
Depth-Optimal Synthesis
of Clifford Circuits with SAT Solvers

Tom Peham∗

Chair for Design Automation
Technical University of Munich

Germany
tom.peham@tum.de

Nina Brandl∗
Institute for Integrated Circuits
Johannes Kepler University Linz

Austria
nina.brandl@jku.at

Richard Kueng
Institute for Integrated Circuits
Johannes Kepler University Linz

Austria
richard.kueng@jku.at

Robert Wille
Chair for Design Automation
Technical University of Munich

Germany
Software Competence Center Hagenberg GmbH

Austria
robert.wille@tum.de

Lukas Burgholzer
Institute for Integrated Circuits
Johannes Kepler University Linz

Austria
lukas.burgholzer@jku.at

∗Both authors contributed equally to this work.

Abstract—Circuit synthesis is the task of decomposing a given
logical functionality into a sequence of elementary gates. It
is (depth-)optimal if it is impossible to achieve the desired
functionality with even shorter circuits. Optimal synthesis is a
central problem in both quantum and classical hardware design,
but also plagued by complexity-theoretic obstacles. Motivated by
fault-tolerant quantum computation, we consider the special case
of synthesizing blocks of Clifford unitaries. Leveraging entangling
input stimuli and the stabilizer formalism allows us to reduce the
Clifford synthesis problem to a family of poly-size satisfiability
(SAT) problems – one for each target circuit depth. On a
conceptual level, our result showcases that the Clifford synthesis
problem is contained in the first level of the polynomial hierarchy
(NP), while the classical synthesis problem for logical circuits
is known to be complete for the second level of the polynomial
hierarchy (ΣP

2). Based on this theoretical reduction, we formulate
a SAT encoding for depth-optimal Clifford synthesis. We then
employ SAT solvers to determine a satisfying assignment or to
prove that no such assignment exists. From that, the shortest
depth for which synthesis is still possible (optimality) as well
as the actual circuit (synthesis) can be obtained. Empirical
evaluations show that the optimal synthesis approach yields a
substantial depth improvement for random Clifford circuits and
Clifford+T circuits for Grover search.

I. INTRODUCTION

Quantum computing is a computational paradigm that might
offer computational advantages over classical algorithms for
certain problems. State-of-the-art quantum computing hard-
ware is still limited in scale, featuring a relatively small
number of qubits prone to errors. While finding short-term ap-
plications for these noisy intermediate scale quantum (NISQ)
computers is an ongoing and vibrant research field [1], they
cannot be used for advanced applications such as integer
factoring (Shor; [2]), unstructured search (Grover; [3]), solving
linear systems (HHL; [4]), or convex optimization [5]–[7].

To scale up quantum computing to longer computations with
many qubits, fault-tolerant computation schemes have to be
used that protect the information of a qubit against errors and
allow the application of quantum gates with a low error-rate,
see e.g. [8]–[10]. One way to do this is using quantum
error correcting codes and performing all computations in the
Clifford+T gate-set [11]. The benefit of restricting the gate-set
is that every gate can be performed in a fault-tolerant fashion
on an appropriate code.

Fault-tolerant quantum circuits can become quite large due
to the overhead from breaking down every quantum computa-
tion into this restricted gate-set, with error syndrome extraction
and error correction steps. For near-term applications they are
usually optimized to have a minimal two-qubit gate count
as these gates tend to have the highest error rates. For
fault-tolerant computations, a suitable performance metric is
circuit depth because it directly correlates with the runtime of
the computation.

The problem of synthesizing optimal circuits in the
fault-tolerant regime has commonly been considered holisti-
cally, trying to minimize the entire circuit, or partially, by re-
ducing the T-gate count only [13]–[16]. The general synthesis
problem turns out to be very hard. Instead of minimizing the
entire Clifford+T circuit, one can consider only the Clifford
parts to try to make the general synthesis problem easier.

In this work, we show that the problem of synthesizing
depth-optimal Clifford circuits is, in fact, at most as hard as
Boolean satisfiability (SAT). We achieve this by considering
the synthesis problem for a larger circuit that receives a
pairwise maximally entangled state as input. Although this
theoretically increases the problem size, the utilization of
the maximally entangled state allows for breaking down the
synthesis problem in terms of stabilizers (Gottesman-Knill).

|q0⟩

|q1⟩

|q2⟩

Clifford Block

H X

H

H X

T † T T †

T

T

T

T †

Clifford Block

X H

X H X

H X Z H X

X Z H X T † T

T

T †

T

T †

T

Clifford Block

X H

X H

X H

(a) Unoptimized Circuit

|q0⟩

|q1⟩

|q2⟩

H X

H

H X

T † T T †

T

T

T

T †

H X

X H

H Z T † T

T

T †

T

T †

T

X H

X H

X H

(b) Optimized Circuit

Fig. 1. Two Clifford+T circuits for 3-qubit Grover search: the oracle corresponds to a random 3-SAT formula with 3 variables and 5 clauses.
(top) decomposition of one Grover block into Clifford+T gates, the actual synthesis is achieved using Qiskit’s Grover class using a PhaseOracle [12].
(bottom) depth-optimized synthesis of all (nontrivial) Clifford blocks using the methods from this work. Our SAT approach certifies that the green and purple
blocks are already depth-optimal. This is not the case for the central teal block, where our method yields considerable improvements (depth 9 vs. depth 5).

Based on this perspective, we formulate a SAT encoding for
synthesizing and optimizing n-qubit Clifford circuits of max-
imal depth dmax with O(n2dmax) variables and O(n4dmax)
constraints. For larger circuits, we furthermore develop heuris-
tic optimization routines based on optimal SAT encodings that
reduce Clifford circuit depth in a divide-and-conquer approach.

We implemented the proposed methods and compared them
to a state-of-the-art and openly available Clifford synthesis
technique. Results show that while the optimal synthesis scales
only up to 5 qubits, the state of the art is, on average,
two orders of magnitude away from the optimal depth. The
heuristic approaches also yield better results than the state
of the art and are much more scaleable than the optimal
approach. The efficacy of the methods for fault-tolerant quan-
tum computations is illustrated by showing how the depth
of Clifford+T circuits can be reduced by optimizing Clifford
sub-circuits. All implementations are publicly available via
the quantum circuit compilation tool QMAP [17], which is
part of the Munich Quantum Toolkit (MQT) and accessible at
https://github.com/cda-tum/qmap.

The remainder of this work is structured as follows: Sec. II
motivates the need for synthesizing depth-optimal Clifford
circuits and provides context to the classical circuit synthesis
problem. Then, Sec. III briefly goes over previous work on
quantum circuit synthesis, especially in the Clifford case. In
Sec. IV we show the main construction of this work and the
reduction of Clifford synthesis to SAT before giving the full
details on the SAT encoding in Sec.V. Based on that, we derive
a heuristic optimization routine in Sec. VI. The evaluations of
the methods introduced in this work are presented in Sec. VII.
Finally, Sec. VIII concludes this work.

II. BACKGROUND AND MOTIVATION

To keep this work self-contained, the following sections re-
view the central concepts of fault-tolerant quantum computing
and circuit synthesis that are required throughout the rest of
this work.

A. Fault Tolerant Quantum Computing

Quantum computations are prone to errors from multiple
sources, be it decoherence, information leakage, or other kinds
of noise. In order to protect quantum information, quantum
error correcting codes (QECCs) [8], [11], [18] have been
introduced. Essentially the information of a single logical qubit
is encoded into multiple physical qubits for which various
encoding schemes have been discovered.

Executing a quantum gate on a logical qubit is not a
straightforward matter anymore as it is not at all obvious how
to extend the functionality of a physical gate to the logical
level. Furthermore, applying a gate to a logical qubit should
be possible in a fault-tolerant fashion, such that applying a
gate should introduce errors that can be corrected with an
arbitrarily high probability.

The Clifford gate-set is a set of gates that can be applied
transversally to many QECCs, i.e., applying a Clifford opera-
tion to a logical qubit can be done by performing that Clifford
gate on every physical qubit individually. Therefore, if a gate
application introduces an error onto a physical qubit, this error
cannot spread throughout the encoded qubit and is simpler to
correct. Any Clifford unitary can be obtained from a sequence
of Hadamard, Phase, and CNOT gates. The Clifford group
also includes the Pauli X-, Y - and Z-gates.

Clifford gates alone are not sufficient to perform uni-
versal quantum computation and can be classically sim-
ulated in polynomial time [11], [19]. However, adding a
T-gate T = |0⟩⟨0|+ ei

π
8 |1⟩⟨1| suffices to achieve universality.

A T-gate can be realized fault-tolerantly using the magic state
distillation protocol [20] and gate teleportation.

A fault-tolerant quantum computation can therefore be
realized by alternating blocks of Clifford gates and blocks
of T-gates where error syndromes are detected and corrected
throughout the computation. Fig. 1 shows the quantum circuit
for a 3-qubit Grover search that is implemented using the
Clifford+T gate-set on the logical qubits |q0⟩, |q1⟩ and |q2⟩.

In this fault-tolerant regime, the most important perfor-
mance metric is the circuit depth. Assuming gates on different
qubits can be executed in parallel, the depth directly deter-

https://github.com/cda-tum/qmap

mines the runtime of the computation. As the cycle time can
vary considerably depending on the technology the quantum
computer is built upon, reducing the depth of a circuit can
reduce the cost of a computation drastically.

Example 1. The circuit in Fig. 1a has 3 Clifford blocks of
interest. Fig. 1b shows the same circuit where each block was
synthesized to have minimal depth. As one can see, the two
outermost blocks were already depth-optimal in the original
circuit. Although this looks intuitively true, it still needs some
form of proof. The Clifford block in the middle, however, has
a depth of 9 (the first Hadamard and CNOT-gate are parallel)
and can be optimized to depth 5. High-depth Clifford blocks
like this appear frequently when synthesizing circuits using
state-of-the-art synthesis tools for quantum computing1.

The quest of finding such depth-optimal realizations of Clif-
ford circuits will be our primary motivation in this work as the
restricted nature of these circuits lends itself nicely to classical
design automation methods such as SAT and SMT solvers.

B. From Classical to Quantum Synthesis

Before diving into the details of our quantum protocol, it
is worthwhile to briefly review classical equivalence checking
of logical circuits (or functions), as well as classical circuit
synthesis. This will provide guidance and also motivate our
use of SAT solvers for quantum circuit synthesis.

1) Classical Equivalence Checking and SAT: Let C,C ′

be two circuits with n input bits. We say that these cir-
cuits are equivalent (C ≃ C ′) if and only if they produce
the same output for each conceivable input. In formulas,
∀x ∈ {0, 1}n Cx = C ′x. Taking the contrapositive yields

C ̸≃ C ′ ⇔ ∃x ∈ {0, 1}n s.t. Cx ̸= C ′x.

The logical not-equality Cx ̸= C ′x can readily be converted
into a Boolean function ϕC,C′(x) with input x. This high-
lights an interesting one-to-one correspondence between (the
negation of) circuit equivalence and the satisfiability problem
(SAT). On a theoretical level, SAT is a hard problem that is
complete for the problem class NP. Nevertheless, a plethora
of heuristic SAT solvers [21] perform very well in practice.
Correspondingly, how to utilize SAT for quantum computing
also received attention recently (cf. [22]).

2) Classical Optimal Synthesis and QBF: Circuit synthesis
aims to find a logical circuit that implements a desired n-bit
target functionality with as few elementary gates as possible.
Here, we will focus on circuit depth (i.e., layers of gates). A
decision version of this optimization problem looks as follows:

∃Cd, depth(Cd) ≤ dmax ∀x ∈ {0, 1}n Cdx = Cx, (1)

where Cd is a placeholder for another logical circuit. In
words, this formula evaluates to true if and only if it is
possible to exactly reproduce the functionality of circuit C
with another logical circuit Cd that obeys depth(Cd) ≤ dmax.
Multiple queries to this logical function with different values

1The circuit in question was generated using Qiskit 0.42.1

of dmax allow us to determine the optimal depth of any circuit
synthesis, e.g. via binary search.

It is also possible to rephrase Eq. (1) as a quantified Boolean
formula (QBF). For starters, note that we can represent any
logical circuit Cd by a binary encoding y of length (at most)
poly(ndmax). Different bit strings y give rise to different
circuits Cd and vice versa. With this binary encoding at
hand, we can adapt the Boolean function reformulation of
equivalence checking to the case at hand: ϕC(y, x) = 1 if
Cx = Cdx and Cd is the circuit encoded by y. Otherwise, this
formula evaluates to 0. Putting everything together, we obtain
the following QBF reformulation of logical circuit synthesis:

∃y ∈ {0, 1}poly(ndmax) ∀x ∈ {0, 1}n ϕC(y, x)
!
= 1. (2)

The exist quantifier (∃) ranges over all possible logical circuit
encodings with depth at most dmax (Cd ↔ y) while the forall
quantifier (∀) ranges over all 2n possible input bitstrings.

Such QBFs are, in general, much harder to handle than a
mere SAT problem with only one type of quantifier. In fact, the
reformulated circuit synthesis problem Eq. (2) is complete for
the problem class Σp

2 – one branch of the second level of the
polynomial hierarchy [23]. Unless the polynomial hierarchy
collapses to the first level (which is widely believed to be
false), these problems are much harder than SAT and, by
extension, equivalence checking.

QBFs do arise naturally in a variety of contexts [24]. Solvers
do exist, see e.g. [25]–[27] and typically rely on the counter-
example-guided inductive synthesis principle (CEGIS) [28]
which has its roots in abstraction refinement (CEGAR) [29],
[30]. For program synthesis, for example, CEGIS-style solvers
alternate between generating candidate programs and checking
them for counter-examples.

3) Going Quantum: Circuit Equivalence and Synthesis:
The two classical challenges we just discussed have natural
counterparts in the quantum realm. Quantum circuits that act
on n qubits are also comprised of elementary (quantum) gates,
but their functionality is radically different. We say that two
such circuits U, V are equivalent if and only if

U ≃ V ⇔ ∀|ψ⟩ ∈ C2n U |ψ⟩ = eiϕV |ψ⟩,

where ϕ ∈ [0, 2π) is a complex phase. In contrast to (classical)
logical circuits, there are infinitely many possible input states
|ψ⟩ to be checked.2 Consistency and mutual interrelations per-
mit us to compress this number to (at most) 4n disjoint input
states [32]–[36]. This number is, however, still exponential in
the total number of qubits. It is known that the (negated) uni-
tary equivalence problem is QMA-complete [37] (QMA is the
appropriate quantum generalization of the classical problem
class NP). So, at face value, the quantum circuit equivalence
problem looks even harder than its classical counterpart.

Suppose that we are given a target unitary U , e.g., in
the form of a high-level quantum circuit, and we want to

2This is already our point of departure from earlier work, most notably [31].
There, a subset of the authors asked a related, but simpler, question that arises
from only considering |ψ⟩ = |0, . . . , 0⟩ (i.e. fix a single input state).

decompose it into as few gate layers as possible (i.e., circuit
depth). This practical problem occurs whenever we want to
execute a high-level unitary (e.g., a quantum algorithm) on an
actual n-qubit quantum computer. The details of this synthesis
problem depend on the type of elementary gate-set but always
produces a two-fold quantified problem

∃Ud, depth(Ud) ≤ dmax ∀|ψ⟩ Ud|ψ⟩ = eiϕU |ψ⟩,

that resembles Eq. (1) with non-binary quantum states and
a complex phase ϕ ∈ [0, 2π). This problem is at least as
hard as logical gate synthesis because it includes (reversible)
encodings of the latter one as a special case. Reversibility of
quantum circuits allows us to slightly streamline this display:

∃Ud, depth(Ud) ≤ dmax ∀|ψ⟩ UU †
d |ψ⟩ = eiϕ|ψ⟩, (3)

where U †
d is the adjoint or reverse circuit of Ud.

For some special cases like Clifford circuits, we can recast
Eq. (3) as a logical Boolean formula whose intrinsic difficulty
is on par with logical circuit equivalence or SAT as shown in
Sec. IV. The difficulty level is then much lower than general
classical circuit synthesis. Empowered by this rigorous theo-
retical insight, we then employ state-of-the-art SAT solvers to
address the full Clifford synthesis problem.

III. RELATED WORK

Quantum circuits comprised of universal gate-sets are uni-
versal in the sense that they can approximate every unitary
evolution. Quantum gate synthesis can be viewed as a quantita-
tive take on this very issue: what is the best way to implement
a given unitary evolution, e.g., a quantum computation?

The celebrated Solovay-Kitaev theorem [8], [38] can be
viewed as a very general synthesis protocol for arbitrary
single-qubit unitaries (n = 1) and arbitrary universal gate-sets.
Extensions to n qubits can be achieved by either combining
single-qubit gate synthesis with certain entangling multi-qubit
gates or by directly generalizing the Solayev-Kitaev algorithm
to d = 2n-dimensional unitaries [38]. Although implementa-
tions do exist, see e.g. [39], this synthesis algorithm is typically
too slow for practical purposes. As a result, the community has
moved away from this rigorous meta-algorithm and towards
more scalable heuristics. Many of them address the universal
gate-set comprised of Clifford+T gates, see e.g. [13]–[16].

Clifford circuits (without T gates) are an interesting special
case in this context. Mathematically speaking, they form a
representation of a finite symplectic group [40]–[42] with
additional structure. For instance, it is known that every
Clifford unitary can be decomposed into a Clifford circuit of
depth at most O(n) [43]. Such insights highlight that Clifford
circuits cannot be overly complex – a feature that also extends
to Clifford synthesis. For the special case of n = 6 qubits,
competitive Clifford synthesis protocols have been put forth
in [44]. For general n, the algorithms by Koenig and Smolin
can be used to associate a given Clifford circuit with exactly
one element of the Clifford group. And subsequently, their
algorithm can be used to synthesize this very group element.
More recently, the group of Robert Calderbank developed

Clifford synthesis algorithms that even work on the logical
level (i.e., on top of an error-correcting stabilizer code) [45],
while Bravyi et al. discovered constant depth representations
of arbitrary Clifford circuits, under the assumption that one is
allowed to use global entangling operations of Ising type [46].

While the aforementioned approaches do produce a prov-
ably correct decomposition of Clifford circuits into elementary
(Clifford) gates, it is not clear whether size and depth are
(close to) optimal. This is where reformulations in terms of
SAT/QBF can make a significant difference. They reformulate
the gate synthesis problem as a family of quantified Boolean
formulas (QBFs), one for each maximum circuit depth dmax

we allow. Such a QBF evaluates to true if and only if an exact
circuit representation with depth (at most) dmax is possible
and returns the explicit representation. Otherwise, it evaluates
to false. Attempting to solve these QBFs for different depths
bears the potential of identifying the best circuit representation
of a given functionality. This is why SAT/QBF-based synthesis
approaches have long been a mainstay in classical design
automation [47]–[52]. In fact, the idea of combining SAT-
based synthesis with Clifford circuits is not entirely new. In
Ref. [31], a subset of authors proposes this very idea for
optimal stabilizer state preparation: find the shortest Clifford
circuit that takes |0, . . . , 0⟩ as input and produces a known
target stabilizer state. The ideas presented here may be viewed
as an extension of these earlier ideas to full Clifford circuit
synthesis. In addition, we also supply rigorous proofs of cor-
rectness and provide additional context, as well as background.

IV. MAIN RESULT AND THEORETICAL UNDERPINNING

Our main conceptual result is a one-to-one correspondence
between Clifford synthesis, on the one hand, and Boolean sat-
isfiability (SAT), on the other. The main result is displayed in
Theorem 1 and originates from two genuinely quantum twists
to the original synthesis questions: (i) maximally entangled
input stimuli and (ii) the Gottesman-Knill theorem. It forms a
rigorous foundation for optimal Clifford circuit synthesis with
SAT, the topic of Sec. V below.

A. Quantum Twist 1: Maximally Entangled Input States

The first step in our theoretical argument goes by many
names, including the Choi-Jamiokowski isomorphism [53],
[54], entanglement-assisted process tomography [55] and the
flattening operation in tensor analysis [56], [57]. Conceptually
we take two quantum circuits U and V on n-qubits. Instead of
testing all possible input states, we create a single universally
valid input state to check their equivalence. In a first thought
process, we consider a test circuit twice as large and apply U
to the top n qubits and the inverse of each gate in V to the
remaining n qubits. By entangling the kth input qubit of U
with the kth input qubit of V we create a new state |ω2n⟩ of
size 2n. As U and V operate on entangled qubits, all changes
applied by the first circuit will be reverted by the second circuit
if and only if they have the same functionality up to a global
phase. If they instead differ at any point of their unitary, the
resulting state will not be equal to |ω2n⟩ again. The idea of

Fig. 2. Illustration of entanglement-assisted equivalence-checking: Two n-
qubit circuits U, V have equivalent functionality (up to a global phase) if
and only if the above circuit produces the pairwise maximally entangled state
|ω2n⟩. Here, V † is the reverse circuit (adjoint) of V , and I is the identity.

two circuits with identical unitaries reverting the changes of
each other still applies when we let U and V † both work
on the same n qubits, i.e., the control qubits of the pairwise
entanglement. On the remaining target qubits, we apply the
identity as shown in Fig. 2.

Lemma 1. Let U, V be two n-qubit quantum circuits and let
I⊗n be the n-qubit identity operation. Then, U ≃ V if and
only if

(UV †)⊗ I⊗n|ω2n⟩⟨ω2n|(UV †)† ⊗ I⊗n = |ω2n⟩⟨ω2n|. (4)

here |ω2n⟩ is the tensor product of n 2-qubit Bell states that
entangle the kth qubit with the n+ kth qubit for all k ∈ [n].

Proof. Note that the Bell state is proportional to the vectorized
identity matrix, i.e. |ω2n⟩

√
2n = vec(I⊗n). The operator-

vector correspondence, see e.g. [56, Eq. (1.132)], then as-
serts UV † ⊗ In|ω2n⟩ = vec(UV †)/

√
2n. This ensures that

UV † = eiϕIn (as a matrix-valued equality) if and only if

UV †⊗ I|ω2n⟩ = 1√
2n

vec(UV †)
!
= eiϕ√

2n
vec(I⊗n) = eiϕ|ω2n⟩.

Eq. (4) takes the outer product of this vector-valued equation
to absorb the global phase (mixed state formalism).

Applying Lemma 1 to the quantum circuit synthesis for-
mula Eq. (3) gets rid of the complex phase and the forall
quantifier over all possible input states:

∃Ud, depth(Ud) ≤ dmax (UU †
d)⊗ IΩ(UU †

d)
† ⊗ I = Ω, (5)

where we have used Ω as a shorthand notation for |ω2n⟩⟨ω2n|.
However, for the erasure of an entire forall quantifier, we have
to go to the mixed state formalism and effectively double the
number of qubits involved from n to 2n, see Fig. 2.

B. Quantum Twist 2: Gottesman-Knill Theorem

On first sight, Eq. (5) looks much less daunting than Eq. (3)
or even its classical counterpart Eq. (1). This is due to the
fact that entanglement allows us to check for equivalence with
a single input state (Lemma 1) instead of a forall (∀) over
exponentially many possibilities.

To exploit this reformulation, there are two broad avenues
on how to proceed: (i) Use an actual quantum computer to

empirically check the single remaining equivalence in Eq. (5).
This avenue was taken, for instance, in quantum assisted
quantum compiling [58]. (ii) Use (strong) classical simulation
of quantum circuits to check whether the two 2n-qubit states in
Eq. (5) are really equivalent. Four broad simulation approaches
come to mind: array-based [59], stabilizer-based [19], tensor
networks [60] and decision diagrams [61], [62].

Here, we follow the second avenue and adopt stabilizer-
based simulation. The main reason for this is that Ω =
|ω2n⟩⟨ω2n|, the 2n-qubit state responsible for all these simplifi-
cations, is itself a stabilizer state with very desirable structure.

Fact 1. The 2n-qubit state Ω = |ω2n⟩⟨ω2n| is a stabilizer state
with generators ⟨(X I⊗(n−1))⊗2, (Z I⊗(n−1))⊗2⟩ where the
parenthesis () stand for cyclic permutation.

It is well-known that the 2-qubit Bell state is a stabilizer
state with generators ⟨XX,ZZ⟩ [10]. Fact 1 follows
from taking the n-fold tensor product of these generators
at appropriate qubit locations. For n=2, for example,
this means ⟨XIXI, ZIZI, IXIX, IZIZ⟩ or for n=3
⟨XIIXII, ZIIZII, IXIIXI, IZIIZI, IIXIIX, IIZIIZ⟩,
etc. Still, every kth qubit is entangled with the (n + k)th
qubit.

We can efficiently simulate stabilizer circuits (of which
Clifford circuits are a part) in polynomial time on a classical
computer according to the Gottesman-Knill theorem [63]. To
simulate the circuit’s action on the 2n-qubit stabilizer state
Ω, we perform a logical mapping of stabilizers depending on
the gates and again obtain a stabilizer state. We can conclude
whether the applied circuits performed the identity based on
the equality of the input and output generators.

Fact 2 (Gottesman-Knill). Suppose that both U and Ud are
n-qubit Clifford circuits. Then, it is possible to efficiently check

(UU †
d)⊗ IΩ(UU †

d)
† ⊗ I = Ω. (6)

This also follows from the conceptual idea of the entangled
input: If U and Ud have the same functionality, U†

d would
invert the stabilizer mapping done by U , which results in not
altering the input stabilizers at all. Note that input and output
generators must match exactly. As the bottom half of this 2n
circuit applies the identity, it will not alter the generators on
the last n qubits. Therefore we can also cut the generators we
need to check in half, eliminating the ⊗2 operation in Fact 1.

More precisely, it is possible to construct a Boolean function
ϕU,Ω(Ud) that evaluates to 1 if the input circuit Ud achieves
Eq. (6) and 0 otherwise. We will present such an explicit
construction in Sec. V below. All that matters at this point
is that we can represent any (at most) depth-dmax Clifford
unitary Ud with a bitstring y ∈ {0, 1}l that contains (at
most) l(n, dmax) = O

(
n2dmax

)
Boolean variables. And, what

is more, we can actually represent ϕU,Ω(y) as a CNF with
O
(
n4dmax

)
clauses of constant length. Putting all this to-

gether ensures that we can rewrite the Clifford circuit synthesis
problem as

∃y ∈ {0, 1}l(n,dmax) ϕU,Ω(y)
!
= 1. (7)

C. Main Result and Synopsis

The insights culminating in Eq. (7) are worth a prominent
display and a bit of additional context.

Theorem 1 (SAT reformulation of Clifford synthesis). Let
U be a n-qubit Clifford unitary (target) and fix a maximum
depth dmax ∈ N. Then, the decision problem “is it possible to
exactly reproduce U with (at most) dmax Clifford layers?” can
be rephrased as an instance of SAT with O(n2dmax) variables
and O(n4dmax) clauses of constant size each.

This insight has both conceptual and practical implications,
especially if one keeps in mind that dmax ≤ O(n) for
any Clifford circuit [43]. In turn, binary search allows for
exactly determining the minimum circuit depth for a given
Clifford unitary U by solving (at most) ⌈log2(n)⌉+O(1) SAT
reformulations for varying ansatz depths dmax. What is more,
satisfying assignments of the Boolean formula in Eq. (7) are
bit encodings of actual Clifford circuits that exactly reproduce
U and have depth at most dmax (synthesis).

On a conceptual level, this approach provides a poly-time
reduction of optimal Clifford synthesis to (logarithmically
many instances of) SAT. This highlights that this special case
is much easier than the general circuit synthesis problem (clas-
sical and quantum). In particular: optimal Clifford synthesis is
at most as hard as classical circuit equivalence checking.

On a practical level, Theorem 1 provides a rigorous and
context-specific motivation for employing state-of-the-art SAT
solvers to rigorously address the Clifford synthesis problem.
An actual step-by-step introduction to this encoding, as well
as benchmarks, are the content of the remainder of this article.

V. OPTIMAL CLIFFORD CIRCUIT SYNTHESIS WITH SAT

The efficient simulability of Clifford circuits is based on the
stabilizer tableau encoding of a stabilizer state, see, e.g., [10]
and references therein. This polynomial-sized representation
of a quantum state is the key to deriving a polynomially-sized
SAT encoding for the considered synthesis problem. Hence,
before going into details on the encoding itself, we will give
a brief recap on how to work with stabilizer tableaus.

A. Stabilizer Tableau Representation of Stabilizer States

An n-qubit stabilizer state can be represented by a
(2n+ 1)× n binary matrix called the stabilizer tableau. The
idea is that every stabilizer generator for a state can be written
using 2n+1 bits of information. In the standard notation [19]
for stabilizer tableaus, there are binary variables for Pauli X-
and Z-type stabilizers xi,j , zi,j with i, j ∈ {0, 1, ..n− 1} and
ri = 1 if the i-th stabilizer has a negative phase: x0,0 . . . x0,n−1 z0,0 . . . z0,n−1 r0

...
. . .

...
...

. . .
...

...
xn−1,0 . . . xn−1,n−1 zn−1,0 . . . zn−1,n−1 rn−1

For a Pauli-Y type stabilizer at position i, j both xi,j and zi,j
must be set to 1 at the corresponding position. The stabilizer
states in this format can be altered by the usual Clifford gates

and the following update rules, where ⊕ denotes a bitwise
XOR operation:

• Applying H on qubit j: swaps the jth X-type column with
the j-th Z-type column and r ⊕= xjzj . This follows
from the transformations HXH† = Z, HZH† = X and
HYH† = −Y , hence it switches xi,j ↔ zi,j ∀i and flips
the phase only in case of a Pauli-Y stabilizer;

• Applying S on qubit j: is a bitwise XOR of the j-th
X-type column to the j-th Z-type column zj ⊕= xj
again with r ⊕= xjzj ;

• Applying CNOT on control qubit c and target qubit t:
is a bitwise XOR of the c-th X-type column to the t-th
X-type column xt ⊕= xc and vice versa for Z-type
zc ⊕= zt as well as r ⊕= xczt(xt ⊕ zc ⊕ 1).

Further update rules for any other Clifford gate can be derived
from these basic rules.

More information about a stabilizer state can be encoded
into the tableau by including its destabilizers [19]. These are
Pauli-strings that, together with the stabilizers, generate the
entire Pauli group. They are treated identically to the stabilizer
generators for the purpose of updating the stabilizer tableau.

B. Tableau and Gate Variables

In the following, let Q be the set of qubits acted on by a
quantum circuit and dmax the maximal depth of the circuit.

While all Clifford unitaries can be obtained from just H ,
S, and CNOT gates, conveniently, the target gate-set used
for compilation may also include other gates like the Pauli
X , Y , and Z operations or two-qubit gates like the CZ gate.
To reflect this flexibility in the encoding, we define two sets
SQGs and TQGs , the set of single-qubit gates and two-qubit
gates, respectively, such that they can be used to implement
any Clifford circuit.

At every layer of the quantum circuit, a certain gate can
either be applied or not. This suggests introducing the variables

Svars = {gdq | g ∈ SQGs , q ∈ Q, 0 ≤ d < dmax}
Tvars = {gdq0, q1 | g ∈ TQGs , q0 ∈ Q, q1 ∈ Q \ {q0},

0 ≤ d < dmax}

representing the application of a gate to a specific qubit (or
pair of qubits) at depth d.

The possible stabilizer tableaus are encoded in a straight-
forward fashion according to their definition. The X-, Z- and
R-part of the tableau use the variables

Xvars = {xdq | q ∈ Q, 0 ≤ d < dmax},
Zvars = {zdq | q ∈ Q, 0 ≤ d < dmax},
Rvars = {rd | 0 ≤ d < dmax},

where every element of the sets Zvars, Xvars and Rvars is
a bitvector. These bitvectors encode how all stabilizers act on
the Z-, X-, R- part for a particular qubit.

Based on the construction in Lemma 1, this encoding
requires 2n qubits in order to guarantee that all circuits
synthesized from these variables have the same unitary. But

having these n additional qubits has the undesirable side-effect
that the synthesized circuit should act as the identity on the
lower n qubits of the circuit. This unnecessarily blows up the
search space as the identity can be implemented ambiguously.
One could enforce constraints on these qubits, but this would
unnecessarily increase the size of the encoding. We can avoid
this complication by considering only the upper n qubits
and switching from stabilizers of the entangled input state to
stabilizers and destabilizers of the |0⟩⊗n state as stated by the
following fact.

Fact 3. For a Clifford unitary U the stabilizers of (U ⊗
I⊗n)|ω2n⟩ on the first n qubits are identical to the stabilizers
and destabilizers of U |0⟩⊗n.

Together with Fact 1, Lemma 1 tells us that for a Clifford
circuit U the 2n stabilizers of U ⊗ In|ω2n⟩ uniquely fix the
unitary of the circuit. Given U , we can explicitly calculate
these stabilizers by propagating the generators for Ω through
U ⊗ I ignoring the lower n qubits. This boils down to only
analyzing the first half of every stabilizer generator of the 2n-
qubit state Ω. The result is a 2n(n+1) tableau for every given
U . The initial tableau has diagonal entries with value 1 and
coincides with the stabilizers of the |0⟩⊗n input state (Z-type)
combined with the respective destabilizers (X-type).

Hence, we can encode our problems using only |Q| = n
qubits, and each bitvector for the tableau variables has size 2n
since the information about the destabilizers has to be included
as well.

C. Transition Relation

With the variables defined, we can now encode how gates
act on the stabilizer tableaus as described in Sub. V-A.
Naturally, the transition between tableaus would then be a
constraint along the lines of

gdq ⇒ (UpdateZ (g, q, d)∧UpdateX (g, q, d)∧UpdateR(g, q, d)),

where the update formulas on the right encode the action of
the gate on a qubit at a certain depth. For a Hadamard this
would mean

UpdateZ (H, q, d) = (zd+1
q ⇔ xdq)

UpdateX (H, q, d) = (xd+1
q ⇔ zdq)

UpdateR(H, q, d) = (rd+1 ⇔ (rd ⊕ xdq ∧ zdq))

While this encoding is correct, it is also wasteful in the
sense that it would lead to |SQGs | + |TQGs | number of
implications of this type for every qubit and depth.This number
can be decreased significantly by noting that many gates
act identically on the different parts of the stabilizer tableau
(quantum computation is local). The Pauli gates, for example,
act as identity on the Z- and X-part of the tableau, only
differing in how they change the R-part.

Since we know our gate-set, we can collect all possible
transformations of the individual parts of the tableau a priori.
Let Z–updates(q, d) be the set of all possible updates to the
Z-part of the stabilizer tableau on qubit q at depth d. The

elements of these sets are logical formulas over the tableau
variables. We can then define a mapping Z–impliedby(q, d) :
Z–updates(q, d) → P(Svars) that maps every update for-
mula to the set of single-qubit gate variables that act on the
stabilizer tableau with that update rule.

The single-qubit changes to the Z-part are then encoded by
introducing the following constraint for every qubit q, depth
0 ≤ d < dmax − 1 and Z–update ∈ Z–updates(q, d):∨

gd
q∈Z–impliedby(Z–update)

=⇒ (zd+1
q ⇔ Z–update).

Obviously, this can be done in a similar fashion for the X-
and R-parts of the tableau as well as for two-qubit gates.

While the constraints at this point encode all possible
stabilizer tableaus, there are some variable assignments that
lead to invalid circuits, e.g., when a qubit is acted on by
two gates at the same depth. We, therefore, need to introduce
another set of constraints for every depth d and qubit q to
ensure consistency of the obtained solution.

ExactlyOne

{gdq | g ∈ SQGs} ∪
{gdq, q1 | q1 ∈ Q, g ∈ TQGs} ∪
{gdq0, q | q0 ∈ Q, g ∈ TQGs}

D. Symmetry Breaking

Symmetry breaking [64] is a widespread technique from the
SAT-solving community. It introduces additional constraints
to an existing CNF formula to avoid searching in symmetric
parts of the search space. This can be done in an automated
fashion by analyzing the formula for automorphisms to obtain.
so-called “symmetry breakers”. Doing this automatically has
the downside that it is not clear which symmetries are found
and whether the deduced constraints actually make the SAT
instance any easier to solve or even harder. In the case of
the SAT formulation above, we can obtain symmetry breakers
manually by using knowledge specific to Clifford synthesis.

We can impose additional constraints on the SAT solver by
eliminating valid solutions that could be expressed in a simpler
manner. For example, the Hadamard gate is self-inverse. We
can therefore add the constraint

Hd
q =⇒ ¬Hd+1

q

for q ∈ Q and 0 ≤ d < dmax − 1. This eliminates all
assignments to the gate variables that model a sequence of
two consecutive Hadamard gates.

Another symmetry addresses possible degrees of freedom
in the gate ordering and is best illustrated by means of the
following equivalent circuits:

|q0⟩
|q1⟩

H

X S

|q0⟩
|q1⟩ X

H

S .

The Hadamard on the first qubit can either be parallel to
the X gate or the S gate on the second qubit. We can
break this symmetry by imposing that the identity single-qubit
gate cannot be followed by a non-identity single-qubit gate.
Otherwise, the non-identity gate could be moved to the left

without changing the Clifford unitary. More formally, for
q ∈ Q, 0 ≤ d < dmax − 1 we impose

Idq =⇒
∧

g∈SQGs\{I}

¬gd+1
q ,

where I is the identity gate.
A similar constraint can be imposed on two-qubit gates. If

the identity is applied to a pair of qubits, no two-qubit gate
can come after the identities. Again, we add the constraint

(Idq0 ∧ I
d
q1) =⇒

∧
g∈TQGs

¬gd+1
q0, q1 .

for q0 ∈ Q, q1 ∈ Q \ {q0}, 0 ≤ d < dmax − 1.
There are many more symmetries that can be broken in the

encoding. In principle, any Clifford gate identity can be used
to derive a symmetry-breaking constraint. However, a trade-
off has to be made between the number of constraints and the
size of the solution space.

E. Optimizing Circuit Depth

The above encoding can be used to synthesize circuits
that have at most a depth of dmax but does not necessarily
synthesize depth-optimal circuits. This is only guaranteed if
dmax is exactly the optimal depth, which has to be determined
first.

One approach would be to start with an initial guess for
dmax and iteratively decrease it until the corresponding SAT
instance has a solution but the SAT instance for dmax − 1
does not. A (theoretically) efficient way to achieve just that is
binary search. The original circuit’s depth can be used as an
upper bound. If this is far away from the optimum, however, it
can lead to the generation of instances that are tough to solve.

Instead, the upper bound can be determined dynamically.
For a related problem (state preparation circuits), binary search
has been explored in Ref. [31] where it was also proposed to
geometrically increase the depth horizon in which a solution
is searched for. Unfortunately, after a few iterations, the SAT
calls will be quite costly and only promises to speedup the
entire optimization if the runtime to solve a SAT instance
grows sub-exponentially. In the case of exponential growth,
simply searching linearly or in an arithmetic progression is
faster.

Yet another way of gauging the initial depth is from
empirical knowledge. If it is known that, on average, the SAT
method produces solutions that are 20% shallower than the
output circuit by another optimization routine, we can simply
try to run it and start with the expected depth as an initial
guess. From this initial guess, linear or quadratic probing can
be employed to find the optimal solution.

VI. HEURISTIC APPROACH VIA CIRCUIT DECOMPOSITION

Above, we have seen how to reformulate Clifford synthesis
as a SAT problem. However, the search space for that problem
grows exponentially with the maximal circuit depth dmax and
the number of qubits n. Depending on the specific SAT solver

being used, this exact synthesis approach can quickly become
prohibitively expensive. One way to diminish these scaling
issues is to split a big Clifford circuit into a collection of
sub-circuits that can be synthesized in parallel. This splitting
can be done both horizontally (to reduce qubit number) as
well as vertically (to reduce circuit depth) and considerably
reduces the size of the SAT search space. The result is a
versatile heuristic (it cannot be guaranteed that the splitting
into sub-circuits is optimal) that can be applied to larger
Clifford circuits.

More precisely, let G be a target Clifford circuit on n
qubits with maximum depth dmax. Then, the associated SAT
encoding features bitstrings of length l = O

(
n2dmax

)
, which

corresponds to a search space of size 2l = 2O(n2dmax). We
can now vertically split up U = L1L2, where each Li has
depth d′ ≈ dmax/2, and apply our Clifford synthesis to each
Clifford block. The result is two parallel SAT instances with
bitstrings of length l′ ≈ l/2 each. In turn, the size of the
search space is only 2l

′ ≈
√
2l. This quadratic improvement

in search space size comes at the cost of a (potentially) non-
optimal decomposition into two blocks.

This general idea extends to more than two vertical blocks.
Let G = L1 · · ·Lm be a Clifford circuit with m layers, i.e.,
blocks of qubits Li = g1i · · · g

ki
i such that all gki

i act on
different qubits and can therefore be run in parallel. Given
a split size s, we can partition the circuit into m

s sub-circuits
Gi = Li·s · · ·L(i+1)·s for 0 ≤ i < m (here it is assumed that
m is divisible by s but extending the argument is straight-
forward). We then simply need to compute the target stabilizer
tableau for each of these sub-circuits. For Gi, this can be done
by simulating the circuit up to Li·s. We can then use the SAT
reformulation proposed in Sec. V for each of the sub-circuits.
The split size s can also provide a good initial guess as to
the maximal depth needed for the encoding of each individual
circuit.

Since no data needs to be shared between the individual
instances, all the SAT instances can be run in parallel to obtain
the optimized sub-circuits G′

i which are then concatenated for
the final result, i.e., G′ = G′

1 · · ·G′
m
s

. Note that such a splitting
approach is guaranteed to produce a correct Clifford gate de-
composition. This follows from applying Theorem 1 to each of
the subblocks involved. However, it may not achieve optimal
circuit depth. After all, this divide-and-conquer heuristic treats
different blocks of the target circuit completely independently
and scales with circuit depth and qubit number of the initial
circuit. Scaling issues can be countered by decreasing the split
size, but the point of diminishing returns is eventually reached
where the size of the split has a strong negative impact on the
target metric.

Since any sub-circuit can be optimized using the SAT
method without changing the circuit’s functionality, we can
take the divide-and-conquer approach even further. Given a
maximal number of qubits nmax , a circuit can be decomposed
into sub-circuits G = G1 · · ·Gm such that the number of
qubits in each circuit is bounded by nmax and there are
no two-qubit gates between any two sub-circuits for parallel

Table I
EXPERIMENTAL RESULTS FOR RANDOM CLIFFORD CIRCUITS.

Optimal Heuristic Vertical Heuristic Horizontal Bravyi et al.

n d |G| t [s] d |G| t [s] d |G| t [s] d |G| t [s]

3 5.70 11.40 0.33 8.30 18.90 0.69 - - - 11.70 16.10 0.18
4 6.60 16.70 4.10 13.30 23.70 2.03 - - - 16.00 23.50 0.16
5 7.60 25.00 381.95 18.90 38.60 7.72 7.80 25.50 603.08 22.90 37.30 0.18
6 - - - 24.60 55.40 27.27 17.00 51.10 180.77 29.40 55.10 0.20
7 - - - 31.40 69.40 43.51 25.10 75.80 97.16 37.00 70.20 0.17
8 - - - 37.40 88.50 153.96 32.00 97.20 186.42 42.10 86.30 0.20
9 - - - 41.20 102.40 313.82 39.70 121.30 219.32 53.50 108.80 0.28

10 - - - 50.80 131.30 547.93 53.00 155.20 106.66 59.90 128.70 0.28
11 - - - 58.80 152.90 838.91 60.70 180.90 133.97 72.20 157.30 0.25
12 - - - 66.70 174.50 1464.46 75.80 217.40 117.73 78.90 170.10 0.26
13 - - - 75.50 206.50 2423.24 86.10 250.00 283.31 91.40 207.10 0.34
14 - - - 83.00 237.10 4412.97 99.80 305.70 111.89 100.30 235.20 0.33

n: Number of qubits d: Average depth |G|: Average gate count t: average runtime

optimization.
These two splitting techniques can be combined to make

the approach as scalable as possible. Given a depth threshold
dthr , a split size s < dtrh , and a maximal number of qubits
nmax , the circuit can be split into sub-circuits of at most nmax

qubits. If any of these sub-circuits is deeper than dthr , the
circuits can be further split horizontally into blocks of depth
s. These circuit blocks can then be optimized independently
from each other (in parallel).

VII. EVALUATIONS

The methods proposed in Sec. V and Sec. VI have been
implemented in C++ using the publicly available SMT solver
Z3 [65]. The implementation is integrated into the quan-
tum circuit compilation tool QMAP [17], which is part
of the Munich Quantum Toolkit (MQT) and available at
https://github.com/cda-tum/qmap.

To see how well the proposed methods perform in practice,
we considered two types of benchmarks:
(i) Random Clifford circuits (inspired by randomized bench-

marking [66]–[68]): The circuits were obtained by sam-
pling a random stabilizer tableau (including information
about the destabilizers). Since our SAT encoding is based
on the stabilizer tableau, this is already a valid input
format for our method and no explicit circuit has to
be generated. For every qubit number n, 10 random
stabilizer tableaus have been generated and the results
have been averaged over all these runs. The proposed
methods are compared to the state of the art greedy
Clifford synthesizer by Bravyi et al. [69] The timeout
was set to 3 h.

(ii) Clifford+T implementations of Grover search (inspired
by fault-tolerant quantum computation [3], [8], [70]):
we generated circuits for the Grover search algorithm
using random Boolean functions as oracles. For each
qubit number n, 10 circuits were generated in this fash-
ion. Since these circuits contain T -gates, the circuit is
partitioned into Clifford blocks and T blocks, and each
(non-trivial) Clifford block is optimized separately.

All evaluations have been performed on a 3.6 GHz Intel
Xeon W-1370P machine running Ubuntu 20.04 with 128 GiB
of main memory and 16 hardware threads. For generating and
synthesizing circuits as well as for the greedy optimizer, the
quantum computing SDK Qiskit [12] (version 0.42.1) by IBM
has been used.

The results of our experiments for synthesizing random
Clifford circuits can be seen in Table I.

The data under column Optimal shows the results using the
proposed optimal SAT approach. Unfortunately, the increase
in variables and the scaling of the encoding in the number of
qubits can be seen rather drastically here. It is only possible to
synthesize random Clifford circuits up to 5 qubits within the
given time limit. Nonetheless, we can see that other methods,
especially the state of the art, synthesize n-qubit circuits that
are far from depth-optimal, increasing the depth on average
by 105.26% (n = 3), 142.42% (n = 4) and 201.32% (n = 5),
respectively.

The column Heuristic Vertical shows the results using the
proposed heuristic approach where the circuits were parti-
tioned vertically, i.e., the resulting sub-circuits all had the
same number of qubits as the original circuit. Compared to
the vertical splitting heuristic, the state of the art still produces
circuits that are 21.92% deeper on average.

Column Heuristic Horizontal shows the results using the
proposed heuristic approach where the circuits were parti-
tioned into sub-circuits of five qubits each. At this value, the
optimal approach still yields results in an acceptable amount
of time (thus, there are no entries for three and four qubits).
This decomposition leads to much better results for lower
qubit numbers but eventually produces worse results than
the vertical decomposition after nine qubits – partially as
an artifact of the decomposition scheme. The circuits cannot
always be split perfectly into five qubit sub-circuits, and
potentially parallel gates in the original circuit might not be
parallel anymore after the optimization. Another reason is that
it gets increasingly difficult to find deep sub-circuits of only
five qubits for random Clifford circuits since the interactions

https://github.com/cda-tum/qmap

between qubits are bound to entangle more than five qubits
rather quickly. A big upside of this synthesis method is its
runtime. Since the runtime for synthesizing five qubit circuits
is predictable, synthesizing all these sub-circuits can be done
within a predictable time as well.

All in all, the results in Table I suggest that the heuristic
approach could be improved with more sophisticated circuit
decomposition techniques. The current state of the art produces
circuits that are far from optimal, which leaves quite some
room for improvement.

The Grover search benchmark was chosen to analyze the
possible improvement of the depth of actual fault-tolerant
quantum circuits. Guided by the results of the random Clifford
benchmarks, we looked at Grover circuits for three to five
qubits. The proposed optimization scheme resulted in circuits
that were 13.38%, 21.71% and 16.72% shorter on average.
The Grover benchmarks are made publicly available under
https://github.com/cda-tum/qmap.

VIII. CONCLUSION AND OUTLOOK

Classical circuit synthesis, on the one hand, and Quantified
Boolean Formulas (QBF), on the other, are two seemingly very
different but related problems. This correspondence can be
made one-to-one and forms the basis of several state-of-the-art
approaches for optimal (logical) circuit synthesis: QBF solvers
are employed to determine the shortest circuit representation
of a desired logical functionality.

In this work, we have extended this general mindset to the
quantum realm, considering the task of decomposing n-qubit
Clifford circuits into as few elementary gates as possible. We
then showed that deciding if it is possible to represent a given
Clifford functionality with at most dmax Clifford layers can
be re-cast as a satisfiability (SAT) problem in O(n2dmax)
Boolean variables. The reduction uses maximally entangled
input stimuli, as well as the Gottesman-Knill theorem. It
highlights that Clifford synthesis contained in NP (the first
level of the polynomial hierarchy) is easier than general logical
circuit synthesis, which is complete for Σp

2 (the second level
of the polynomial hierarchy).

In the electronic design automation community, SAT solvers
have been applied to tackle classical synthesis problems with
great success. We showed that similar approaches apply to
quantum computing and that there is a large potential to
replicate the success of solving classical synthesis problems.
While the optimal synthesis approach scales poorly in the
number of qubits, it shows that there is a large gap between
the optimal solution and the state of the art. To our knowledge,
these are the first Clifford synthesis protocols that (i) are
provably correct and (ii) come with a certificate of optimal-
ity. Furthermore, all of the proposed methods are publicly
available within the Munich Quantum Toolkit (MQT) as part
of the open-source quantum circuit compilation tool QMAP
(https://github.com/cda-tum/qmap). QMAP already works na-
tively with IBM’s Qiskit, and even tighter integration with
quantum SDKs is left for future work.

These initial findings are encouraging and open the door
for several interesting follow-up projects, i.e., a refinement of
the proposed numerical solver. This will entail tweaks in the
stabilizer encoding to squeeze out more performance, but also
trying different SAT solvers and novel pre-processing tech-
niques to determine sharper initial bounds on the maximum
circuit depth. A configurable gate-set is also on our to-do
list. For now, we only use H,S, S†, CNOT , as well as Pauli
gates. In the future, this could be adapted to include additional
single-qubit gates (e.g., the full single-qubit Clifford group)
and two-qubit gates (e.g., SWAP , CZ, CY , . . .). Note that
more ‘elementary’ gates directly translate into a more complex
encoding and, therefore, a larger logical search space (more
variables). On the other hand, this increased expressiveness per
time step is bound to decrease the circuit depth and, therefore,
result in shorter SAT formulas overall (fewer logical clauses).
This trade-off might well be worthwhile.

The proposed encoding procedure is flexible enough to
facilitate architecture-aware synthesis of Clifford circuits.
Some quantum architectures only support certain interactions
between their qubits, typically defined by a coupling map. We
can respect this coupling map in the proposed SAT encoding
by only permitting Clifford gates that are also native to the
concrete architecture.

Virtually all these future research directions also extend
to improve the proposed heuristic solver for near-optimal
Clifford synthesis. We intend to explore different divide-and-
conquer strategies (decomposing into sub-circuits) and explore
(near-)optimal ways how to best synthesize each of these
circuit blocks.

Last but not least, researchers are now beginning to suggest
and explore the use of quantum computers to solve challenging
subroutines in quantum synthesis. Quantum-assisted quantum
compiling [58] falls into this category. For this work, the
deliberate restriction to Clifford circuits has allowed us to not
have to think along these lines (yet) – the Gottesman-Knill
theorem ensures that classical simulation remains tractable
throughout. But it is an interesting direction for future work to
fruitfully combine quantum-assisted quantum-compiling ideas
with conventional SAT-solving techniques. We leave such
synergies for future work.

ACKNOWLEDGMENTS

The authors thank Armin Biere, David Gross, and Martina
Seidl for inspiring discussions and valuable feedback.

T.P., R.W. and L.B. acknowledge funding from the European
Research Council (ERC) under the European Unions Horizon
2020 research and innovation program (grant agreement No.
101001318), as well as financial support from the Munich
Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern
Plus. All authors have been supported by the BMWK on
the basis of a decision by the German Bundestag through
the projects ProvideQ and QuaST, the Project QuantumReady
(FFG 896217) and the State of Upper Austria in the frame of
the COMET program (managed by the FFG).

https://github.com/cda-tum/qmap
https://github.com/cda-tum/qmap

REFERENCES

[1] John Preskill, “Quantum computing in the NISQ era and
beyond,” vol. 2, p. 79, 2018.

[2] Peter W. Shor, “Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum computer,”
SIAM J. Comput., 1997.

[3] Lov K. Grover, “A fast quantum mechanical algorithm for
database search,” Proc. of the ACM, pp. 212–219, 1996.

[4] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd, “Quan-
tum algorithm for linear systems of equations,” Physical
Review Letters, vol. 103, no. 15, 2009.

[5] Fernando G.S.L. Brandao and Krysta M. Svore, “Quantum
Speed-Ups for solving semidefinite programs,” in 2017 IEEE
58th Annual Symposium on Foundations of Computer Science
(FOCS), 2017, pp. 415–426. DOI: 10.1109/FOCS.2017.45.

[6] Joran van Apeldoorn et al., “Quantum SDP-Solvers: Better
upper and lower bounds,” vol. 4, p. 230, 2020. DOI: 10.22331/
q-2020-02-14-230.

[7] Fernando G. S. L. Brandão, Richard Kueng, and Daniel Stilck
França, “Faster quantum and classical SDP approximations
for quadratic binary optimization,” vol. 6, p. 625, 2022. DOI:
10.22331/q-2022-01-20-625.

[8] Alexei Kitaev, “Quantum computations: Algorithms and error
correction,” Russian Mathematical Surveys, vol. 52, no. 6,
pp. 1191–1249, 1997.

[9] Peter W. Shor, “Fault-tolerant quantum computation,” in Pro-
ceedings of 37th Conference on Foundations of Computer
Science, 1996, pp. 56–65. DOI: 10.1109/SFCS.1996.548464.

[10] Michael A. Nielsen and Isaac L. Chuang, Quantum Computa-
tion and Quantum Information. Cambridge University Press,
2010.

[11] Daniel Gottesman, “Stabilizer codes and quantum error cor-
rection.,” 1997.

[12] Abraham Asfaw et al. “Learn quantum computation using
Qiskit.” (2020).

[13] Vadym Kliuchnikov. “Synthesis of unitaries with Clifford+T
circuits.” arXiv: 1306.3200 [quant-ph]. (2013), preprint.

[14] Matthew Amy et al., “A meet-in-the-middle algorithm for fast
synthesis of depth-optimal quantum circuits,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 32, no. 6,
pp. 818–830, 2013. DOI: 10.1109/TCAD.2013.2244643.

[15] Olivia Di Matteo and Michele Mosca, “Parallelizing quantum
circuit synthesis,” Quantum Sci. Technol., vol. 1, no. 1,
p. 015 003, 2016. DOI: 10 . 1088 / 2058 - 9565 / 1 / 1 / 015003.
arXiv: 1606.07413 [quant-ph].

[16] Philipp Niemann, Robert Wille, and Rolf Drechsler, “Ad-
vanced exact synthesis of Clifford+T circuits,” Quantum Inf
Process, vol. 19, no. 9, p. 317, 2020. DOI: 10.1007/s11128-
020-02816-0.

[17] Robert Wille and Lukas Burgholzer, “MQT QMAP: Efficient
quantum circuit mapping,” in Int’l Symp. on Physical Design,
2023.

[18] A Robert Calderbank and Peter W Shor, “Good quantum
error-correcting codes exist,” Physical Review A, vol. 54,
no. 2, p. 1098, 1996.

[19] Scott Aaronson and Daniel Gottesman, “Improved simulation
of stabilizer circuits,” Phys. Rev. A, vol. 70, no. 5, p. 052 328,
2004. DOI: 10.1103/PhysRevA.70.052328.

[20] Sergey Bravyi and Alexei Kitaev, “Universal quantum compu-
tation with ideal Clifford gates and noisy ancillas,” Phys. Rev.
A, vol. 71, no. 2, p. 022 316, 2005. DOI: 10.1103/PhysRevA.
71.022316.

[21] Sahel Alouneh et al., “A comprehensive study and analysis
on SAT-solvers: Advances, usages and achievements,” Artif
Intell Rev, vol. 52, no. 4, pp. 2575–2601, 2019. DOI: 10 .
1007/s10462-018-9628-0.

[22] Lucas Berent, Lukas Burgholzer, and Robert Wille, “Towards
a SAT encoding for quantum circuits: A journey from classical
circuits to Clifford circuits and beyond,” in International Con-
ference on Theory and Applications of Satisfiability Testing,
2022. arXiv: 2203.00698.

[23] Sanjeev Arora and Boaz Barak, Computational Complexity:
A Modern Approach. Cambridge University Press, 2009. DOI:
10.1017/CBO9780511804090.

[24] Ankit Shukla et al., “A Survey on applications of quantified
boolean formulas,” in International Conference on Tools with
Artificial Intelligence, 2019, pp. 78–84. DOI: 10.1109/ICTAI.
2019.00020.

[25] Markus N. Rabe and Sanjit A. Seshia, “Incremental deter-
minization,” in Conference on Theory and Applications of
Satisfiability Testing, vol. 9710, 2016, pp. 375–392.

[26] Florian Lonsing and Uwe Egly, “DepQBF 6.0: A search-
based QBF solver beyond traditional QCDCL,” in Interna-
tional Conference on Automated Deduction, vol. 10395, 2017,
pp. 371–384.

[27] Markus N. Rabe and Leander Tentrup, “CAQE: A Certifying
QBF Solver,” in Int’l Conf. on Formal Methods in CAD, 2015,
pp. 136–143. DOI: 10.1109/FMCAD.2015.7542263.

[28] Armando Solar-Lezama et al., “Combinatorial sketching for
finite programs,” in Int’l Conf. On Architectural Support
for Programming Languages and Operating Systems, 2006,
pp. 404–415. DOI: 10.1145/1168857.1168907.

[29] Edmund Clarke et al., “Counterexample-guided abstraction
refinement,” in Computer Aided Verification, vol. 1855, 2000,
pp. 154–169.

[30] Susmit Jha and Sanjit A. Seshia, “A theory of formal synthesis
via inductive learning,” Acta Informatica, vol. 54, no. 7,
pp. 693–726, 2017. DOI: 10.1007/s00236-017-0294-5.

[31] Sarah Schneider, Lukas Burgholzer, and Robert Wille, “A
SAT encoding for optimal Clifford circuit synthesis,” in Asia
and South Pacific Design Automation Conf., 2023.

[32] David Gross et al., “Quantum state tomography via com-
pressed sensing,” Phys. Rev. Lett., vol. 105, no. 15, p. 150 401,
2010. DOI: 10.1103/PhysRevLett.105.150401.

[33] Martin Kliesch et al., “Guaranteed recovery of quantum
processes from few measurements,” vol. 3, p. 171, 2019. DOI:
10.22331/q-2019-08-12-171.

[34] Ingo Roth et al., “Recovering quantum gates from few average
gate fidelities,” Phys. Rev. Lett., vol. 121, no. 17, p. 170 502,
2018. DOI: 10.1103/PhysRevLett.121.170502.

[35] Lukas Burgholzer, Richard Kueng, and Robert Wille, “Ran-
dom stimuli generation for the verification of quantum cir-
cuits,” in Asia and South Pacific Design Automation Conf.,
2021.

[36] Madalin Gu et al., “Fast state tomography with optimal error
bounds,” J. Phys. A: Math. Theor., vol. 53, no. 20, p. 204 001,
2020. DOI: 10.1088/1751-8121/ab8111.

[37] Dominik Janzing, Pawel Wocjan, and Thomas Beth, ““Non-
identity check” is QMA-complete,” Int. J. Quantum Inform.,
vol. 03, no. 03, pp. 463–473, 2005.

[38] Christopher M. Dawson and Michael A. Nielsen, “The
Solovay-Kitaev algorithm,” Quantum Info. Comput., vol. 6,
no. 1, pp. 81–95, 2006.

[39] Tien Trung Pham, Rodney Van Meter, and Clare Horsman,
“Optimization of the Solovay-Kitaev algorithm,” Phys. Rev.
A, vol. 87, no. 5, p. 052 332, 2013. DOI: 10.1103/PhysRevA.
87.052332.

[40] Jeroen Dehaene and Bart De Moor, “Clifford group, stabilizer
states, and linear and quadratic operations over GF(2),” Phys.
Rev. A, vol. 68, no. 4, p. 042 318, 2003. DOI: 10 . 1103 /
PhysRevA.68.042318.

https://doi.org/10.1109/FOCS.2017.45
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.22331/q-2022-01-20-625
https://doi.org/10.1109/SFCS.1996.548464
https://arxiv.org/abs/1306.3200
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1088/2058-9565/1/1/015003
https://arxiv.org/abs/1606.07413
https://doi.org/10.1007/s11128-020-02816-0
https://doi.org/10.1007/s11128-020-02816-0
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1007/s10462-018-9628-0
https://doi.org/10.1007/s10462-018-9628-0
https://arxiv.org/abs/2203.00698
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.22331/q-2019-08-12-171
https://doi.org/10.1103/PhysRevLett.121.170502
https://doi.org/10.1088/1751-8121/ab8111
https://doi.org/10.1103/PhysRevA.87.052332
https://doi.org/10.1103/PhysRevA.87.052332
https://doi.org/10.1103/PhysRevA.68.042318
https://doi.org/10.1103/PhysRevA.68.042318

[41] David Gross, “Hudsons theorem for finite-dimensional quan-
tum systems,” J. Math. Phys., vol. 47, no. 12, p. 122 107,
2006. DOI: 10.1063/1.2393152.

[42] Huangjun Zhu et al. “The Clifford group fails gracefully to
be a unitary 4-design.” arXiv: 1609 . 08172 [quant-ph].
(2016), preprint.

[43] D. Maslov, “Linear Depth Stabilizer and Quantum Fourier
Transformation Circuits with no Auxiliary Qubits in Finite
Neighbor Quantum Architectures,” Phys. Rev. A, vol. 76,
no. 5, p. 052 310, 2007. DOI: 10.1103/PhysRevA.76.052310.
arXiv: quant-ph/0703211.

[44] Sergey Bravyi, Joseph A. Latone, and Dmitri Maslov. “6-
qubit optimal Clifford circuits.” arXiv: 2012.06074. (2020),
preprint.

[45] Narayanan Rengaswamy et al., “Logical Clifford synthesis for
stabilizer codes,” IEEE Transactions on Quantum Engineer-
ing, vol. 1, pp. 1–17, 2020. DOI: 10.1109/TQE.2020.3023419.

[46] Sergey Bravyi, Dmitri Maslov, and Yunseong Nam,
“Constant-cost implementations of Clifford operations and
multiply-controlled gates using global interactions,” Phys. Rev.
Lett., vol. 129, no. 23, p. 230 501, 2022. DOI: 10 . 1103 /
PhysRevLett.129.230501.

[47] Roderick Bloem et al. “SAT-Based Methods for Circuit Syn-
thesis.” arXiv: 1408.2333 [cs]. (2014), preprint.

[48] Roderick Bloem, Robert Könighofer, and Martina Seidl,
“SAT-Based synthesis methods for safety specs,” in Verifi-
cation, Model Checking, and Abstract Interpretation, 2014,
pp. 1–20.

[49] Rüdiger Ehlers, Robert Künighofer, and Georg Hofferek,
“Symbolically synthesizing small circuits,” in Int’l Conf. on
Formal Methods in CAD, 2012, pp. 91–100.

[50] Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider,
“Circuit minimization with QBF-Based exact synthesis,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 4, pp. 4087–4094, 2023. DOI: 10 . 1609 / aaai .
v37i4.25524.

[51] Robert Wille et al., “Quantified synthesis of reversible logic,”
in Design, Automation and Test in Europe, 2008, pp. 1015–
1020. DOI: 10.1109/DATE.2008.4484814.

[52] Heinz Riener et al., “On-the-fly and DAG-aware: Rewriting
boolean networks with exact synthesis,” in Design, Automa-
tion and Test in Europe, 2019, pp. 1649–1654. DOI: 10.23919/
DATE.2019.8715185.

[53] Man-Duen Choi, “Completely positive linear maps on com-
plex matrices,” Linear Algebra and its Applications, vol. 10,
no. 3, pp. 285–290, 1975. DOI: 10.1016/0024-3795(75)90075-
0.

[54] Andrzej Jamiokowski, “Linear transformations which preserve
trace and positive semidefiniteness of operators,” Reports on
Mathematical Physics, vol. 3, no. 4, pp. 275–278, 1972. DOI:
10.1016/0034-4877(72)90011-0.

[55] Joseph B. Altepeter et al., “Ancilla-assisted quantum process
tomography,” Phys. Rev. Lett., vol. 90, no. 19, p. 193 601,
2003. DOI: 10.1103/PhysRevLett.90.193601.

[56] John Watrous, The Theory of Quantum Information. Cam-
bridge University Press, 2018, 590 pp.

[57] Richard Kueng. “ACM 270: Quantum and classical informa-
tion processing with tensors.” (2019).

[58] Sumeet Khatri et al., “Quantum-assisted quantum compiling,”
vol. 3, p. 140, 2019.

[59] Hans De Raedt et al., “Massively parallel quantum computer
simulator, eleven years later,” Computer Physics Communica-
tions, vol. 237, pp. 47–61, 2019. DOI: 10.1016/j.cpc.2018.11.
005.

[60] Jacob C. Bridgeman and Christopher T. Chubb, “Hand-waving
and interpretive dance: An introductory course on tensor
networks,” J. Phys. A: Math. Theor., 2017.

[61] Stefan Hillmich, Igor L. Markov, and Robert Wille, “Just like
the real thing: Fast weak simulation of quantum computation,”
in Design Automation Conf., 2020.

[62] Philipp Niemann et al., “QMDDs: Efficient quantum function
representation and manipulation,” IEEE Trans. on CAD of
Integrated Circuits and Systems, 2016.

[63] Daniel Gottesman. “The Heisenberg representation of quan-
tum computers.” arXiv: quant-ph/9807006. (1998), preprint.

[64] Armin Biere et al., Handbook of Satisfiability. IOS Press,
2009.

[65] Leonardo de Moura and Nikolaj Bjørner, “Z3: An efficient
SMT solver,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2008, pp. 337–340.

[66] Emanuel Knill et al., “Randomized benchmarking of quantum
gates,” Phys. Rev. A, vol. 77, no. 1, p. 012 307, 2008. DOI:
10.1103/PhysRevA.77.012307.

[67] Easwar Magesan et al., “Efficient measurement of quantum
gate error by interleaved randomized benchmarking,” Phys.
Rev. Lett., vol. 109, no. 8, p. 080 505, 2012. DOI: 10.1103/
PhysRevLett.109.080505.

[68] Richard Kueng et al., “Comparing experiments to the fault-
tolerance threshold,” Phys. Rev. Lett., vol. 117, no. 17,
p. 170 502, 2016.

[69] Sergey Bravyi et al., “Clifford circuit optimization with tem-
plates and symbolic Pauli gates,” vol. 5, p. 580, 2021. DOI:
10.22331/q-2021-11-16-580. arXiv: 2105.02291.

[70] Daniel Gottesman, “Theory of fault-tolerant quantum compu-
tation,” Phys. Rev. A, vol. 57, no. 1, pp. 127–137, 1998. DOI:
10.1103/PhysRevA.57.127.

https://doi.org/10.1063/1.2393152
https://arxiv.org/abs/1609.08172
https://doi.org/10.1103/PhysRevA.76.052310
https://arxiv.org/abs/quant-ph/0703211
https://arxiv.org/abs/2012.06074
https://doi.org/10.1109/TQE.2020.3023419
https://doi.org/10.1103/PhysRevLett.129.230501
https://doi.org/10.1103/PhysRevLett.129.230501
https://arxiv.org/abs/1408.2333
https://doi.org/10.1609/aaai.v37i4.25524
https://doi.org/10.1609/aaai.v37i4.25524
https://doi.org/10.1109/DATE.2008.4484814
https://doi.org/10.23919/DATE.2019.8715185
https://doi.org/10.23919/DATE.2019.8715185
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1103/PhysRevLett.90.193601
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2018.11.005
https://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.22331/q-2021-11-16-580
https://arxiv.org/abs/2105.02291
https://doi.org/10.1103/PhysRevA.57.127

	Introduction
	Background and Motivation
	Fault Tolerant Quantum Computing
	From Classical to Quantum Synthesis
	Classical Equivalence Checking and SAT
	Classical Optimal Synthesis and QBF
	Going Quantum: Circuit Equivalence and Synthesis

	Related Work
	Main Result and Theoretical Underpinning
	Quantum Twist 1: Maximally Entangled Input States
	Quantum Twist 2: Gottesman-Knill Theorem
	Main Result and Synopsis

	Optimal Clifford Circuit Synthesis with SAT
	Stabilizer Tableau Representation of Stabilizer States
	Tableau and Gate Variables
	Transition Relation
	Symmetry Breaking
	Optimizing Circuit Depth

	Heuristic Approach via Circuit Decomposition
	Evaluations
	Conclusion and Outlook

