
Mixed-Dimensional Quantum Circuit Simulation
with Decision Diagrams

Kevin Mato∗ Stefan Hillmich†‡ Robert Wille∗†
∗Chair for Design Automation, Technical University of Munich, Munich, Germany

†Software Competence Center Hagenberg (SCCH) GmbH, Hagenberg, Austria
‡Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria

kevin.mato@tum.de, stefan.hillmich@scch.at, robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum/

Abstract—Quantum computers promise to solve several cat-
egories of problems faster than classical computers ever could.
Current research mostly focuses on qubits, i.e., systems where
the unit of information can assume only two levels. However,
the underlying physics of most (if not all) of the technological
platforms supports more than two levels, commonly referred to
as qudits. Performing computations with qudits increases the
overall complexity while, at the same time, reducing the number
of operations and providing a lower error rate. Furthermore,
qudits with different number of levels can be mixed in one
system to ease the experimental control and keep representations
as compact as possible. Exploiting these capabilities requires
dedicated software support to tackle the increased complexity in
an automated and efficient fashion. In this paper, we present a
qudit simulator that handles mixed-dimensional systems based
on Decision Diagrams (DDs). More precisely, we discuss the type
of decision diagram introduced as underlying data structure as
well as the resulting implementation. Experimental evaluations
demonstrate that the proposed solution is capable of efficiently
simulating mixed-dimensional quantum circuits, with specific use
cases including more than 100 qudits in one circuit. The source
code of the simulator is available via github.com/cda-tdum/MiSiM
under the MIT license.

Index Terms—quantum computing, qudits, simulation

I. INTRODUCTION

Quantum computing utilizes a different computing paradigm
that promises to solve several categories of problems compared
to classical computers. Examples include Shor’s algorithm [1]
to factorize integers, Grover’s search [2] for unstructured data,
and evaluating possible materials as catalysts in quantum
chemistry [3]. Around the globe, many research groups in
academia and industry (such as Google, IBM, and Microsoft)
try realize this potential and push on what technology can
achieve today.

However, thus far, the considered applications where mostly
limited to systems composed of two-dimensional qubits. This
neglects a large potential available through systems of higher
dimensions, inherently possessed by almost any underlying
technology of physical realizations of quantum computers. The
usage of higher dimensions increases the overall complexity of
building circuits but it also enables compression of previously
costly non-local gates between qubits into local gates on a
single qudit—increasing the fidelity of the resulting state [4].

The abstract idea for higher-dimensional systems and cor-
responding theory has been around for quite some time [5].
Fundamentally, qudits enable denser storage of information and
provide a much larger set of possible operations compared to

qubits. Given these advantages, basic control has been demon-
strated in physical platforms such as trapped ions [4], [6], to
photonic systems [7]–[10], superconducting circuits [11], [12],
Rydberg atoms [13], nuclear spins [14], cold atoms [15], nuclear
magnetic resonance systems [16] and molecular spin [17].

Recent developments in quantum algorithms have shown that
multi-level logic is a more natural architecture for implement-
ing complex applications [18], [19]. Simulations of models
representing fermion-boson interactions on mixed-dimensional
quantum computers could enable real-time simulations of quan-
tum electrodynamics and other field theories with continuous
or larger symmetry groups [20]–[22]. Gate decompositions on
mixed-dimensional systems offer reduced complexity due to
the temporary expansion of the Hilbert space [23]. This leads
to smaller circuits and a higher chance of success due to less
noise accumulation. Optimizing the usage of qudits of different
dimensions further improves circuit compactness and error rate,
as seen in recent research.

However, given these recent breakthroughs from physicists,
there is the risk of an emerging design gap, where powerful
multi-dimensional quantum computers are available but we do
not have means to utilize their power. To avoid this situation,
dedicated methods and software support are required to keep
up in the design automation domain before the point is reached,
where manually designing systems, circuits, and controls is
not tractable anymore.

We contribute to that by presenting a classical simulator
for mixed-dimensional quantum circuits, i.e., circuits where
each qudit may have a different dimensionality. To this
end, we propose an extension to edge-weighted Decision
Diagrams [24]–[26] which serve as the main data-structure to
cope with the (exponential) complexity of simulation. In the
past, decision diagrams have been proven to be a suitable data
structure to compactly represent exponentially-sized data in
many cases [24], [25], [27]–[30]. The type of decision diagram
proposed in this work dynamically captures the dimensionality
of each qudit in the mixed-dimensional system to minimize the
required memory. Further, it elegantly visualizes the individual
dimensionalities of the qudits. The experimental evaluation
on a set of benchmarks confirms the efficacy of the simulator
(publicly available at github.com/cda-tum/MiSiM) as tool for
design automation in mixed-dimensional systems.

The remainder of this paper is structured as follows. Sec-
tion II provides the necessary background on quantum states
and operations for higher-dimensional systems, i.e., qudits.

mailto:kevin.mato@tum.de
mailto:stefan.hillmich@scch.at
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum/
https://github.com/cda-tum/MiSiM/
https://github.com/cda-tum/MiSiM

Section III motivates the problem of quantum circuit simulation
and details the contributions of this paper. Section IV gives an
overview of the state of the art in quantum circuit simulation.
Section V describes the proposed type of decision diagram
for mixed-dimensional system and Section VI details the
corresponding implementation. Section VII summarizes the
experimental evaluation. Finally, Section VIII concludes the
paper.

II. BACKGROUND

In this section, we briefly review the basics of quantum
information processing with a focus on mixed-dimensional
quantum logic and how these concepts scale to the abstraction
of quantum circuits.

A. Quantum Information Processing

In classical computing, bit (binary digits) are the primary
unit of information, which can only exist in either the 0
or 1 state. In quantum computing, qubits (quantum bits) are
the corresponding unit of information. The key difference
from classical computing is that qubits can exist in any linear
combination of |0⟩ and |1⟩ (using Dirac’s bra-ket notation [31]).
However, constructing qubits involves restricting the natural
multi-level structure of the underlying physical carriers of
quantum information.

Therefore, these systems natively support multi-level logic
with the fundamental unit of information termed a qudit
(quantum digit). A qudit is the quantum equivalent of a
d-ary digit with d ≥ 2, whose state can be described as
a vector in the d-dimensional Hilbert space Hd. The state
of a qudit can thus be written as a linear combination
|ψ⟩ = α0 · |0⟩+ α1 · |1⟩+ . . .+ αd−1 · |d− 1⟩, or simplified
as vector |ψ⟩ = [α0 α1 ... αd−1]

T, where αi ∈ C are the
amplitudes relative to the orthonormal basis of the Hilbert
space—given by the vectors |0⟩, |1⟩, |2⟩, ..., |d− 1⟩.

The squared magnitude of an amplitude |αi|2 defines the
probability with which the corresponding basis state i will be
observed when measuring the qudit. Since the probabilities have
to add up to 1, the amplitudes have to satisfy

∑d−1
i=0 |αi|2 = 1.

Two key properties that distinguish quantum computing
from classical computing are superposition and entanglement.
A qudit is said to be in a superposition of states in a given
basis when at least two amplitudes are non-zero relative to
this basis. Entanglement, on the other hand, describes a form
of superposition born from interactions in multi-qudit systems.
Entanglement is a powerful form of quantum correlation, where
the quantum information is encoded in the state of the whole
system and cannot be extracted from the individual qudits
anymore.

Example 1. Consider a system of one qudit with only three
energy levels (also referred to as qutrit). The quantum state
|ψ⟩ =

√
1/3 · |0⟩+

√
1/3 · |1⟩+

√
1/3 · |2⟩ is a valid state with

equal probability of measuring each basis. Equivalently, the
quantum state may be represented as vector

√
1/3 · [1 1 1]

T.
In a similar fashion, quantum systems of mixed dimensions

can be constructed. Extending the previous qutrit state by a
qubit enables representation of the following entangled state

|ψ′⟩ =
√

1/3 · |0⟩3|0⟩2 +
√

1/3 · |1⟩3|1⟩2 +
√

1/3 · |2⟩3|0⟩2—
equivalently represented by the vector

√
1/3 · [1 0 0 1 1 0]

T.

B. Quantum Operations
The state of a single d-level qudit system can be ma-

nipulated by operations which are represented in terms of
d× d-dimensional unitary matrices U , i.e., matrices that satisfy
U†U = UU† = I . This property makes quantum operations
logically reversible. Quantum operations can be divided in two
categories: local and non-local–entangling operations. Common
examples of local operations are the Pauli operations

X =

0 0 1
1 0 0
0 1 0

 Z =

1 0 0
0 ω 0
0 0 ω2

 , (1)

with ω = e2πi/d and d being the dimension of the single qudit.
The local operations shown in Eq. (1) are the generalization of
the qubit operations to a multi-level systems, in this particular
case a qutrit.

Qudit systems can be entangled and, for this reason, they
support a set of non-local operations, although these last
operations cannot be simply derived by generalizing entangling
qubit operations. Realizing entangling operations in qubit
systems is comparatively simple and rather unclear in qudit
systems. More precisely, for qubit systems it is sufficient
to compile the CNOT gate to the native operations of the
quantum hardware, because all qubit entangling operations
can be implemented by the controlled-NOT (CNOT) gate and
appropriate local operations on the subsystems [31]. In contrast,
for qudit systems this does not hold anymore and entanglement
can be generated in many in-equivalent ways. Consequently,
while any single entangling gate is sufficient for universal
quantum computation [32], not all entangling gates are equally
useful for any given application.

Example 2. Consider, the controlled-exchange gate CEX [4]
applied on two qudits and defined by

CEXc,t1,t2 :

{
Swap(t1, t2) if control is c
Identity otherwise

. (2)

This qudit-embedded version of the CNOT gate generates qubit-
level entanglement in a high-dimensional Hilbert space. How-
ever, there are gates that directly generate qudit entanglement,
such as the controlled-SUM gate defined by

CSUM : |c, j⟩ 7→ |i, i⊕ j⟩, (3)

where ⊕ denotes addition modulo the dimension d.

These are just two examples of a more general theme in
qudit systems, where entangling gates differ in their entangling
power. The reasons why non-local qudit gates produce more
entanglement than qubit ones are presented in depth in
Ref. [33].

C. Quantum Circuit
After discussing how operations are represented for qudits

and mixed-dimensional systems, it is relevant to discuss how to
apply a quantum operation, called gates in the quantum circuit

Figure 1: A mixed-dimensional circuit with three qudits

representation, and how algorithms for quantum systems can
be represented as well. The matrices representing quantum
operations describe the evolution of a quantum system. For
this reason, the application of a U operator can be determined
by multiplying the corresponding input state from the left with
the matrix U , and the output state is the final state of the
evolution imposed by U .

Example 3. Consider a three-level qudit (i.e., a qutrit) initially
in the state |0⟩. Applying the Hadamard operation H3 to it
yields the output state shown before in Example 1, i.e.,

H3 · |0⟩ =
1√
3

1 1 1

1 e
2π
3 e

−2π
3

1 e
−2π
3 e

2π
3

 ·
10
0

 =
1√
3

11
1

 .
Given multiple qudits of different dimensions and several

operations applied to them according to an algorithm, we can
illustrate the sequence as a quantum circuit. For a quantum
circuit consisting of multiple mixed-dimensional qudits, the
unitary matrix will be of dimension

∏
i di ×

∏
i di with di

denoting the dimension of each qudit. The application of the
operation will require an input state of the size of

∏
i di entries.

Later on, adjustments to the matrices to match the size of the
system are going to be discussed in more depth.

Example 4. The quantum circuit in Figure 1 shows three lines,
in order: a qubit, a qutrit (3 levels), and a ququart (4 levels),
as well as three different types of operations, a local operation,
two controlled operations, and measurements. The controlled
operations on qudits apply a unitary to a target line only if the
control qudit is in a |i⟩ between 0 and d−1, with d dimensions
of the control qudit. The control state is marked inside the
circle on the control line. The first operation is a Hadamard
applied to the qutrit. Afterwards a controlled-on-1 Pauli X
(normally addressed as CNOT) is applied to the ququart and
lastly to the qubit. Finally, the three units of information are
measured in order to derive the outcomes of the circuit. The
state of the system after the application of each operation can
be viewed as intermediate, as the output state of one is the
input state of another.

III. MOTIVATION

In this work, we investigate how to efficiently simulate quan-
tum circuits where the qudits can have different dimensions,
referred to as mixed-dimensional systems. To this end, the
previous section provided the basis for understanding quantum
information, with a particular focus on multi-level quantum
logic, i.e., systems with both qubits and qudits. In this section,
we review the design automation task of quantum simulation

that is going to enable the utilization of mixed-dimensional
systems. Following that, we discuss the challenges of simulating
quantum computations and the benefits of simulating quantum
circuits of mixed dimensionality.

A. Simulation
Simulation of quantum circuits is an important task in the

domain of design automation. In essence, the simulation of a
quantum circuit is conducted by successively applying opera-
tions in sequence to an initial quantum state, i.e., multiplying
matrices and vectors. While quantum circuit simulation is
simple, the exponential memory requirements in the number
of qubits make it hard in practice. With qudits of higher
dimensions, this memory requirement becomes even higher.

More precisely, given a system with N qudits of possibly
mixed dimensions, a vector describing this system will have
length D =

∏N−1
i=0 di, with di denoting the dimension of each

qudit. Correspondingly, the matrices representing the operations
on this system will have dimension D ×D. In fact, even for
operations that affect only a subset of qudits, they have to be
“padded” with the appropriate identity operations to ensure the
correct (large) size (using the Kronecker product [31]).

Example 5. Consider the Hadamard gate on a qutrit as
shown in Figure 1, also denoted H3, affecting the second
of the three qudits. Applying this operation leaves the first and
third qudit untouched, i.e., it applies the identity operation
of appropriate dimension. This is achieved by combining the
Hadamard operation and identity operations via the Kronecker
product as in the following illustration:

I2 ⊗H3 ⊗ I4 =

:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::

:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: :: :: :: :: ::

Here, each dot represents an element of the combined operation.
The result is a matrix with 24× 24 entries.

Example 5 should convey an intuition about the rapid
increase in size for state vector and operation matrices with
respect to the number of qudits and their respective dimension-
ality. Consequently, the simulation of quantum computations
requires an asymptotically exponential amount of memory with
respect to the number of qudits. Single measurements of a
quantum state suffer from the same complexity, but repeated
measurements can be done in amortized linear time [34].

The memory complexity can be lowered quite significantly
for many cases, especially for common single-qudit operations.
In essence, the operation can be applied to the state vector
directly, e.g., by swapping rows for the exchange-operation.
Further, quantum states with many zero entries may be
represented by sparse vectors [35]. However, the efficacy of
this approach diminishes with operations affecting an increased
number of qudits and quantum states that are not sparse.

Example 6. Consider the GHZ state of two qutrits, i.e., qudits
of dimension three, as an example of an entangled state,
given as |ψ⟩ = 1√

3
(|00⟩ + |11⟩ + |22⟩). The corresponding

state vector is ψ = 1√
3
[1 0 0 0 1 0 0 0 1]. Here, only three out

of nine entries are non-zero.

B. The Case for Quantum Circuit Simulation
As highlighted in the previous section, the simulation of

quantum circuits is conceptually simple but not easy in its
execution. This where design automation comes into play to
enable realizing the impact of high-mixed-dimensional systems.
There is a great need for new automated methods, software
frameworks, and theory, where only preliminary results have
been achieved [36]–[40]. In this section, we make the case
for utilizing the domain knowledge of design automation to
overcome the exponential complexity in many cases. In fact,
the need for better solutions to quantum simulation lies not
only in the capability of understanding quantum computations
but in enabling the study of new applications and new features
created by using mixed-dimensional systems.

There are three immediate advantages in having an appro-
priate simulator for mixed-dimensional quantum systems.

1) Getting otherwise opaque information about the quantum
state.

2) Enabling design exploration.
3) Aiding in verification.
4) Identifying potential for compression.
The inner processes of a quantum computer are funda-

mentally opaque. Trying to “look at” a quantum state will
inadvertently make it decay into a basis state – immediately
destroying any superposition or entanglement. However, we
can accurately calculate the exact information of a quantum
state by classical means. Of course, this is only possible for
smaller systems due to the exponential overhead in the number
of qudits. Nevertheless, classical simulation is an important tool
for algorithm development and debugging. This becomes even
more important when targeting higher- and mixed-dimensional
systems. Their increased complexity also effects the developers
of these system, making automated software support a necessity
to reduce errors and speed up the design.

The second motivation is that simulation can take on the
role of a tool for design exploration. In fact, in qudit systems,
it is overall possible to explore new trade-offs between using
higher-levels in the single qudit and using ancilla lines. The
first one is similar to the effect of using ancilla qubits, but
with a simpler circuit complexity and hardware design [23].
On mixed-dimensional systems this can be achieved with
a temporal expansion of the Hilbert space. This leads to
smaller circuits that have a higher chance of succeeding due
to the smaller noise accumulated. However, just increasing the
dimension of all qudits in a quantum circuit still leaves room
for improvement [41], [42]. A simulator enables the study
of different circuits, composed of more or less ancilla lines,
depending on the limitations and potential of the implementing
platform. This can lead to a more accurate study of suitable
circuits for dedicated platforms and applications.

Classical simulation of quantum circuits also aids in verifi-
cation schemes. On the one hand, it helps circuit equivalence

Figure 2: Verification of a quantum circuit given the original
algorithm, or the unitary representing the evolution.

checking by simulating two circuits with identical initial
states and comparing the output. This is an easier task
than constructing the matrices and comparing these. Such
schemes that incorporate quantum circuit simulation have been
proposed [43], [44]

Finally, it is possible to see through simulations that the
computation may happen only on specific levels of a qudit. This
could allow the compression of a single qudit’s computational
space from a higher dimension to a lower dimension restricted
to only the useful levels [45]. By this, the representations
become more compact, reflecting into a competitive error rate
and experimental control, typical of the state of art of qu-
dit systems [4]. The simulation of mixed-dimensional systems
opens new possibilities in the field of circuit compression. Two
examples illustrate the ideas.

Example 7. The use of a simulator could be of use for
verifying that a compiled quantum circuit, a new decomposition,
or a particular encoding preserves the intended original
functionality defined in the algorithm. In Figure 2, this is
illustrated using a simple use case, where a unitary has been
compiled to a mixed-dimensional system and the simulation
can tell us if, given an initial input state, the final states of
the two are identical. If true, the circuit performs correctly the
intended algorithm.

Example 8. Consider the following operation U :

U =

1 0 0 0 0

0 e
2π
3 e

−2π
3 0 0

0 e
−2π
3 e

2π
3 0 0

0 0 0 1 0
0 0 0 0 1

 . (4)

It is possible to note that the local operation is operating only
on two levels of the original five-level system (i.e., of a ququint).
Taken into account that many operations are applied to only
a subset of the available levels, we can consider the original
system to be of only two dimensions, and consequently remap
the logic levels to |0⟩ and |1⟩. This results in a more compact
operation of dimension 2× 2, namely

U ′ =

[
e

2π
3 e

−2π
3

e
−2π
3 e

2π
3

]
. (5)

C. Contribution
Motivated from the above, we present a mixed-dimensional

quantum circuit simulator, based on decision diagrams, with a
publicly available implementation. The aim is to investigate a
new method for an efficient simulation of circuits with qudits
of arbitrary and mixed dimensionality.

The proposed approach is motivated by the success of the
decomposition schemes used in [24], [26], that fall under the
family of Decision Diagrams (DDs; [24], [25], [27]–[30]) used
in various fields of design automation, especially in simulation,
verification, and synthesis. Further, the structure of directed
acyclic graphs, which resemble tree, can elegantly illustrate
the dimensionalities, interactions, and entanglement in mixed-
dimensional systems.

This will unlock the potential benefits of this generalized type
of quantum circuit by exploiting more compact representations
for quantum states and operations on mixed-dimensional
systems. In the following sections, we provide a review of the
current state of art in quantum circuit simulation, introduce
decision diagrams and their benefits, and describe in detail our
proposed representations and required manipulation algorithms.

IV. STATE OF THE ART

There has been an ongoing and significant interest from
researchers and engineers in developing solutions for sim-
ulating quantum computations. There are several available
solutions that individually make use of different data structures,
e.g., arrays [46]–[49], decision diagrams [26], [29], tensor
networks [50], [51], and matrix-product states [51]. However,
the vast majority of these simulators have been developed so
far with the focus on qubit systems and their related circuits,
while qudit systems have not been provided with the same
software support. Qubit simulators can be divided in two main
categories.

The first category of simulators is referred to as array-based.
These simulators have limitations due to their reliance on the
straightforward representation of quantum states and operations.
Typically, simple 1-dimensional and 2-dimensional arrays are
used. To simulate larger quantum systems, they require massive
hardware power, such as HPC infrastructures composed of
thousands of nodes, and petabytes of distributed memory. The
utilization of accelerators and dedicated hardware can improve
the run-time of the matrix-vector multiplications.

The second category of simulators relies on specialized
data structures. For example, solutions based on decision
diagrams [26], [29], have been proposed to exploit redundancies
to gain a more compact representation of state vectors and
matrices. Simulators based on tensor networks, such as those
found in popular software packages [52], [53], share a similar
goal of simulating quantum systems. However, they achieve
this goal by compressing the information using a network of
tensors that are contracted together in a specific way. One
example of such a simulation method is the Matrix Product
States (MPS), which efficiently calculates physical properties
of one-dimensional quantum systems [51]. There are also
examples of simulators using a combination of matrix-vector
multiplication and tensor networks as qsim [50], which supports
a variety of circuit models.

However, the available implementations offer preliminary
support of higher-dimensional systems at best, if at all. There
are early examples of trials to qudit simulations of quantum
circuits of homogeneous dimensions, that peaked with a
proof-of-concept prototype of QMDDs [24]. More recent
attempts come from the established framework for quantum
circuits manipulation and simulation, Google’s Cirq [50]. It
provides the core functionalities for the simulation of quantum
circuits but requires the scientists to explicitly integrate the
software with the desired gate set and special circuit construc-
tions. Hence, unfortunately, Cirq supports mixed-dimensional
quantum circuit simulation only in principle. The recently
published qudit simulator QuDiet [54] provides a qubit-qudit
quantum simulator package with quantum circuit templates of
well-known qubit quantum algorithms for fast prototyping and
simulation. QuDiet shares several similarities with Cirq and
qsim [50] in terms of software structure and philosophy. So
far, the existing simulators are focused on providing interfaces
for the development of specific use cases rather than being
ready-to-use qudit simulators. This lack of availability of the
current software platforms and subsequent lack of automated
methods is a major obstacle in development for higher- and
mixed-dimensional systems.

V. DECISION DIAGRAMS

A key aspect of developing an efficient simulator is to con-
quer the correspondingly resulting exponential complexity for
as many cases as possible. In the past, decision diagrams have
been proven to enable efficient representation of exponentially-
sized data in many cases [24]–[30], [55], [56]. In essence, they
achieve their compactness by exploiting redundancy in data
they represent. This section introduces the decision diagrams
for representing quantum states and operations of mixed-
dimensional systems.

A Decision Diagram (DD) is a Directed Acyclic Graph
(DAG), composed of nodes and directed edges. The nodes are
organized in levels, which each level representing one qudit.
The edges represent the connection between the qudits and have
additional information annotated to them. This construction can
represent quantum states and quantum operations as detailed
in the following sections.

A. Quantum States

The general idea of using decision diagrams to represent
quantum states is based on repeated decompositions of the
corresponding vectors. To this end, consider an n-qudit
quantum state qn−1, qn−2, . . . , q0, where qn−1 is arbitrarily
designated the “most sigificant qudit”. This state is split into
equally-sized parts based on the dimensionality of qudit qn−1.
Each part is represented by a successor node which also encodes
the decision for the value of qn−1. The splitting procedure is
then repeated for each part until the individual complex entries
in the original vector are reached. During this process, the
complex amplitudes of each basis state are stored in the edge
weights and equal sub-vectors (up to a complex factor) are
represented by the same nodes. To guarantee canonicity, the
nodes are normalized such that the sum of squared magnitudes
of out-edges of a node add up to one. The resulting decision

Figure 3: A state vector of a qutrit-qubit entangled state and
the corresponding DD representation.

diagram has a root node qn−1, at least one node for each further
qi, and finally a single terminal node, which does not have any
successor. The decisions on the value of the qudits is recorded
so it can be reconstructed. Reconstructing the amplitude for
individual basis states is achieved by accordingly traversing
the decision diagram and multiplying all edge weights along
the path. An example illustrates the idea.

Example 9. Consider the quantum state 1√
3
(|00⟩−|11⟩+ |21⟩)

in a qutrit-qubit system. Figure 3 gives both, the representation
as vector and as decision diagram. The vector has 6 entries
due to the product of the local dimensionalities: 3 for the qutrit
and 2 for the qubit. The root node q1 has 3 outgoing edges,
one for each possible level in qutrit. The nodes in the second
level represent the qubit and have 2 edges each. The second
and the third edge of the root node point to the same qubit
node, due to the exploitation of redundancy. The q0 nodes point
to the terminal node.

Finally, in order to retrieve an amplitude of a basis state,
we start by multiplying the weights along the path composed
of the basis state we want to retrieve. In the of case |00⟩, we
compose 1/

√
3 · 1 · 1, corresponding to the weights of the root

node, the edge 0 of q1, and the edge 0 of q0. In case of the
bitstring |11⟩, we multiply 1/

√
3 · −1 · 1, corresponding to the

weights of the root node, the edge 1 of q1 and the edge 1 of q0.

B. Quantum Operations

The representation of quantum operations as decision di-
agram follows a similar scheme to that of quantum states.
Instead of splitting the vector, for quantum operations the
corresponding matrix is split into equal parts depending on the
dimenionality of the “most significant qudit”, e.g., 3× 3 = 9
parts in case of a qutrit. This scheme is again applied until
the individual complex numbers in the matrix are reached.
Equal sub-parts up to a complex constant are recognized and
stored by the same node in the decision diagram to achieve
compactness and canonicity. Again, an example illustrates the
idea.

Example 10. Figure 4 depicts the matrix U for a
controlled-on-1-NOT between a qutrit and a qubit, conse-
quently the matrix has dimension 6× 6. This operation, like
most controlled single-qudit operations, is sparse and has
high redundancy leading to a very compact decision diagram.
Further, the all-zero sub-matrices are immediately represented

Figure 4: A unitary matrix applying the a CEX, controlled on
the level |1⟩ of a qutrit applied to |0⟩ and |1⟩ of a qubit.

by zero stubs from the root node. Therefore, only three out of
the nine edges of the root node representing the qutrit point
to a non-zero successor. The first and last edge of the root
node, point to the same node that represents the pattern for
the identity matrix, while the other non-zero edge in between
point to a node that represents the qubit Pauli-X.

Similarly to the decision diagrams for quantum states, the
individual elements of the matrix are retrieved by following
a path and multiplying the complex edge weights on this
path. Considering the element for mapping |00⟩ to itself
(i.e., the element in the upper left corner), we multiply 1 · 1 · 1,
corresponding to the weights of the edge to the root node and
following the left-most edges from the following nodes.

C. Rationale for Choosing DDs

Decision diagrams have proven to be an efficient and compact
data structure for exponentially-sized information in many cases
in classical design automation and they have shown promising
result for design automation in the quantum domain thus far.
They exhibit multiple advantages, especially for quantum circuit
simulation, such as the following:

• Sub-matrices that contain all-zero elements are represented
with a zero-stub, i.e., a single edge of weight zero.

• Decision diagrams are canonical and, therefore, guarantee
exploiting redundancies in the data structure.

• During operations like multiplication and addition shared
nodes might be encountered more than once. This enables
caching of results and, therefore, an improved run time.

• The Kronecker product between two decision diagrams
requires only the reassignment of pointers from the
terminal node of the first DD to the root node of the
second (possibly followed by renormalization).

• Decision diagrams nicely model the locality of a single
qudit. The number of edges at each levels matches the
dimensionality of the qudit.

The aforementioned advantages of decision diagrams make
them promising candidates for quantum circuit simulation as
considered in this paper. There exist other data structures,
most notably tensor networks, that are commonly employed in
simulation. However, they serve a different purpose. For tensor
networks, the strength is calculating a single observable rather
than the full quantum state, where they decay to exponentially
sized vectors anyway [57].

VI. IMPLEMENTATION OF
MIXED-DIMENSIONAL DECISION DIAGRAMS

This section details important aspects of the implementation
of the previously presented decision diagrams. More precisely,
we cover construction of decision diagrams and illustrate how
the data structure is exploited for performing the basic oper-
ations for simulating quantum operations, i.e., multiplication
and state measurements. The full source code is available at
github.com/cda-tum/MiSiM.

A. Representation of States and Operations
As discussed previously, decision diagrams promise to

compactly represent quantum states and quantum operations in
many cases. This, so far, rather abstract discussion has to be
accompanied by an efficient implementation that can handle
the representations without intermediate steps that involve the
full vectors or matrices.

Instead of constructing decision diagrams representing
quantum states from the corresponding vector (which require
exponential memory), their direct construction is limited to
basis states [31]. In the presented implementation we consider
the basis states. This kind of quantum state can be described
linearly in the number of qudits. For the construction of the
decision diagram, one node for each qudit is required. Building
the state from a bottom-up approach will encode the state of
each qudit in a single node, connected via the edges (whose
edge weights encode the concrete state). By convention, the
initial quantum state in simulation is the all-zero state, which
has the nodes in the decision diagram only connected by the
left-most edges.

The second key ingredient is the efficient construction
of decision diagrams representing quantum operations: the
procedure for the construction is shown in Algorithm 1. For
the proposed simulator, we considered local operations with
arbitrary controls where the matrix for the local operation
is the only one that is ever actually kept in memory. In the
construction, each qudit is again considered in a bottom-up
fashion, i.e., from q0 to qn−1. Each qudit is either (i) the target
qudit, (ii) a control qudit, or (iii) not part of the considered
operation. For the target, a node with edges holding the values
of the local operation is created. For control qudits, if the
edges that represent a mapping where the operation is applied
are pointing towards the operations, the remaining edges will
point to the identity operation. This is known in the process
of the construction. However, unlike qubit systems where
controls are limited to |0⟩ and |1⟩, the controls can be on
arbitrary levels, therefore constructing controlled operations
becomes increasingly complex. For qudits that are not part of
the operation, the corresponding edges represent the identity
operation on these qudits.

To further optimize the construction process, special patterns
in the sub-matrices are identified. These patterns include the
identity matrix, symmetric, and transposed matrices. Especially
for the identity matrix, sub-graphs are stored in a lookup
table and referenced within the decision diagram when needed.
This approach avoids the repeated construction of identity
operations and speeds up normalization routines. Additionally,
caching identity patterns helps to efficiently construct decision

Algorithm 1 Make Gate DD

Require: Matrix Operation U , lines L, target line t, controls
c ⊂ C

Ensure: root edge e of Gate DD
eU = U entries as edges
for l in L, l < t do

Allocate eL = l.size() zero edges
for ei in eU do

if l is ctrl, w/ ctrl c and ei is diag then
eLc
← ei

for eLj in eL, j ̸= c do
if eLj

is diag then eLj
← I

elseeLj
← zero

else if l is ctrl, w/ ctrl c and ei not diag then
eLc ← ei

else ▷ Line is not a control
for eLj

in eL do
eLj ← ei

ei ← e to norm node w/ successors eL
eU ← e to norm node w/ successors ei ▷ Target line
for l in L, l > t do ▷ Variables above the target

Allocate eL = l.size() zero edges
for ej in eL do

if l is ctrl, w/ ctrl c and ej is diag then
if j = c then ej ← eU
elseej ← I

else ▷ Line is not a control
if ej is diag then ej ← eU

eU ← e to norm node w/ successors eL

diagrams for rotations of sub-spaces within the Hilbert space,
where matrices mostly consist of ones with only a few entries
representing the actual operation.

The key difference to previous implementations of decision
diagrams is the added capability of dynamically creating
decision diagrams with different dimensions for each qudit.
More precisely from the implementation perspective, the
number of out-edges of a node can be changed to accommodate
the given dimensionality. This marks a significant departure
from the fixed and static structures of previous types of decision
diagrams [24], [25], [27]–[30], making it adaptable for future
use cases where temporary expansion of the Hilbert space of
a qudit could be a crucial component for shorter circuits. The
implemented data structure is closer to the behavior of nature
than ever before.

B. Applying Quantum Operations

Given the construction of quantum states and operations
detailed in the previous section, this section covers the part of
the implementation that applies the operations to the states. To
this end, we consider the Kronecker product, multiplication of
decision diagrams, and measurement as the essential parts of
the implementation.

https://github.com/cda-tum/MiSiM

Figure 5: Kronecker product for decision diagrams

Algorithm 2 Kronecker Product
Require: root edge x, root edge y
Ensure: root edge e of x⊗ y

if x or y is zero then return zero
if x is scalar then return y.weight× x.weight
if LookUp(x, y) then return cached(x, y)

Allocate eN = x.node.size() zero edges
for ei in eN do

ei ← Kron(x.node.ei, y)
eK ← e to norm node w/ successors eN
eK .weight← eK .weight× x.weight× y.weight
return eK

1) Kronecker Product: The first part we consider for
applying quantum operations to states is the Kronecker product
for decision diagrams. For matrices, it is defined as

A⊗B =

 a0,0 ·B · · · a0,D−1 ·B
...

. . .
...

aD−1,0 ·B · · · aD−1,D−1 ·B

 .
This means that each element of A is replaced by the element
ai,j · B. Moreover, on matrices the Kronecker product is
computationally expensive, since each of the elements of the
exponentially-sized matrices has to be accessed at least once.

However, for decision diagrams, the Kronecker product is
efficient. The terminal node of a decision diagram represent-
ing A is replaced by the root node of B by means of changing
the corresponding pointers. Afterwards, for normalization, the
weight of the previous edge pointing to the root node of B is
multiplied to the root edge to A. This process is detailed in
Algorithm 2 and illustrated in Figure 5.

The implementation of the Kronecker product uses a
recursive approach that leverages the decision diagram; the
computational complexity of the operation is linear in the nodes
of the left-hand side operand.

2) Multiplication and Addition: As discussed in Sec-
tion III-A, multiplication and addition are the quintessential
operations necessary to conduct quantum circuit simulation.
Given a quantum state |ψ⟩ (with vector representation ψ) and
a unitary operation U , the operation is applied by:

ψ′
i =

D−1∑
k=0

ui,k · ψk,

where D is the dimension of the vector and ui,k (ψk) represents
an element in the matrix (vector). We can use the recursive
conceptual decomposition of the matrix (vector) represented by
the respective DD, but this time to perform the multiplication.
We use

ψ′ = U · ψ =

 U0,0 · · · U0,D−1

...
. . .

...
UD−1,0 · · · UD−1,D−1

 ·
 ψ0

...
ψD−1

=

σ0...
λ0

+ · · ·+

σD−1

...
λD−1

The algorithm will recursively follow corresponding paths in
the DDs for the matrix and the vector, and apply the operation
of multiplication between the sub-matrices and sub-vectors, as
detailed in Algorithm 3 and Algorithm 4. All the intermediate
state vectors can be added recursively, i.e.,

ψ′ =

σ0 + · · ·+ σD−1

...
λ0 + · · ·+ λD−1

The order and structure of the sub-multiplications and
sub-additions follow the structure of the decision diagram. Con-
sequently, the complexity is bound to the decision diagram in
terms of number of nodes. However, the reduction of the nodes
allows to cache intermediate results. Finally, the reduction of
DDs potentially delivers an exponential improvement in terms
of memory complexity, as well as in terms of time complexity
by terminating early sub-computations already performed. The
final step of multiplication is, naturally, the normalization of
the decision diagram. The procedure is recursive and included
in the steps described in Algorithm 4.

The multiplication and addition operations have been op-
timized to account for the dynamic structure of the decision
diagrams. Unlike previous versions of the data structure
where the number of edges was fixed and known beforehand
(i.e., pointers in an array), the current version uses a vector
with variable-sized edges (pointers), which allows for greater
flexibility. Despite the added overhead of checking the size
and iterating over each edge, the implementation remains
relatively efficient compared to previous fixed versions of the
data structure.

3) Measurement: The measurement can be interpreted as
a global measurement since the outcome of the simulation is
the state vector of the system. Decision diagrams enable a
measurement procedure that is linear in the number of qudits.

The process of measuring (or sampling) from the decision
diagram requires one traversal of the decision diagram in a top-
to-bottom manner, starting from the root node. At each node,
the squared magnitude of each edge weight are the probability
that this edge should be followed. After following the edge to
the next node, this procedure is repeated until the target node is
reached. The corresponding basis state is then given by the path
through the decision diagram (the index of each edge gives the
corresponding level, starting with zero) and the product of the
edge weights on the path gives the corresponding amplitude.

Algorithm 3 Multiplication
Require: root edge x, root edge y
Ensure: root edge e of x× y

if x or y is NULL or x.weight or y.weight = 0 then
return zero
if Terminal(x) and Terminal(y) then return Terminal e,
w/ e.weight = x.weight× y.weight
if LookUp(x, y) then return cached(x, y)

if x is I then return y

if y is I then return x

Allocate eN [R] zero edges ▷ Edges for Results
for i in R do ▷ Rows

for j in C do ▷ Columns
for ek in eN , k = R ∗ i+ j; do

ek ← ek +Mult(ex[R · i+ k], ey[j + C · k])
Cache eK ← e to norm node w/ successors eN
eK .weight← eK .weight× x.weight× y.weight
return eK

Algorithm 4 Addition
Require: root edge x, root edge y
Ensure: root edge e of x+ y

if Terminal(x) then return y

if Terminal(y) then return x

if x.node = y.node then return e, w/ e.weight =
x.weight+ y.weight and e.node = x.node

if LookUp(x, y) then return cached(x, y)

Create eN edges with eN .size() = x.nodes.edges.size
for i = 0 . . . eN .size()− 1 do

ey,next ← eyi.node; ey,next.weight ← yweight×eyi.weight

ex,next ← exi.node; ex,next.weight ←
xweight×exi.weight

ej = add(ex,next, ey,next), i = j

return e to norm node w/ successors eN

VII. EXPERIMENTAL EVALUATION

We implemented the proposed approach and evaluated
its applicability. The implementation is publicly available at
github.com/cda-tum/MiSiM as part of the Munich Quantum
Toolkit (MQT, [58]).

The evaluation was performed on a server running
GNU/Linux with an Intel Xeon W-1370P (running at 3.6 GHz)
and 128 GiB main memory. The implementation is written in
C++ and was compiled with GCC 9.3.0. To demonstrate the
capabilities, a set of three different algorithms with multiple
instances was considered more precisely:

• Mixed W-States [59] given as states 1√
n
(|0 . . . 01⟩ +

|0 . . . 010⟩ + |10 . . . 0⟩). Qubit W-states embedded in
prime-dimensional qudits.

• GHZ States [60] were considered for n qutrits as
1√
3
(|0⟩⊗n + |1⟩⊗n + |2⟩⊗n).

• Random Circuits built from randomly selected local oper-
ations (Hadamard and Givens rotations) and entangling
operations (CEX and controlled Clifford operations).

The results are summarized in Table I. The first column
lists the name of the benchmark. The second column gives the
total number of qudits where as the following four columns
give the number of qudits for each level, i.e., the number of
qubits (2), qutrits (3), ququads (4), and ququints (5). In the
following three columns, the number of operations, number of
nodes, and number of distinct complex numbers in the decision
diagram of the final state after the simulation are listed. Finally,
the last column lists the run time of each instance of the
benchmark.

For the algorithms Mixed W-State and GHZ state, Table I
nicely confirms the efficiency of the proposed approach and
the corresponding implementation. The simulation for these
algorithms completes in less than a second with a low number
of nodes and distinct complex numbers, as one might expect.
In contrast, the random circuits contain little to no redundancy
to be exploited by the decision diagrams and, therefore, can
be considered to show the worst-case behavior. Still, the
implementation can simulate these circuits with, for example,
8000 operations on 8 qudits within around 4 h, which, given the
individual number of levels, are comparable to 14 qubits. The
simulator is remarkable in its ability to deliver reliable results
for randomized circuits, also when those are comparable to a
larger 15-qubit system. Although the simulation process largely
terminates within two days, this time frame is a testament to
the efficiency and accuracy of the simulator’s algorithms. These
results confirm the efficacy of the simulator as a design tool
for mixed-dimensional quantum circuits.

VIII. CONCLUSIONS

Design automation is an essential component in the devel-
opment of quantum computers and a key factor in unlocking
their full potential. In this paper, we proposed a classical
simulator for mixed-dimensional qudit systems. To this end,
we introduced a type of decision diagram capable of handling
the simulation of mixed-dimensional quantum circuits and
presented a corresponding implementation (publicly available
at github.com/cda-tum/MiSiM). More precisely, the proposed
decision diagrams encode the dimensionality of a qudit in the
number of out-going edges of a node, enabling a dynamic
handling of the dimension and fast adaption to the restrictions
imposed, e.g., after calibration of a qudit system. This compact
representation is the basis for the corresponding implementation,
which enables utilization of the method in real world context.
The experimental evaluation confirms the efficacy for the
selected set of benchmarks, ranging from easy circuits such as
the GHZ state to random circuits, which show the worst-case
behavior.

ACKNOWLEDGMENT

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under the ERC Consolidator
Grant (agreement No 101001318) and the NeQST Grant (agreement
No 101080086). It is part of the Munich Quantum Valley, which
is supported by the Bavarian state government with funds from the
Hightech Agenda Bayern Plus and was partially supported by the
BMK, BMDW, and the State of Upper Austria in the frame of the
COMET program (managed by the FFG).

https://github.com/cda-tum/MiSiM
https://github.com/cda-tum/MiSiM

Table I: Evaluations

Benchmark #Qudits #Qudits with Dimension #Operations #Nodes #Distinct C Run time

2 3 4 5

Mixed W-State 4 2 2 0 0 15 12 9 0.000
30 15 3 0 12 96 60 64 0.017
54 2 52 0 0 159 108 112 0.027
60 8 4 0 48 213 120 140 0.169
90 15 63 0 12 276 180 198 0.103
90 2 80 0 8 273 180 195 0.101

102 75 2 0 25 315 200 207 0.111
108 8 100 0 0 321 216 229 0.102

GHZ State 5 0 5 0 0 8 14 5 0.000
10 0 10 0 0 18 29 5 0.000
30 0 30 0 0 58 89 5 0.003
60 0 60 0 0 118 179 5 0.011

120 0 120 0 0 238 359 5 0.043
128 0 128 0 0 254 383 5 0.049

Random 2 0 0 2 0 2000 6 68 903 0.021
2 0 2 0 0 2000 5 40 835 0.015
2 0 0 0 2 2000 7 112 918 0.068
2 0 1 1 0 2000 5 52 451 0.016
2 0 1 1 0 2000 5 52 451 0.016

3 2 1 0 0 3000 10 66 575 0.021
3 0 0 2 1 3000 27 531 995 0.172
3 0 0 2 1 3000 27 545 173 0.184
3 1 0 2 0 3000 12 168 915 0.048
3 1 0 2 0 3000 14 227 513 0.069

4 1 2 0 1 4000 67 774 865 0.339
4 1 1 1 1 4000 44 870 383 0.380
4 2 2 0 0 4000 22 239 247 0.069
4 0 1 1 2 4000 107 2 651 118 4.172
4 2 1 0 1 4000 41 429 614 0.153
4 0 0 2 2 4000 106 3 141 654 6.564
4 0 2 1 1 4000 53 1 299 120 0.828

5 0 0 3 2 5000 507 16 771 562 231.361
5 1 1 2 1 5000 214 4 578 367 13.622
5 1 1 2 1 5000 161 3 287 282 6.592
5 2 0 1 2 5000 137 3 181 180 6.258
5 2 1 0 2 5000 101 2 319 028 3.094
5 2 0 1 2 5000 164 3 435 001 7.242
5 1 1 1 2 5000 217 5 732 896 22.778

6 2 1 1 2 6000 434 11 781 434 105.238
6 2 2 1 1 6000 486 7 518 639 38.225
6 2 1 0 3 6000 437 13 889 217 159.516
6 4 2 0 0 6000 137 1 324 892 0.959

7 3 1 2 1 7000 1308 23 540 630 390.539
7 3 1 0 3 7000 2447 42 457 590 1275.100
7 3 2 0 2 7000 577 16 793 344 227.600
7 2 2 1 2 7000 1301 41 679 061 1407.100

8 5 2 1 0 8000 572 11 114 401 85.309
8 2 3 1 2 8000 3902 135 137 166 14 972.200
8 2 1 2 3 8000 19886 432 117 869 170 405.000

The column “#Distinct C” shows the number of different complex numbers in the decision diagram.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer,” SIAM Journal on Computing, vol. 26, no. 5,
pp. 1484–1509, 1997.

[2] L. K. Grover, “A fast quantum mechanical algorithm
for database search,” in Symp. on Theory of Computing,
G. L. Miller, Ed., ACM, 1996, pp. 212–219.

[3] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D.
Johnson, M. Kieferová, I. D. Kivlichan, T. Menke,
B. Peropadre, et al., “Quantum chemistry in the age
of quantum computing,” Chemical Reviews, vol. 119,
no. 19, pp. 10 856–10 915, 2019.

[4] M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt,
P. Schindler, and T. Monz, “A universal qudit quantum
processor with trapped ions,” Nature Physics, vol. 18,
no. 9, pp. 1053–1057, 2022.

[5] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits
and high-dimensional quantum computing,” Frontiers in
Physics, vol. 8, p. 589 504, 2020.

[6] X. Zhang, M. Um, J. Zhang, S. An, Y. Wang, D.-l. Deng,
C. Shen, L.-M. Duan, and K. Kim, “State-independent
experimental test of quantum contextuality with a single
trapped ion,” Phys. Rev. Lett., vol. 110, p. 070 401, 2013.

[7] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein,
T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A.
Gilchrist, et al., “Simplifying quantum logic using higher-
dimensional Hilbert spaces,” Nature Physics, vol. 5,
pp. 134–140, 2008.

[8] M. Ringbauer, T. R. Bromley, M. Cianciaruso, L. Lami,
W. Y. S. Lau, G. Adesso, A. G. White, A. Fedrizzi, and
M. Piani, “Certification and quantification of multilevel
quantum coherence,” Phys. Rev. X, vol. 8, p. 041 007,
2018.

[9] X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li,
and G.-C. Guo, “Beating the channel capacity limit for
superdense coding with entangled ququarts,” Sci. Adv.,
vol. 4, no. 7, 2018.

[10] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler,
and A. Zeilinger, “Multi-photon entanglement in high
dimensions,” Nature Photonics, vol. 10, pp. 248–252,
2016.

[11] M. Kononenko, M. Yurtalan, S. Ren, J. Shi, S. Ashhab,
and A. Lupascu, “Characterization of control in a
superconducting qutrit using randomized benchmarking,”
Phys. Rev. Res., vol. 3, no. 4, p. L042007, 2021.

[12] A. Morvan, V. V. Ramasesh, M. S. Blok, J. M. Kreike-
baum, K. O’Brien, L. Chen, B. K. Mitchell, R. K. Naik,
D. I. Santiago, et al., “Qutrit randomized benchmarking,”
Phys. Rev. Lett., vol. 126, p. 210 504, 2021.

[13] J. Ahn, T. Weinacht, and P. Bucksbaum, “Information
storage and retrieval through quantum phase,” Science,
vol. 287, no. 5452, pp. 463–465, 2000.

[14] C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M.
Ruben, W. Wernsdorfer, and F. Balestro, “Operating
quantum states in single magnetic molecules: Implemen-

tation of Grover’s quantum algorithm,” Phys. Rev. Lett.,
vol. 119, p. 187 702, 2017.

[15] B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H.
Deutsch, and P. S. Jessen, “Accurate and robust unitary
transformations of a high-dimensional quantum system,”
Phys. Rev. Lett., vol. 114, p. 240 401, 2015.

[16] Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G.
Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F.
Fanchini, “Computational speed-up with a single qudit,”
Sci. Rep., vol. 5, p. 14 671, 2015.

[17] F. Tacchino, A. Chiesa, R. Sessoli, I. Tavernelli, and
S. Carretta, “A proposal for using molecular spin qudits
as quantum simulators of light–matter interactions,” J.
Mater. Chem. C, vol. 9, pp. 10 266–10 275, 32 2021.

[18] Y. Deller, S. Schmitt, M. Lewenstein, S. Lenk, M.
Federer, F. Jendrzejewski, P. Hauke, and V. Kasper,
Quantum approximate optimization algorithm for qudit
systems with long-range interactions, 2022. arXiv: 2204.
00340.

[19] D. Gonzá lez-Cuadra, T. V. Zache, J. Carrasco, B. Kraus,
and P. Zoller, “Hardware efficient quantum simulation
of non-abelian gauge theories with qudits on Rydberg
platforms,” Physical Review Letters, vol. 129, no. 16,
2022.

[20] E. J. Gustafson, “Prospects for simulating a qudit-based
model of (1 + 1)D scalar qed,” Phys. Rev. D, vol. 103,
p. 114 505, 11 2021.

[21] D. M. Kurkcuoglu, M. S. Alam, A. C. Li, A. Macridin,
and G. N. Perdue, “Quantum simulation of ϕ4 theories
in qudit systems,” TBD, 2021.

[22] L. Lamata, A. Mezzacapo, J. Casanova, and E. Solano,
“Efficient quantum simulation of fermionic and bosonic
models in trapped ions,” EPJ Quantum Technology,
vol. 1, p. 9, 2014.

[23] B. Lanyon, M. Barbieri, M. Almeida, T. Jennewein,
T. Ralph, K. Resch, G. Pryde, J. O’Brien, A. Gilchrist,
et al., “Quantum computing using shortcuts through
higher dimensions,” Nature Physics, vol. 5, 2008.

[24] D. Miller and M. Thornton, “QMDD: A decision
diagram structure for reversible and quantum circuits,”
in Int’l Symp. on Multi-Valued Logic, IEEE, 2006.

[25] A. Zulehner, S. Hillmich, and R. Wille, “How to effi-
ciently handle complex values? Implementing decision
diagrams for quantum computing,” in Int’l Conf. on
CAD, ACM, 2019, pp. 1–7.

[26] A. Zulehner and R. Wille, “Advanced simulation of
quantum computations,” IEEE Trans. on CAD of Inte-
grated Circuits and Systems, vol. 38, no. 5, pp. 848–859,
2019.

[27] A. Abdollahi and M. Pedram, “Analysis and synthesis of
quantum circuits by using quantum decision diagrams,”
in Design, Automation and Test in Europe, 2006, pp. 317–
322.

[28] S. Wang, C. Lu, I. Tsai, and S. Kuo, “An XQDD-based
verification method for quantum circuits,” IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., vol. 91-A,
no. 2, pp. 584–594, 2008.

https://arxiv.org/abs/2204.00340
https://arxiv.org/abs/2204.00340

[29] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum
Circuit Simulation. Springer, 2009.

[30] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton,
and R. Drechsler, “QMDDs: Efficient quantum function
representation and manipulation,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 35, no. 1, pp. 86–99,
2016.

[31] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (10th Anniversary edition).
Cambridge University Press, 2016.

[32] G. K. Brennen, S. S. Bullock, and D. P. O’Leary,
“Efficient circuits for exact-universal computationwith
qudits,” Quantum Info. Comput., vol. 6, no. 4, pp. 436–
454, 2006.

[33] P. Hrmo, B. Wilhelm, L. Gerster, M. W. van Mourik,
M. Huber, R. Blatt, P. Schindler, T. Monz, and M.
Ringbauer, “Native qudit entanglement in a trapped ion
quantum processor,” Nature Communications, vol. 14,
no. 1, p. 2242, 2023.

[34] S. Hillmich, I. L. Markov, and R. Wille, “Just like the
real thing: Fast weak simulation of quantum computa-
tion,” in Design Automation Conf., IEEE, 2020, pp. 1–6.

[35] S. Jaques and T. Häner, “Leveraging state sparsity for
more efficient quantum simulations,” ACM Trans. on
Quantum Computing, vol. 3, no. 3, 2022.

[36] T. J. Stavenger, E. Crane, K. C. Smith, C. T. Kang,
S. M. Girvin, and N. Wiebe, “C2QA - bosonic qiskit,”
in High Performance Extreme Computing Conf., 2022.

[37] K. Mato, M. Ringbauer, S. Hillmich, and R. Wille,
“Compilation of entangling gates for high-dimensional
quantum systems,” in Asia and South Pacific Design
Automation Conf., ACM, 2023, pp. 202–208.

[38] K. Mato, M. Ringbauer, S. Hillmich, and R. Wille,
“Adaptive compilation of multi-level quantum oper-
ations,” in Int’l Conf. on Quantum Computing and
Engineering, IEEE, 2022, pp. 484–491.

[39] B. Poór, Q. Wang, R. A. Shaikh, L. Yeh, R. Yeung, and
B. Coecke, “Completeness for arbitrary finite dimensions
of ZXW-calculus, a unifying calculus,” 2023.

[40] K. Mato, S. Hillmich, and R. Wille, “Compression
of Qubit Circuits: Mapping to Mixed-Dimensional
Quantum Systems,” in Int’l Conf. on Quantum Software,
2023.

[41] A. Litteken, J. M. Baker, and F. T. Chong, “Communi-
cation trade offs in intermediate qudit circuits,” in Int’l
Symp. on Multi-Valued Logic, 2022, pp. 43–49.

[42] L. Seifert, J. Chadwick, A. Litteken, F. T. Chong,
and J. M. Baker, “Time-efficient qudit gates through
incremental pulse re-seeding,” in Int’l Conf. on Quantum
Computing and Engineering, 2022, pp. 304–313.

[43] L. Burgholzer and R. Wille, “The power of simulation
for equivalence checking in quantum computing,” in
Design Automation Conf., IEEE, 2020, pp. 1–6.

[44] L. Burgholzer and R. Wille, “Advanced equivalence
checking for quantum circuits,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 40, no. 9, pp. 1810–
1824, 2021.

[45] D. Volya and P. Mishra, “Quantum data compression
for efficient generation of control pulses,” in Asia and
South Pacific Design Automation Conf., ACM, 2023,
pp. 216–221.

[46] H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M.
Aharoni, V. Ajith, I. Y. Akhalwaya, G. Aleksandrowicz,
T. Alexander, et al., Qiskit: An open-source framework
for quantum computing, 2021.

[47] T. Jones, A. Brown, I. Bush, and S. C. Benjamin,
“QuEST and high performance simulation of quantum
computers,” Sci. Rep., vol. 9, no. 1, 2019.

[48] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A.
Pérez-Salinas, D. García-Martín, A. Garcia-Saez, J. I.
Latorre, and S. Carrazza, “Qibo: A framework for quan-
tum simulation with hardware acceleration,” Quantum
Science and Technology, vol. 7, no. 1, p. 015 018, 2021.

[49] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, “Yao.jl:
Extensible, efficient framework for quantum algorithm
design,” Quantum, vol. 4, p. 341, 2020.

[50] S. V. Isakov, D. Kafri, O. Martin, C. V. Heidweiller, W.
Mruczkiewicz, M. P. Harrigan, N. C. Rubin, R. Thomson,
M. Broughton, et al., Simulations of quantum circuits
with approximate noise using qsim and Cirq, 2021. arXiv:
2111.02396.

[51] J. Hauschild and F. Pollmann, “Efficient numerical
simulations with tensor networks: Tensor network python
(TeNPy),” SciPost Phys. Lecture Notes, 2018.

[52] J. Gray, “Quimb: A python package for quantum
information and many-body calculations,” Journal of
Open Source Software, vol. 3, no. 29, p. 819, 2018.

[53] M. Fishman, S. R. White, and E. M. Stoudenmire,
“The ITensor Software Library for Tensor Network
Calculations,” SciPost Phys. Codebases, p. 4, 2022.

[54] T. Chatterjee, A. Das, S. K. Bala, A. Saha, A. Chattopad-
hyay, and A. Chakrabarti, QuDiet: A classical simulation
platform for qubit-qudit hybrid quantum systems, 2022.
arXiv: 2211.07918.

[55] S. Hillmich, C. Hadfield, R. Raymond, A. Mezzacapo,
and R. Wille, “Decision diagrams for quantum measure-
ments with shallow circuits,” in Int’l Conf. on Quantum
Computing and Engineering, IEEE, 2021, pp. 24–34.

[56] R. Wille, S. Hillmich, and L. Burgholzer, “Decision
diagrams for quantum computing,” in Design Automation
of Quantum Computers. Springer, 2023, pp. 1–23.

[57] L. Burgholzer, A. Ploier, and R. Wille, Tensor networks
or decision diagrams? Guidelines for classical quantum
circuit simulation, 2023. arXiv: 2302.06616.

[58] R. Wille, S. Hillmich, and L. Burgholzer, “MQT: The
Munich Quantum Toolkit,” in Gesellschaft für Informatik
Quantum Computing Workshop, 2022.

[59] L. Yeh, Scaling W state circuits in the qudit Clifford
hierarchy, 2023. arXiv: 2304.12504.

[60] D. M. Greenberger, M. A. Horne, and A. Zeilinger,
“Going beyond bell’s theorem,” in Bell’s Theorem,
Quantum Theory and Conceptions of the Universe,
M. Kafatos, Ed. Springer, 1989, pp. 69–72.

https://arxiv.org/abs/2111.02396
https://arxiv.org/abs/2211.07918
https://arxiv.org/abs/2302.06616
https://arxiv.org/abs/2304.12504

	Introduction
	Background
	Quantum Information Processing
	Quantum Operations
	Quantum Circuit

	Motivation
	Simulation
	The Case for Quantum Circuit Simulation
	Contribution

	State of the Art
	Decision Diagrams
	Quantum States
	Quantum Operations
	Rationale for Choosing DDs

	Implementation of Mixed-Dimensional Decision Diagrams
	Representation of States and Operations
	Applying Quantum Operations
	Kronecker Product
	Multiplication and Addition
	Measurement

	Experimental Evaluation
	Conclusions

