue) and Z parity checks
(green). Edges are drawn between them iff the data
qubit is in the support of the check.

into disjoint sets {qi}k such that {qN} =
⋃

k{qi}k,
and we define that each module contains a finite and
equal number of qubits n, i.e. |{qi}k| = n for all k.
To simplify the notation, will use the same canon-
ically ordered index set for each module and hence
drop the subscript k altogether. With this in mind,
we can define the intra-modular qubit connectivity
in the usual sense as follows.

Definition II.1. A qubit qi ∈Mk is connected to a
qubit qj ∈ Mk if our architecture allows to directly
implement two-qubit entangling operations between
these qubits for all k.

Generally, we consider entangling gates such as
controlled-not (CNOT) which are required for most
syndrome circuits. However, entangling operations
using measurements, e.g., in using photonic links, or
otherwise are just as valid. We only require that
these gates allow the construction of a syndrome ex-
traction circuit required for quantum error correc-
tion.

In this work, we investigate cases where the qubit
intra-modular interactions are given by a connectiv-
ity graph which can be viewed as a Tanner graph
of some classical or quantum code. A (quantum)
Tanner graph is a graph which has edges between
nodes representing parity checks and data (qu)bits
if and only if the (qu)bit is in the support of the
parity check. See Figure 2 for a Tanner graph of a
7 qubit Steane code and Section III for a more tech-
nical introduction to Tanner graphs. As an exam-
ple, nearest neighbour connectivity for a 1D chain of
qubits corresponds to a Tanner graph of a classical
repetition code.

In a modular architecture, each module may be
connected to some number of other modules in a
specific way. We define the inter-modular connec-
tivity in terms of the qubit connectivity as follows.
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Definition II.2. A module Mk is connected to a
module Mj if a qubit qi ∈ Mk is connected to the
respective qubit qi ∈Mj for all i.

In Section VI A, this requirement will be slightly
generalised to allow for twists of the connec-
tions between modules to construct better quan-
tum codes Definition VI.1. Similarly to the intra-
modular connectivity case, we choose the graph
defining the inter-modular connectivity to corre-
spond to a Tanner graph of a potentially different
quantum or classical code. Finally, we say that the
code respects the connectivity constraints if we can
associate a physical qubit in our quantum system to
every parity check and data qubit of the code such
that the parity check qubits are connected to the
data qubits in their support.

In the following, we describe a way to create new
codes that respect the overall architectural connec-
tivity constraints as defined above. We only require
that the intra- and inter-modular connectivities are
formulated as Tanner graphs of some codes. To keep
this formulation as general as possible, we will em-
ploy the language of chain complexes.

III. PRELIMINARIES

In this section, we discuss quantum codes and how
to view them in terms of a (F2) homological perspec-
tive [28, 37, 39, 40].

A. Classical and Quantum Codes

Since quantum LDPC codes have an interesting
correspondence to classical codes, let us briefly dis-
cuss their classical analogue: binary linear codes.

A classical binary linear [n, k]-code is a subspace
C ⊆ Fn

2 . The set of codewords is called the
codespace and corresponds to the k-dimensional sub-
space kerH of a binary matrix H called the parity
check matrix (pcm):

C = {x ∈ Fn
2 | Hx = 0 } .

It is useful to describe code C with its Tanner graph.
This is a bipartite graph T (C) whose adjacency ma-
trix is H.

Since stabilizer codes [41] play a central role in
QEC, let us recall some fundamental definitions. We
consider an n-qubit Hilbert space (C2)⊗n = C2n .
Let Pn denote the (non-abelian) group of n qubit
Pauli operators defined as

Pn = 〈i,Xj , Zj | j ∈ [n]〉 =

{
φ

n⊗
j=0

Pj

}
,

where φ ∈ {±1,±i } and Pj is a single qubit Pauli
operator Pj ∈ { I,X, Y, Z }. The weight wt(P ) of
a Pauli operator P is the number of non-identity
components in the tensor product representation of
P . A stabilizer group S is an abelian subgroup of Pn

s.t. −I /∈ S. Elements of S are called stabilizers and
the group is generated by m independent stabilizer
generators S = 〈S1, . . . , Sm〉.

The main idea of the stabilizer codes is to use a
common +1 eigenspace of all elements of a stabi-
lizer group S ⊂ Pn as the code space of a code C.
Therefore, an Jn, k, dK-quantum stabilizer code C is
a 2k-dimensional subspace of (C2)⊗n. Parameter d
denotes the minimal distance of C, given by the min-
imal weight of a Pauli operator that commutes with
all stabilizers Si but is not in the stabilizer group S.

Each n qubit Pauli operator can be written as a
binary vector. More formally, the quotient group
Pn/ {±I⊗n,±iI⊗n } is isomorphic (up to phases) to
F2n

2 by the isomorphism that sends an n qubit Pauli
operator corresponding to a tensor product of X and
Z Paulis to a binary vector representation (x|z) ∈
F2n

2 . Thus P,Q ∈ Pn commute iff for their binary
representations P ∼= (x|z), Q ∼= (x′|z′) it holds that.

〈x, z′〉+ 〈z, x′〉 = 0 (1)

This representation can naturally also be applied to
the m stabilizer generators S1, . . . Sm of a code C,
which yields a m×2n matrix H = (HX | HZ). Each
row of H corresponds the binary representation of a
stabilizer generator Si. As for classical codes, matrix
H is the parity-check matrix of C. By Equation (1),
kerH is exactly the set of vectors (x|z) ∈ F2n

2 s.t.
(x|z) is the binary representation of a Pauli oper-
ator that commutes with all stabilizer generators
S1, . . . Sm.

An important subclass of stabilizer codes are CSS
codes, which is considered in this work if not stated
otherwise. These are stabilizer codes where all non-
identity components of stabilizer generators are ei-
ther all X or all Z. Hence, the commutativity rela-
tion (Equation (1)) can be written as

HXH
T
Z = 0. (2)

Or equivalently, C⊥Z ⊆ CX . Since the rows of a pcm
correspond to the checks of the code, elements of HX

and HZ are called X and Z checks, respectively. A
CSS code is called low-density parity check (LDPC)
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code if all checks have constant weight and each
qubit is involved in a constant number of checks, i.e.,
if the parity check matrix (matrices) are sparse. Let
us now introduce an alternative perspective on codes
that was essential in recent results around asymp-
totically good quantum and locally testable classical
codes [14–18], and has become standard.

B. Chain Complexes

A chain complex of vector spaces is a collection of
vector spaces {Ci} together with linear maps ∂i

∂i : Ci → Ci−1,

with the condition that squared boundary maps van-
ish, i.e.,

∂i∂i+1 = 0. (3)

Equation (3) is equivalent to requiring that
im ∂i+1 ⊆ ker ∂i. Elements in Ci are called i-chains
and

Zi(C) = ker ∂i ⊂ Ci (4)

Bi(C) = im ∂i+1 ⊂ Ci (5)

Hi(C) = Zi(C)/Bi(C) (6)

are the i-cycles, i-boundaries and the i-th homol-
ogy of the complex C respectively. For instance,
when considering chain complexes arising from sim-
plicial complexes, 2-chains correspond to formal lin-
ear combinations of faces, 1-chains to formal sums
of edges and 0-chains to formal sums of vertices. In-
tuitively, 1-cycles are loops that start and end in the
same vertex and boundaries are those cycles that are
a boundary of an (i+ 1)-cycle.

A classical binary linear code C can be viewed as
1-term chain complex:

C = C1
∂1−→ C0, (7)

where C1 = Fn
2 and ∂i = H is the parity check

matrix. Then the code C is the space of 1-cycles:

C = Z1(C) = ker ∂1,

and the space of 0-chains is the space of checks acting
on C. Note that H0(C) = 0 if the checks are linearly
independent. For classical codes, this representa-
tion does not yield any new insights and hence is
rarely used. However, a quantum CSS code necessi-
tates commutation relations between the bit-flip and

phase-flip parity check matrices HX and HZ (Equa-
tion (2)). Thus, there is a bijection between CSS
codes and chain complexes: A CSS code corresponds
to a three term chain complex:

C = Ci+1
∂i+1−−−→ Ci

∂i−→ Ci−1, (8)

where ∂i+1 = HT
Z and ∂i = HX . Thus, qubits are

associated with 1-chains and X and Z checks with 0-
and 2-chains, respectively. A prototypical example is
a toric code, where C2, C1 and C0 are vector spaces
of faces, edges and vertices, obtained from a square
cellulation of a torus. Conversely, given an arbitrary
chain complex

... −→ Ci+1
∂i+1−−−→ Ci

∂i−→ Ci−1 −→ ... (9)

we can pick a dimension i to associate the space of
qubits with and view the corresponding three term
chain complex as a CSS code. The code parameters
are n = dim Ci, k = dim Hi and d is the minimum
weight of a non-trivial representative of Hi.

IV. LOOPED PIPELINE ARCHITECTURE

To form a better intuition about our construction
of codes for modular architectures, we first recap ba-
sic ideas of a recent result around QEC on a looped
pipeline architecture [36]. This will constitute the
basis from which we build more involved and better
quantum codes as we soften the constraints of the
intra- and inter-modular connectivity and generalise
the construction.

The work by Z. Cai and others considers a sur-
face code layout as depicted in Figure 3(a) of a
quantum chip where every data and ancilla qubit
is replaced by a rectangular loop of fixed number of
qubits as sketched in Figure 3(b). All types of qubits
are moved along the loop in the clockwise direction
at the same frequency. Once the qubits approach
another qubit from a different loop, they interact
to become entangled in a way that corresponds to
the syndrome extraction circuit as illustrated in Fig-
ure 3(c). After the ancilla qubits have gone around
the full loop, they are measured to read out the syn-
drome. The authors showed that this forms a stack
of 2D surface codes, where the stack size is given by
the number of qubits within each loop.

In their work, the authors and independently M.
Fogarty [42] identified that the stack of 2D surface
codes may be used to generate a 3D surface code, but
did not provide an explicit construction. In the rest
of the section we will show how the looped pipeline
architecture can be extended to implement a single
3D surface code (explained below) by assuming an
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c)b)a)

FIG. 3: A stack of 2D surface codes can be generated by replacing every data (black) and ancilla (blue and green)
qubit of the regular surface code (a) by a loop of corresponding qubits (b). The qubits communicate (entangle) with
each other once they enter the dashed regions depicted in (c).

FIG. 4: We replace all loops with a loop that has both
ancilla (blue) and data (black) qubits. Additionally, we
allow for nearby qubits in the loop to communicate. For
example, the nearby qubits entangle whenever both of
them enter the orange dashed box.

additional connectivity within each qubit loop. Fi-
nally, we will formalise and generalise this construc-
tion to the setting of modular architectures. This
will allow us to construct quantum LDPC codes for
more general connectivity constraints.

A. 3D Surface Code

Consider a single data qubit loop from the looped
pipeline architecture described above. Each qubit in
this loop is part of a separate 2D surface code. If we
extend the connectivity between the nearby qubits
within each loop then we obtain a stack of surface
codes linked together into a single block. This con-
struction does not immediately produce a 3D surface
code. For example, it links ancilla qubits to other
ancilla qubits within the same loop.

Instead, to produce a valid 3D surface code we ad-
ditionally need to re-identify the qubits within each
loop. In this regard, we form three different types of

Loop label Odd qubits Even qubits

Vertex X-stab (6) Data
Edge Data Z-stab (4)
Face Z-stab (4) —

TABLE I: Qubit assignments of different loops to gener-
ate a 3D surface code. Even/Odd assignment of qubits
indicate their position in the qubit chain within the loop.
Numbers in the parenthesis indicate the weight of the
stabiliser.

loops—face, edge and vertex loops—where the nam-
ing will parallel the chain complexes. They are laid
out in a similar pattern as previously with face loops
replacing the Z ancilla loops, edge loops replacing
the data qubit loops and vertex loops replacing the
X ancilla loops. Each of these loops may contain
both data and ancilla qubits of the 3D surface code,
hence, they also must contain measurement devices
as described in [36] to extract the syndrome Fig-
ure 4. We assume that the total number of qubits
per loop is even. Then, depending on the type of
the loop and position within the loop each qubit can
be given an assignment. These assignments can be
found in Table I. The even/odd parity of the qubit
corresponds to its index i within the loop, where the
indexing is such that any qubit qi of any loop gets
to interact with qubits qi of the neighbouring loops.
Note that we can exclude the even qubits in the face
loop as they have no assignment, alternately, they
can be used as meta-checks of Z-stabilizers.

By viewing the modular architecture in terms of
chain complexes that describe codes, we can prove
that such an assignment indeed produces a 3D sur-
face code. In order to do so, we use tensor products
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C1 ⊗D1 C1 ⊗D0

C0 ⊗D1 C0 ⊗D0

idC⊗∂D
1

∂C
1 ⊗idD ∂C

1 ⊗idD

idC⊗∂D
1

FIG. 5: A commuting diagram representing a double
chain complex of two 2-term chain complexes C,D.

of chain complexes.

B. Tensor Product of Chain Complexes

Quantum codes can be constructed from products
of chain complexes that describe other codes [43, 44].
Let us discuss the construction in the following. The
double complex C �D is defined as

(C �D)p,q = Cp ⊗Dq. (10)

with vertical boundary maps ∂vi = ∂Ci ⊗ idD and

horizontal boundary maps ∂hi = idC ⊗ ∂Di such that
∂vi ∂

v
i+1 = 0, ∂hi ∂

h
i+1 = 0, and ∂vi ∂

h
j = ∂hj ∂

v
i . An ex-

ample double complex where C,D are 2-term com-
plexes is visualized in Figure 5. The total complex
arises when we collect vector spaces of equal dimen-
sions, i.e., “summing over the diagonals” in the dou-
ble complex as follows

Tot(C �D)n =
⊕

p+q=n

Cp ⊗Dq = En (11)

where the boundary maps are ∂E = ∂v ⊕ ∂h. Then,
the tensor product complex C ⊗ D is defined as
Tot(C � D). For the example given in Figure 5,
the tensor product complex is

C1 ⊗D1
∂2−→ C0 ⊗D1 ⊗ C1 ⊗D0

∂1−→ C0 ⊗D0,

where

∂2 =

(
∂C1 ⊗ idD
idC ⊗ ∂D1

)
∂1 =

(
idC ⊗ ∂D1 | ∂C1 ⊗ idD

)
.

As the homology of a chain complex is related
to the parameters of the corresponding code, the
Künneth formula is central. It gives a method to
compute the homology of a double complex, from the
homology of the vertical and horizontal complexes:

Hn(C ⊗D) ∼=
⊕

p+q=n

Hp(C)⊗Hq(D).

a) b)

FIG. 6: A single loop corresponds to a two-term chain
complex and a layout of loops to a three-term chain com-
plex representing a repetition code (a) and a surface code
(b) respectively.

C. 3D Surface Code in the Chain Complex
Formalism

While the previous construction of a 3D surface
code may seem arbitrary at first, we can naturally
describe it in the language of chain complexes. This
description allows us to further generalise the con-
struction of codes for modular architectures and
gives a strong intuition for which codes may or
may not be constructed given the connectivity con-
straints.

First, consider a single loop of qubits with nearest
neighbour connectivity between them. It is natural
to view the loop as a classical repetition code where
half of the qubits are assigned to be data qubits and
the other half ancilla qubits as depicted in Figure 4.
As mentioned in Section III, we may use a two-term

chain complex C = C1
HX−−→ C0 to describe the repe-

tition code, where the data and ancilla qubits are el-
ements (chains) of C1 and C0 respectively and HX is
the parity check matrix of the code, see Figure 6(a).

Moreover, the 2D layout of the loops can
be considered as a two-term chain complex

D = D2
HT

Z−−→ D1
HX−−→ D0 representing a 2D surface

code. In this language, each loop is labeled as an
element of either D2, D1 or D0, which represent Z
checks (faces), data qubits (edges) or X checks (ver-
tices) respectively, see Figure 6(b).

Using such a layout of loops we have effectively
created a new code E . As outlined in Equation (11),
E is represented by a chain complex

E = C ⊗D, (12)

where C corresponds to the code within the loop and
D corresponds to the code describing the layout of
the loops. In more detail, we associate two vector
spaces Ci and Dj to each qubit in our system. In
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FIG. 7: Our observations allow to readily identify to
which vector spaces each qubit belongs to. The ancilla
qubits of the repetition code are elements (chains) of C0,
while the data qubits are chains of C1. The loop itself
has an assignment as an edge loop, therefore, every qubit
in it belongs to D1.

this example, Ci describes whether the qubit in the
repetition code is an ancilla (i = 0) or data (i = 1)
qubit, while Dj describes whether the qubit belongs
to the face (j = 2), edge (j = 1) or vertex (j = 0)
loop. See Figure 7 for a schematic explanation of
qubits in the edge loop. Furthermore, we assign each
qubit to a vector space Ek, with k = i + j, which
form the sequence of vector spaces for a new four-
term chain complex

E = E3
∂3−→ E2

∂2−→ E1
∂1−→ E0, (13)

where

E3 = C1 ⊗D2,

E2 = C0 ⊗D2 ⊕ C1 ⊗D1,

E1 = C0 ⊗D1 ⊕ C1 ⊗D0,

E0 = C0 ⊗D0.

This chain complex E describes a 3D surface code,
as per the tensor product of a repetition code and a
surface code [44, 45]. Here, for example, we can iden-
tity the data qubits with chains in E1, and hence, Z
(X) stabilizers with chains in E2 (E0). Then, par-
ity check matrices are given as boundary operators
∂2 = HT

Z and ∂1 = HX . Note that in this construc-
tion one of the boundaries of the surface is periodic
and, also, that we are free to identify the data qubits
with chains either in E2 or E1. This freedom cor-
responds to the choice of having the logical X (Z)
operators to be planar (string)-like on the 3D surface
or the other way around.

As an example, consider an L × L surface code
as the layout of the loops. It has parameters
J2(L2 − L) + 1, 1, LK. The respective chain com-
plex D has homology H1(D) ∼= Z2 and H0(D)
is trivial. Similarly, consider a length L classi-
cal repetition code inside the loop with parameters
[L, 1, L]. The respective chain complex C has ho-
mology H1(C) ∼= Z2 and H0(C) ∼= Z2 since one
of the checks is linearly dependent. Then for the
chain complex of a 3D surface code E = C ⊗ D,

by identifying the elements of E1 as data qubits,
we find n = dimE1 = dim(C1 ⊗ D0 ⊕ C0 ⊗ D1) =
L ·(L2−L)+L ·(2(L2−L)+1), where D0 and C0 are
vector spaces associated with X parity checks. The
number of encoded qubits is given by the dimension
of the first homology H1(E). We can compute it
using the Künneth formula Equation (12),

k = dimH1(E) =

= dim(H0(C)⊗H1(D)⊕H1(C)⊗H0(D)) = 1.

The distance of the code is still L, hence, the result-
ing 3D surface code has parameters J3L(L2 − L) +
L, 1, LK. As an example, for L = 20 the parameters
are J22820, 1, 20K.

Note that in this construction qubits that were
previously data qubits may be reassigned to par-
ity check qubits and vice versa. More importantly,
the intra- and inter-modular connectivity require-
ments of E correspond to the connectivity require-
ments given by codes C and D. We can prove this
for general tensor products of chain complexes.

Theorem IV.1. Let C and D be a two- or three-
term chain complexes representing classical or quan-
tum codes C,D respectively. Let their boundaries ∂C

and ∂D define the intra- and inter-modular connec-
tivity respectively. Then a quantum code E corre-
sponding to the chain complex E = C ⊗ D respects
the connectivity constraints of the architecture.

Proof. The chain complex E (corresponding to E)
is at least a three-term chain complex given that
both C and D are at least two-term chain complexes.
Therefore, we can identify chains of Ei with data
qubits, Ei+1 with Z parity checks and Ei−1 with X
parity checks. The required qubit connectivity of
E is defined by its parity check matrices, which are
given by the boundary operators

∂E = ∂h ⊕ ∂v = idC ⊗ ∂D ⊕ ∂C ⊗ idD. (14)

Note that i-chains of C label the qubit c within
each module and that i-chains of D label each mod-
ule d. We can ensure that E respects the connectivity
constraints of the architecture if both terms of Equa-
tion (14) match the given qubit connectivity. We do
so by looking at both of the terms separately.

The basis elements are pairs of chains (c, d) ∈
C ×D on which the first term acts as ∂h : (c, d) →
(idC(c), ∂D(d)) ∀c, d. By linear extension this de-
fines a map on C ⊗D. It is equally stated that each
qubit c in a module d is connected to its respec-
tive qubits c in adjacent modules given by ∂D ∀d.
This matches Definition II.2 for the inter-modular
connectivity. Similarly, the second term in Equa-
tion (14) defines a map that acts on basis elements
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as ∂v : (c, d)→ (∂C(c), idD(d)) ∀c, d. This is equally
stated that in each module d a qubit c is connected
to qubits ∂C(c) ∀c. This matches Definition II.1 for
intra-modular connectivity. Therefore, the required
qubit connectivity of E is given by some additive
combination of terms which define the intra- and
inter-modular connectivity respectively.

Notice that our qubit assignment in the chain
complex formalism completely matches the assign-
ments given in Table I if we identify the data qubits
with the vector space E1 and ignore qubits in E4.
Since the qubit assignments and the qubit interac-
tions match between both perspectives, the stabilis-
ers of the code match as well. This proves that our
previous construction in Section IV A produced a 3D
surface code.

The correspondence between modular architec-
tures and quantum codes obtained from product
constructions is very natural and gives an intuitive
way of designing codes that obey architectural con-
nectivity constraints. In the next sections we will
propose generalisations of this idea in a step by
step fashion. First, we generalise the intra-modular
connectivity by considering a less local code within
each module. Then we similarly generalise the inter-
modular connectivity. Finally, we elaborate on a
more general product code constructions by allow-
ing twists between inter-modular connections.

V. HYPERGRAPH PRODUCT CODES

In the previous section it was shown that the pro-
posed formalization of the looped pipeline architec-
ture enables to obtain a 3D surface code that can
be viewed in a rigorous way as the tensor product of
two chain complexes C⊗D, where C corresponds to
the loop structure and D to the (grid-like) layout. In
this section, we further elaborate on the tensor prod-
uct code construction and extend it to the setting of
more general intra-modular and inter-modular con-
nectivity.

A. Generalised Intra-Modular Connectivity

The first generalisation of the proposed formal-
ization of the looped pipeline architecture is to re-
place the loops of qubits with modules admitting a
more general intra-modular connectivity. Similarly
to viewing the loops of qubits as repetition codes,
we view this connectivity as a chain complex corre-
sponding to some code C, for instance a simple clas-
sical linear block LDPC code. Note that in general

this implies that a higher degree of intra-modular
connectivity is needed.

Formally we consider a tensor product E = C⊗D
of a chain complex C corresponding to some classical
or quantum code and a 3-term chain complex D cor-
responding to a surface code, describing the overall
layout of modules. This yields a 4 or 5-term chain
complex E which can be viewed as a surface code
layout of modules, where each module is replaced
by an arbitrary code given by the chain complex C.
In general this does not yield a nice 3D geometry as
in the more simple 3D surface code case.

As an explicit example, we consider intra-modular
connectivity that corresponds to a classical linear
code. We obtain a code by generating a random
sparse parity check matrix with dimensions 51× 60.
Through exhaustive search over all codewords we
find the code parameters [60, 9, 20]. It’s maximum
row or column weight is 8, but on average each check
has a support of ≈ 5 bits. See [46] for the full par-
ity check matrix. The respective chain complex C
has homology dimension dim(H1(C)) = 9 since it
encodes 9 bits and H0(C) is trivial as all parity
checks are linearly independent. The homological
properties of the chain complex D associated with
the surface code describing the inter-modular lay-
out are given in the previous example. Note that
H2(D) is trivial and for this example we choose a
surface code with length L = 20. Then for the
resulting chain complex E = C ⊗ D, by identi-
fying the elements of E2 as data qubits, we find
n = dimE2 = dim(C1 ⊗ D1 ⊕ C0 ⊗ D2) = 65040,
where D2 and C0 are vector spaces associated with
Z and X parity checks respectively. The number of
encoded qubits is given by the dimension of the sec-
ond homology H2(E). We can compute it using the
Künneth formula (Equation (12)),

k = dimH2(E) =

= dim(H1(C)⊗H1(D)⊕H0(C)⊗H2(D)) = 9.

Generally, finding the distance of the code is not
trivial, thus usually Monte-Carlo simulations or sim-
ilar approaches are employed. For general hyper-
graph products of arbitrary length chain complexes,
Zeng and Pryadko [44] proposed methods to com-
pute upper and lower bounds on the distance of
the hypergraph product complex from the distances
of the individual complexes in the product. More-
over, for the special case where one of the chain
complexes in the hypergraph product is a 1-term
complex, given by a binary check matrix, Zeng and
Pryadko show that their result allows to compute the
distance exactly. Recall that the homological dis-
tance di is the minimum Hamming weight of a non-
trivial representative in the i-th homology group.
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Theorem V.1. ([44]) Let A be a m chain complex
with distances di for 0 ≤ i ≤ m and let B be a 2-term
chain complex. Then,

di(A⊗B) = min(di−1(A)d1(B), di(A)d0(B)).

Applying Theorem V.1 to the previous example
we find the Z distance of the code is

d2(E) = min(d1(D)d1(C), d2(D)d0(C)) = 400,

where by convention di(A) = ∞ if Hi(A) is triv-
ial. And we find the X distance of the code using
cohomology

d2(E) = min(d1(D)d1(C), d2(D)d0(C)) = 20.

Therefore, the code E = C ⊗ D has parameters
J65040, 9, 20K. Comparing it to the 3D surface code
one can see that we encode 9 times more qubits at
the cost of increasing the overall number of phys-
ical qubits by a factor of about 3. We would ex-
pect such favourable trade-offs for architectures with
higher qubit connectivity.

This idea can be generalised to more connected
modules, by considering a connectivity inside each
module that corresponds to a quantum code, i.e., a
three-term chain complex. Note that this may im-
ply an even higher degree of intra-modular connec-
tivity and a higher number of qubits associated with
each module. The latter implies that there are more
connections between modules as per Definition II.2.
Due to the generality of the chain complex formal-
ism, this construction is equivalent to the previous
case, with the only difference that the resulting prod-
uct is a 5-term chain complex.

B. Beyond Planar Surface Layouts

In a similar fashion to the discussion on higher
intra-modular connectivity, we can generalise the
layout of the modules. This can be done by con-
sidering layouts of modules corresponding to a gen-
eral code given by a chain complex D. We ex-
amine 3-term chain complexes describing quantum
codes, but the same reasoning is be applicable to
classical codes. The 2D grid layout (corresponding
to a surface code) has the advantage of planarity,
which implies a sparse nearest-neighbour connectiv-
ity. However, the same planarity clearly limits the
code parameters of the derived product codes. Addi-
tionally, some architectures (e.g. based on photonic
links between modules) might not even be subject
to nearest-neighbour communication constraints and
hence would have no benefit from a planar layout of
modules. In such cases as long as it holds that mod-
ules communicate with a few other modules each,

it is not crucial that they are located close to each
other physically and we can use less geometrically lo-
cal codes to describe the layout of the modules. We
consider a modular layout given by a chain complex

D = DF
∂2−→ DE

∂1−→ DV .

For illustrative purpose we call the vector spaces
of the chain complex the spaces of faces, edges,
and vertices. D can be made to correspond to
the given inter-modular connectivity by associating
modules to each i-chain of D. That is, the spaces
DF , DE , DV are associated with a set of modules
{m1, . . . ,m|V |+|E|+|F | } and the modules are con-
nected corresponding to the boundary maps of D. In
other words, the differentials ∂2, ∂1 are the incidence
matrices associating faces and edges, and edges and
vertices respectively. If C denotes the chain com-
plex describing the intra-modular connectivity, then
by Theorem IV.1 the tensor product complex C⊗D
represents a quantum code that respects the con-
nectivity of the overall architecture. This idea is
illustrated in Figure 8.

We are now able to formally describe codes aris-
ing from modular architectures using the following
recipe: we take an arbitrary CSS code represent-
ing the intra-modular connectivity (depending on
the desired degree of connectivity, number of qubits,
and code parameters) and another CSS code that
represents the inter-modular connectivity. Then us-
ing the tensor product chain complex we construct
a new code satisfying the architectural connectivity
constraints. This can already give moderately good
codes for a specific modular architecture, depending
on the chosen seed codes and the allowed degree of
connectivity between modules.

C. From Codes to Modular Architectures

Let us briefly point a slightly different view on
the construction presented above. An architec-
tures might allow an “all-to-all” connectivity be-
tween modules, or a connectivity that is not con-
strained other than requiring that each module may
only be connected to a constant number of other
modules. Then, we can ask the question of given
these “weak” constraints, how should we arrange the
modules in order to generate a good code tailored
for the architecture? This can be done by choosing
a code defined by a chain complex C and viewing the
boundary maps as incidence matrices, which auto-
matically yields the connectivity graph. This graph
in turn, defines the overall modular layout as de-
picted in Figure 9.
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a) b)

FIG. 8: (a) We represent the intra-modular qubit connectivity with a chain complex C, where the qubits sit on
all i-chains. (b) Similarly, we represent the inter-modular connectivity with a chain complex D, where modules are
placed on every i-chain. Some elements of the chain complex are highlighted. The code E = C ⊗ D fully respects
the connectivity constraints of the architecture (Theorem IV.1).

FIG. 9: We can take any chain complex (on the left) to
describe the inter-modular connectivity of our architec-
ture by replacing every element of the chain complex by
a module (on the right).

VI. BALANCED PRODUCT
CONSTRUCTIONS

In the previous section we showed how mod-
ular architectures can be viewed as tensor prod-
ucts of chain complexes (that describe codes).
This perspective corresponds to having intra-
modular connectivity–the layout of qubits within
each module–and inter-modular connectivity–the
layout of modules themselves–being determined by
such codes. In order to further generalise the pre-
vious constructions, we consider modular architec-
tures where the inter-modular connections are not
constrained to be between the respective qubits only.
Instead, these connections can be tweaked (twisted)
in some way that will be dictated by the product
construction. Hence, we redefine the inter-modular
connectivity as follows

Definition VI.1. A module Mk is connected to a
module Mj if a qubit qi ∈ Mk can be connected to
any qubit ql ∈Mj for all i, l.

Note that many quantum computing platforms that
consider linking modules together with photonic
links or similar, already allow this degree of free-
dom. For this setting, we will consider more gen-
eral products than standard hypergraph products.
Specifically, we show that the newly defined inter-

modular connectivity allows us to construct codes
that can be described in the language of balanced
product codes [16]. As before, these codes fully re-
spect the architectural connectivity constraints. Be-
fore proceeding to the proof, let us shortly introduce
the notion of balanced products of chain complexes.

A. Balanced Product Chain Complexes

Breuckmann and Eberhardt (BE) introduced bal-
anced product codes, which are analogously con-
structed to the balanced (or mixed) product of topo-
logical spaces [16]. This and related constructions
can be used to construct asymptotically good quan-
tum codes [14–18].

In order to define the balanced product of chain
complexes we need to discuss the balanced product
of vector spaces. Let V,W be vector spaces with a
linear right and left action respectively of a finite
group G. The balanced product is defined as the
quotient

V ⊗G W = V ⊗W/〈vg ⊗ w − v ⊗ gw〉,

where v ∈ v, w ∈ W , and g ∈ G. If V and W
have bases X and Y , and G maps basis vectors to
basis vectors then the basis of V ⊗G W is given by
X ×G Y = X × Y/ ∼. The equivalence relation ∼ is
defined as (x, y) ∼ (xg, g−1y) for all x ∈ X, y ∈ Y ,
and g ∈ G. We can now extend this notion to chain
complexes. Let C and D be chain complexes where
C has a linear right action and D has a linear left
action of a group G. The balanced product double
complex C �G D is defined via

(C �G D)p,q = Cp ⊗G Dq,
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with horizontal and vertical differentials defined
analogously to the double complex Equation (10),
that act on the quotients Cp⊗GDq of vector spaces
Cp and Dq. The balanced product complex is the
corresponding total complex:

C ⊗G D = Tot(C �G D).

We limit the discussion to cases where the vector
spaces Ci, Di are based and the action of G restricts
to an action on these bases [16]. If G is a finite group
of odd order, BE [16] gave a version of the Künneth
formula that can be applied to the balanced product
complex:

Hn(C ⊗G D) ∼=
⊕

p+q=n

Hp(C)⊗G Hq(D). (15)

We want to emphasize that for certain cases the bal-
anced product is equivalent to related constructions
such as the lifted product [38, 47] and the fiber bundle
construction [48].

B. Architecture Tailored Codes From
Balanced Products

To prove that the more general inter-modular con-
nectivity including twists allows us to construct bet-
ter quantum codes than those constructed as hyper-
graph products, we consider cases where we can cast
the balanced product C⊗GD as a fiber bundle com-
plex B⊗ϕD. In this complex, B denotes the base, C
denotes the fiber and ϕ the connection that describes
the twists of the fiber along the base. It is crucial to
correctly identify the base and fiber chain complex
to ensure that connections are twisted between mod-
ules only. This idea is depicted in Figure 10. In the
homological language, the connection ϕ represents
an automorphism on the fiber D that alters the hor-
izontal differentials of the double complex B � D.
Similarly to other products, the fiber bundle com-
plex can be used to describe a quantum error cor-
recting code once we identify the data qubits and
the parity checks correspondingly. Such codes are
called fiber bundle codes [48].

BE showed that when C is a two-term complex
and H is abelian and acts freely on the bases of each
Ci, then there exists a connection ϕ s.t. C ⊗G D =
B ⊗ϕ D, where Bi = Ci/〈cg − c〉 [16]. Therefore, a
wide range of codes constructed from balanced prod-
ucts can be recast into the language of fiber bundle
codes. Here we restrict ourselves to these cases and
cast the following theorem in terms of fiber bundle
codes.

a) b)

M1 M2 M1 M2

FIG. 10: Allowing twists of inter-module connections
allows to create better codes and yields a more general
formulation.

Theorem VI.2. Let D be a two-term and C a
two- or three-term chain complex. Let their bound-
aries ∂C and ∂D define the intra- and inter-modular
connectivity as given in Definition II.1 and Defini-
tion VI.1 respectively. Then, a fiber bundle code E
corresponding to the chain complex E = D ⊗ϕ C
respects the connectivity constraints of the architec-
ture.

Proof. The resulting chain complex E (correspond-
ing to E) is at least a three-term chain complex given
that both C and D are at least two-term chain com-
plexes. Therefore, we can identify chains of Ei with
data qubits, Ei+1 with Z parity checks and Ei−1
with X parity checks. The required qubit connectiv-
ity of E is defined by the parity check matrices HE ,
which are given by the boundary operators

∂E = ∂h ⊕ ∂v = ∂ϕ ⊕ idD ⊗ ∂C , (16)

where

∂ϕ(d1 ⊗ c) =
∑

d0∈∂Dd1

d0 ⊗ ϕ(d1, d0)(c)

in which di ∈ Di and c is any i-chain of C. Here, ϕ
denotes the connection and hence ϕ(d1, d0) describes
a specific element of the automorphism group acting
on the fiber C.

Note that i-chains of C label the qubit c within
each module and that i-chains of D label each mod-
ule d. We can ensure that E respects the connec-
tivity constraints of the architecture if both terms
of Equation (16) match the given qubit connectivity.
We do so, by looking at both of the terms separately.
The first term in Equation (16) describes that each
qubit c in a module d1 is connected to qubits labeled
ϕ(d1, d0)c = c′ in adjacent modules d0 ∈ ∂D(d1) ∀d.
This connectivity requirement is fully satisfied by
our new definition of inter-modular connectivity Def-
inition VI.1. For this exact reason, we consider the
base of the fiber bundle to represent the code de-
scribing the inter-modular connectivity as we want
to twist connections only between the modules. The
basis elements of the second term in Equation (16)
are pairs of cells (d, c) ∈ D×C on which the bound-

ary operator acts as ∂v : (d, c) → (idD(d), ∂C(c))
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∀d, c. By linear extension this defines a map on
D ⊗ C. It is equally stated that in each module
d, a qubit c is connected to qubits ∂C(c) ∀c. This
matches our Definition II.1 for intra-modular con-
nectivity. Therefore, the required qubit connectivity
of E is given by some additive combination of terms
which define the intra- and inter-modular connectiv-
ity respectively.

Theorem VI.2 thus establishes a correspondence
between modular architectures (including inter-
modular connectivity) and quantum codes that can
be described using balanced product construction.
While the proof considers balanced product codes
that are equivalent to fiber bundle codes, we expect
that a wider range of these codes respect the connec-
tivity constraints—depending on the chosen group
and group action.

As a simple example, we construct a balanced
product code from two classical codes represented
by chain complexes C and D. The complex C de-
scribes the intra-modular connectivity and corre-
sponds to a d = 15 cyclic repetition code as pre-
sented in Section IV. The code D describes the inter-
modular connectivity and was obtained by generat-
ing a random sparse parity-check matrix with di-
mensions 255 × 450 and a cyclic symmetry of or-
der 15. It encodes dim(H1(D)) = 195 bits. Since
both codes share the cyclic symmetry we take the
balanced product over the group Z15. The prod-
uct can be recast as a fiber bundle code and there-
fore satisfies Theorem V.1. The resulting code
D ⊗Z15

C has n = 705 qubits and encodes at least
k = dim(H1(D/Z15)) = 195/15 = 13 logical qubits,
where the calculation follows from the Künneth for-
mula for fiber bundle codes [48]. The X and Z par-
ity checks have approximate average weight of 10
and 6, respectively. An exhaustive probabilistic dis-
tance search with QDistRnd [49] showed that the
code distance is at most 15, we believe this bound
is saturated. Hence, the balanced product code has
expected parameters J705, 13, 15K and all qubits (in-
cluding check qubits) can be partitioned into 47
modules with 30 qubits each. In comparison, en-
coding 13 qubits into rotated surface codes with the
same distance require 2925 data qubits. The parity
check matrix used for the code D and parity check
matrices HX and HZ for the balanced product code
can be found at [46].

VII. CONCLUSION

We have proposed a novel correspondence between
two concepts from distinct rapidly evolving domains:

QLDPC product code constructions and modular
quantum computing architectures. Using tools from
homological algebra that have been used in con-
structions of product codes, we give a novel way
to view modular architectures as chain complexes
and show that valid quantum codes that respect the
given architectural constraints can be constructed
from products of such chain complexes. Our results
constitute an essential further step towards closing
the gap between recent theoretical breakthroughs
around asymptotically good quantum codes and
practical applications of QLDPC codes. Especially
due to the formalisation of the looped pipeline ar-
chitecture, we show practical relevance of our work.

As a direct extensions of this work it may be possi-
ble to generalise the considered constructions by al-
lowing modules to have different inter-modular con-
nectivity. This renders the construction more com-
plex and product constructions as the ones used in
this work might a priori not be applicable. More-
over, a further generalisation of our approach could
be considered by investigating layouts of modular
architectures. That is, by considering layouts of lay-
outs of modules. It may be possible that such con-
structions can also be described using product con-
structions as described in this work but we leave an
exact formulation open for future work. On a more
practical note, it would be valuable to find small in-
stances of QLDPC codes that can readily be realized
on currently available architectures in order to draw
comparisons to recent experimental breakthroughs
around surface code realisations. In general, many
open questions around practical aspects of QLDPC
codes remain. An important example is how to do
fault-tolerant logic on QLDPC codes. Investigating
further areas of their potential and more practically
relevant regimes around QLDPC codes is a crucial
area of research towards scalable fault-tolerant quan-
tum computing.
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