
Reducing the Compilation Time of Quantum
Circuits Using Pre-Compilation on the Gate Level

Nils Quetschlich∗ Lukas Burgholzer∗ Robert Wille∗†
∗Chair for Design Automation, Technical University of Munich, Germany

†Software Competence Center Hagenberg GmbH (SCCH), Austria
nils.quetschlich@tum.de lukas.burgholzer@tum.de robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum

Abstract—In order to implement a quantum computing ap-
plication, problem instances must be encoded into a quantum
circuit and then compiled for a specific platform. The lengthy
compilation process is a key bottleneck in this workflow, es-
pecially for problems that arise repeatedly with a similar yet
distinct structure (each of which requires a new compilation run
thus far). In this paper, we aim to overcome this bottleneck by
proposing a comprehensive pre-compilation technique that tries
to minimize the time spent for compiling recurring problems
while preserving the solution quality as much as possible. The
following concepts underpin the proposed approach: Beginning
with a problem class and a corresponding quantum algorithm, a
predictive encoding scheme is applied to encode a representative
problem instance into a general-purpose quantum circuit for
that problem class. Once the real problem instance is known,
the previously constructed circuit only needs to be adjusted—
with (nearly) no compilation necessary. Experimental evaluations
on QAOA for the MaxCut problem as well as a case study
involving a satellite mission planning problem show that the
proposed approach significantly reduces the compilation time by
several orders of magnitude compared to Qiskit’s compilation
schemes while maintaining comparable compiled circuit quality.
All implementations are available on GitHub (https://github.com/
cda-tum/mqt-problemsolver) as part of the Munich Quantum
Toolkit (MQT).

I. INTRODUCTION

Quantum computing is an emerging technology that is con-
stantly improving both in software and hardware—sparking in-
terest in academia and industry. As a result, many approaches
have emerged that try to use quantum computing to solve
problems from various application domains such as finance
(e.g., [1]), machine learning (e.g., [2]), optimization (e.g., [3]),
and chemistry (e.g., [4]). Dedicated workflows to describe the
necessary steps from an initial problem to a solution using
quantum computing are starting to emerge (e.g., [5]–[8]).
These workflows usually include several steps: A suitable
quantum algorithm has to be chosen for the respective problem
and a quantum circuit needs to be constructed that encodes
it. Then, this circuit must be compiled and executed on a
targeted quantum device before the solution can be decoded
from the results of the execution. Many Software Development
Kits (SDKs) have been developed for conducting these steps
(or at least some of them). Prominent examples are IBM’s
Qiskit [9], Quantinuum’s TKET [10], Google’s Cirq [11],
and BQSKit [12]. Additionally, there are quantum comput-

ing platform providers that offer access to various quantum
devices such as AWS Braket [13], and Microsoft’s Azure
Quantum [14] which implicitly take care of the compilation
when executing quantum circuits.

Compilation, i.e., making sure that a particular quantum
circuit can actually be executed on a targeted device, is an
essential part of these workflows that involves many com-
putationally hard problems such as gate synthesis [15]–[20]
or qubit routing/mapping [21]–[28]. It is crucial to perform
this task as efficiently as possible, since the possible overhead
introduced by compilation directly correlates with the quality
of the compiled circuit. However, this takes time. Time that in
existing workflows is spent almost exclusively at “runtime”,
i.e., at the moment the entire problem instance is known.
Furthermore, every single instance of a particular problem
class is compiled from scratch—although its instances have
a similar yet distinct structure and are frequently recurring,
such as problems in scheduling [29] and finance [30].

In this work, we propose a pre-compilation technique that
aims to drastically reduce the time spent on compilation at
runtime while maintaining comparable quality of the compiled
circuits. The proposed approach is based on the following
ideas: Starting with a problem class (e.g., the MaxCut prob-
lem) and a quantum algorithm to solve the problem (e.g., the
Quantum Approximate Optimization Algorithm, QAOA [31]),
a predictive encoding scheme is applied that encodes the
classes’ structure (e.g., a QAOA circuit for fully connected
graphs) into a general-purpose quantum circuit for the whole
class of problems. This circuit is then (pre-) compiled to yield
a generic circuit for solving problems in the respective class
that can be executed on a certain device. At runtime, when
the actual problem instance is known, the resulting circuit
only needs to be adjusted for the particular instance (e.g.,
by removing gates corresponding to edges not present in
the graph instance)—without requiring any compilation. As
the general-purpose circuits have to subsume a wide variety
of instances, their compilation is likely to induce a higher
overhead compared to just compiling one particular problem
instance. To counteract this potential loss in quality, some
lightweight optimizations are performed at runtime in addition
to adjusting the circuit.

mailto:nils.quetschlich@tum.de
mailto:lukas.burgholzer@jku.at
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum
https://github.com/cda-tum/mqt-problemsolver
https://github.com/cda-tum/mqt-problemsolver


Compilation at runtime

0 1

2 3

Enc.−−−→
q0

q1

q2

q3

Synth.−−−−→
q0

q1

q2

q3

Map.−−−→
q0

q1
q2

q3

Meas.−−−−→

|0
00
0⟩

|0
10
0⟩

|0
10
1⟩

|0
11
0⟩

|1
11
1⟩

0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
Fr

eq
ue

nc
y

... ...

Dec.−−−→
0 1

2 3

(a) Problem instance. (b) Encoded circuit. (c) Synth. circuit. (d) Mapped circuit. (e) Result. (f) Solution.

Runtime

Fig. 1: Established quantum computing workflow from a (MaxCut) problem to its solution.

Experimental evaluations on QAOA for the MaxCut prob-
lem as well as a real-world satellite mission planning use-case
demonstrate the benefits of the proposed approach. For in-
stances ranging from 5 to 100 qubits, the compilation time
at runtime is reduced by several orders of magnitudes with
a similar compiled circuit quality compared to the estab-
lished workflow with all implementations available on GitHub
(https://github.com/cda-tum/mqt-problemsolver) as part of the
Munich Quantum Toolkit (MQT).

The remainder of this work is structured as follows: The
currently established quantum computing workflow from a
problem to a solution is reviewed in Section II. Subsequently,
Section III motivates the proposed pre-compilation scheme and
reviews related work. Based on that, Section IV describes the
proposed compilation scheme in detail before it is evaluated
in Section V. Afterwards, the proposed scheme is applied to a
real-world industry use-case from satellite mission planning in
Section VI and discussed in Section VII. Finally, Section VIII
concludes this work.

II. THE QUANTUM COMPUTING WORKFLOW

Quantum computing can be used to solve classical problems
from various domains as discussed in Section I. Although the
problems to be solved obviously vary, the general workflow
from the problem to a solution is commonly structured as
shown in Fig. 1.

Given a classical problem instance of a certain problem
class, the first step to solve the problem with quantum comput-
ing is to encode the problem into a quantum circuit that shall
afterwards be executed on a quantum computer. This encoding
step is highly non-trivial and constitutes a whole research area
on its own (e.g., [32]–[34]). It requires the problem description
to be transformed in a way that is suitable as an input for a
certain quantum algorithm—with many degrees of freedom in
the choice of an encoding and a particular algorithm.

Example 1. Consider the graph shown in Fig. 1a and assume
that we want to solve the well-known MaxCut problem on
this graph, i.e., the goal is to find a partition of the graph’s
nodes so that the number of edges between these partitions is
maximal. The Quantum Approximate Optimization Algorithm
(QAOA, [31]) has been proposed as a candidate to tackle
this problem on a quantum computer. For this, each node

is encoded as a qubit and each edge between two nodes
is encoded as a certain interaction between the respective
qubits—as sketched in Fig. 1b.

Once encoded as a quantum circuit, the circuit must be com-
piled to be executable on a particular quantum device. This is
similar to classical programming, where a high-level program
(e.g., written in C++) needs to be compiled into low-level
machine instructions that are supported by the CPU on which
the program should run. Quantum computers generally offer
a small but universal set of gates that is natively supported
by the device. In the following, this is referred to as native
gate-set. Every quantum computation that shall be executed
on a certain device must first be broken down into sequences
of native gates—a process frequently referred to as synthesis
with many respective methods proposed, e.g., in [15]–[20].

Example 2. Consider again the circuit from Fig. 1b and
assume that one of its five gates (the one marked in red)
is not a native gate on the targeted quantum device. Then,
Fig. 1c sketches what a synthesized circuit might look like,
where that gate has been decomposed into three (native) gates
(now marked in green).

Now that the circuit consists only of native gates, the
circuit’s (logical) qubits need to be mapped to the device’s
(physical) qubits—a process frequently referred to as qubit
placement, qubit allocation, or qubit layout. Many quantum
computers, such as those based on superconducting qubits
or neutral atoms, have a limited connectivity between their
qubits, i.e., multi-qubit gates may only be applied to qubits that
are connected on the device. As a result, the qubit mapping
generally has to be adapted dynamically throughout the circuit.
This is typically achieved by inserting SWAP operations in a
process referred to as qubit routing. The whole process of
determining an initial qubit placement and then routing the
circuit is commonly referred to as mapping with methods
proposed, e.g., in [21]–[28].

https://github.com/cda-tum/mqt-problemsolver


Compilation at runtime

0 1

2 3

→
q0
q1
q2
q3

→
q0

q1

q2

q3

→

q0

q1

q2

q3

→
0 1

2 3

→
q0
q1
q2
q3

→

|0
00
0⟩

|0
10
0⟩

|0
10
1⟩

|0
11
0⟩

|1
11
1⟩

0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
Fr

eq
ue

nc
y

... ...

→
0 1

2 3

(a) Generalized
problem.

(b) Predictive encoding. (c) Pre-compilation. (d) Problem
instance.

(e) Circuit adjustment. (f) Result. (g) Solution.

Compile-Time Runtime

Fig. 2: Proposed workflow including pre-compilation.

Example 3. Consider the synthesized circuit shown in Fig. 1c
and assume that each of the qubits is connected to its neigh-
bors on the targeted device. Then, all but one gate (the one
marked in blue) already adhere to the connectivity constraints.
To resolve the remaining conflict, a single SWAP gate is
inserted in front of the last gate as shown in Fig. 1d.

The circuit is now executable on the targeted device—
marking the end of the compilation step considered in this
work1. It is essential to keep the overhead introduced by
compiling the original circuit as low as possible, since each
added gate decreases the fidelity of the overall result. The
complexity of the underlying problems (e.g., mapping being
NP-complete [38]) makes compilation a time- and resource-
intensive task that is, nevertheless, crucial for reliably execut-
ing quantum circuits.

For the actual execution, the circuit is usually sent to a quan-
tum device provider over the cloud and the result is sent back
in the form of a histogram of measurement outcomes. These
measurement outcomes are then post-processed (decoded) to
reveal the solution to the problem.

Example 4. An execution of the quantum circuit sketched in
Fig. 1d might yield a distribution of measurement outcomes
as shown in Fig. 1e. There, the measurement result (|0101⟩)
occurred with a significantly higher frequency than all other
results—marking it as the solution. Since each qubit was
chosen to encode one node of the graph, the value of each
qubit indicates to which partition a particular node belongs.
In this case, the solution groups {0, 2} and {1, 3} as shown in
Fig. 1f, which, indeed, are a solution to the MaxCut problem
on this graph.

III. GENERAL IDEA

The established workflow described in Section II and illus-
trated in Fig. 1 comes with a major bottleneck: The crucial and
expensive compilation step is conducted from scratch during
runtime for every single problem instance—leading to long
runtimes for determining a solution for a particular problem
instance. In the following, we propose a pre-compilation

1Before a circuit can really be executed on a particular device, several
more low-level steps such as pulse-level compilation and scheduling need to
be conducted (using SDKs such as proposed in, e.g., [35]–[37]). These steps
will not be considered in further detail in this work and are assumed to occur
once the circuit is sent to the device provider for execution.

technique that aims to drastically reduce the time spent on
compilation at runtime while maintaining comparable solution
quality. This is illustrated in Fig. 2 and described next.

A. Motivation

For a particular problem class and a selected quantum
algorithm, the process of taking a classical problem description
and encoding it as a quantum circuit comes with an inherent
structure that is independent of the specific instance to be
solved. This can be turned into a predictive encoding that
captures the structure of the whole problem class at once in
the form of a general-purpose quantum circuit.

Example 5. In case of the MaxCut problem to be solved with
QAOA (as considered throughout Section II), the problem can
be generalized to a problem class by making some kind of
assumption on the properties of the graphs that are expected
as input. The simplest case, essentially assuming that there
are no restrictions, is to consider the complete graph as
shown in Fig. 2a. Any MaxCut problem on four nodes can
be derived from this generalized description. The predictive
encoding is generated by applying the same encoding process
to the generalized description as would have been applied to a
specific instance. More precisely, a qubit is allocated for each
of the nodes and a dedicated gate is added to the circuit for
each connection between nodes. Fig. 2b figuratively sketches
what such a all-to-all circuit might look like.

Since the predictive encoding is, per definition, independent
of the particular problem instance, it can be pre-compiled, i.e.,
determined at compile-time as opposed to at runtime once the
particular instance is known. This creates a general-purpose,
executable circuit for the problem class considered.

Example 6. Consider again the predictive encoding circuit
shown in Fig. 2b. Using pre-compilation, the entire compi-
lation process is conducted and yields a pre-compiled and
ready-to-execute circuit at compile-time as sketched in Fig. 2c.

At runtime, once the problem instance is known, the previ-
ously compiled circuit needs to be adjusted to reflect the actual
problem instance before being sent to the device provider for
execution. This is significantly cheaper than a full compilation
pass as the necessary adjustments frequently boil down to
simple gate removals.



Example 7. Assume that, at runtime, the same problem
instance previously considered as the starting point in Fig. 1a
should be solved. The respective graph (shown again in
Fig. 2d) misses two edges compared to the complete graph
that was used for the predictive encoding (shown in Fig. 2a).
Therefore, the pre-compiled quantum circuit must be traversed
and all compiled quantum gates involved in the anticipated
but now non-present edges must be removed as shown in
Fig. 2e (insinuated in red). Afterwards, the altered compiled
quantum circuit can be sent for execution and the solution
can be decoded as before—leading to the same histogram and
solution—again visualized in Fig. 2f and Fig. 2g, respectively.

Following this approach, much of the heavy burden of
compilation can be shifted from runtime to compile-time.
Furthermore, heavy and compute-intensive optimizations can
be applied at compile-time, where it is not so critical to be
fast as this has to be done only once.

However, there is no free lunch: The predictive encoding has
to subsume a variety of instances which is likely to increase
the compilation overhead as compared to compiling a single
problem instance. As demonstrated by experimental evalua-
tions (summarized later in Section V), this can be mitigated
to some extent by performing lightweight optimizations after
the circuit adjustment at runtime.

B. Related Work

So far, pre-compilation has hardly been explored—
presumably, because compiling everything at runtime has
been “good enough” for the scale of problems considered
today. Existing works focus on Variational Quantum Algo-
rithms (VQAs) and mostly rely on the concept of lookup tables
that map uncompiled (sequences of) gates to their compiled
equivalent.

In [39], already a decade ago, an approach to pre-compile
certain rotation angles of single-qubit gates was proposed.
Whenever a single-qubit with an arbitrary rotation angle
occurs, it is compiled by concatenating a sequence of the
pre-compiled rotation angles.

After years of no active research in this domain, further
works have examined pre-compilation on the pulse level—
describing how each quantum gate is translated into a sequence
of electro-magnetic pulses when executed on the actual quan-
tum device. In [40], an approach has been proposed targeting
VQAs by exploiting their general circuit structure consisting
of parameterized and non-parameterized gates. The authors
pre-compile the non-parameterized gates to the pulse level and
optimize them extensively. At runtime, only the parameterized
gates need to be compiled and stitched together with the
pre-compiled pulses.

Similarly, the authors of [41] focus on the pulse level and
propose a static/dynamic hybrid workflow. This approach is
based on storing pre-compiled pulses for certain groups of
quantum gates in a database. Whenever a new quantum circuit
is compiled, it is decomposed into groups and during the static

0 1

2 3

q0

q1

q2

q3

State Prep.

H

H

H

H

×Repetitions

Cost Layer
Mixer Layer

RX

RX

RX

RX

Fig. 3: Predictive Encoding for the MaxCut problem using
QAOA assuming that all interactions are present.

phase, the database of pre-compiled pulses is searched for
suitable pulses. If there are no pre-compiled pulses for all
groups, the respective pulses are generated in the dynamic
phase, before they are concatenated with the pulses of the
static phase.

IV. PROPOSED COMPILATION SCHEME

In this section, the proposed compilation scheme is ex-
plained in more detail—again using MaxCut as a running
example. More specifically, the proposed compile-time and
circuit adjustment steps are described.

A. Compile-time Steps

The compile-time steps comprise the (predictive) encoding
and the (pre-) compilation, which in turn entails native gate-set
synthesis and mapping as reviewed in Section II. So far, these
steps have mostly been conducted at runtime after the problem
instance is known. In contrast, a different approach has been
chosen in the proposed scheme: instead of encoding the actual
problem instance, a specific problem instance is anticipated—
exploiting the inherent structure of the problem class and the
selected quantum algorithm.

Example 8. To illustrate the proposed predictive encoding,
assume a MaxCut problem with four nodes, and therefore,
six possible edges shall be solved using QAOA as already
mentioned in Example 5. The general structure of the al-
gorithm (shown in Fig. 3) consists of a sequence of three
different building blocks: the state preparation, the cost layer,
and the mixer layer—with the last two blocks being repeated
a certain number of times. To this end, only the cost layer
depends on the actual problem instance. It models the graph
by representing each node as a qubit and applying RZZ gates
between connected nodes, e.g., an edge between nodes 0 and
1 translates to a RZZ gate between qubits q0 and q1. By
anticipating that all possible edges are present, the cost layer
can be fully encoded.



0 1 2

3

4

q2 7→ Q0

q0 7→ Q1

q3 7→ Q2

q1 7→ Q3

State
Prep.

RZ

RZ

RZ

RZ

RZ RZ

Mixer
Layer

0 1

2 3

(a) imbq_quito. (b) Mapped quantum circuit. The state preparation and mixer layer are problem-independent and their compiled gate
sequences (as shown in Example 9) are encapsulated in respective blocks. Each SWAP gate (compiled to three CNOT
gates) is denoted in a blue box, each anticipated and also actually present edge is denoted in a black box while the
to-be-removed edges are denoted in red boxes.

(c) MaxCut prob-
lem instance.

Fig. 4: Mapping.

After the predictive encoding, all further compilation steps
can be conducted in the same fashion as before—just with
the difference that the resulting compiled quantum circuit
does not represent the actual problem instance (which is
not known yet) but an anticipated one. Using the predictive
encoding scheme, pre-compilation is no longer restricted to the
problem-independent parts of a general quantum algorithm (as
in the existing techniques reviewed in Section III-B), but can
be applied to the entire quantum circuit.

Example 9. Assume that the encoded quantum circuit from
Example 8 shall be executed on the five-qubit ibmq_quito
device that offers RZ ,

√
X , X, and CX gates as its native

gates and whose layout is shown in Fig. 4a. Then, each of
the QAOA building blocks—state preparation (consisting of
H gates), cost (RZZ gates), and mixer layers (RX gates)—
is first compiled to native gates using the following circuit
identities:

H = RZ(π/2) X RZ(π/2)

α

=
RZ(α)

RX(α) = RZ(π/2)
√
X RZ(α+ π)

√
X

After that, the circuit’s qubits can be assigned to the device
qubits as shown on the left-hand side of Fig. 4b. Consider
a single repetition of the cost and mixer layer. Then, two
SWAP gates (which are, in turn, decomposed into sequences
of three CX gates) are necessary to satisfy the connectivity
constraints imposed by the architecture throughout the entire
circuit. Eventually, this results in the mapped circuit shown in
Fig. 4b with the compiled SWAP gates denoted in the blue
boxes.

After these steps have been executed, a fully executable
general-purpose quantum circuit has been created—while the
actual problem instance is not known yet.

B. Circuit Adjustment Step

At runtime, the problem instance is known and the goal is
to make sure that the fully encoded, compiled, and mapped
circuit is altered such that it actually solves the problem
instance. For that, the difference between the encoded and the

actual problem instance must be determined. Subsequently, the
already compiled quantum circuit must be adjusted based on
the determined difference.

Example 10. Consider the same MaxCut instance as in
Example 7. It comprises four of the six anticipated edges as
illustrated in Fig. 4c (missing edges are denoted as dashed
red lines). Consequently, the pre-compiled quantum circuit
(shown in Fig. 4b) needs to be adjusted and the (compiled)
quantum gates representing the two missing edges must be
removed—as highlighted by red boxes each representing one
of the to-be-removed edges (while the black boxes represent
the actual present edges). The easiest way to accomplish
this—requiring only a linear traversal of the circuit—is by
simply setting the angles of all RZ gates corresponding to
the to-be-removed edges to zero. This adjustment effectively
makes the corresponding RZ gates no-ops and hence leads
to the applications of the remaining CX gates to cancel
each other out. The resulting circuit is executable and solves
the underlying problem—with barely any modifications to the
pre-compiled circuit necessary at runtime.

All these benefits do not come for free. As stated previously,
not only is it important for a circuit to be executable and
solve the problem, but the overhead introduced by compilation
should be as low as possible. For most systems, this overhead
can be quantified by the number of two-qubit gates in the
resulting circuit. Since predictive encoding anticipates many
different problem instances, it is highly likely that its compi-
lation induces a larger overhead compared to compiling a sin-
gle problem instance. As such, the proposed pre-compilation
scheme offers a trade-off between the time spent during
compilation at runtime and the quality of the resulting circuit.
Applying optimizations at runtime allows making this trade-
off almost continuous. The heavier optimizations are applied
at runtime, the closer the performance will typically get to the
established workflow—at the cost of longer runtimes.

Example 11. Consider again the circuit from Example 10.
Instead of only setting the angles of the RZ gates to zero
during circuit adjustment, a lightweight optimization removes
these gates entirely from the circuit and tries to cancel
subsequent CX gates that act on the same qubits. Considering
Fig. 4b, this completely eliminates the gates in the red boxes.



Compared to directly compiling the circuit for the problem
instance (as in the established workflow shown in Fig. 1),
the proposed scheme results in a circuit containing one more
SWAP gate. Note that some parts of the introduced SWAP
gates can be further canceled with parts of some RZZ gates
via the lightweight gate optimization—bringing the overhead
down to a bare minimum.

As shown by experimental evaluations, which are summa-
rized next, this can reduce the compilation time at runtime
by several orders of magnitude while maintaining comparable
compiled circuit quality.

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed compilation scheme
for varying problem instances and compares both the com-
pilation time at runtime and the quality of the compiled
quantum circuits. All implementations are available on GitHub
(https://github.com/cda-tum/mqt-problemsolver) as part of the
Munich Quantum Toolkit (MQT).

A. Setup

For the evaluation, the MaxCut problem described through-
out all examples is implemented based on Qiskit (v0.41.1) in
Python with various parameters:

• Number of nodes considered (and therefore qubits): 5 to
100 with a step size of 5.

• Chosen algorithm: QAOA with 3 repetitions.
• Targeted devices: ibmq_quito, ibmq_montreal, and

ibmq_washington with 5, 27, and 127 qubits, respectively.
Each problem instance is compiled to the smallest but
sufficiently large device.

• Predictive encoding assumption: Edges are possible be-
tween all qubit pairs (e = all) (as shown in the example
in Example 11) or each node can have at most one
possible edge to its immediate successor (e = 1).

• Problem instance creation: With sample probability
p ∈ {0.3, 0.7} a possible edge is actually present. The
higher p, the more anticipated interactions will be present
after the problem instance is revealed.

All problem instances evaluated are assessed by two criteria:

1) Compilation time at runtime and
2) Compiled circuit quality—determined by the number

of present two-qubit gates representing the compilation
overhead induced by the proposed approach with lower
being better.

For comparison, IBM’s Qiskit compiler is used with opti-
mization levels O0 to O3 following the quantum workflow
(mentioned in Fig. 1) while the compile-time steps of the
proposed approach have been conducted with Qiskit’s highest
optimization level O3. Additionally, it is spot-checked (using
MQT QCEC [42]) that the compiled and adjusted quantum
circuits created by the proposed approach are equivalent to
the created circuits of the baselines.

B. Results
The findings of this study are summarized in Fig. 5. For each

combination of e and p values—four combinations in total—
the compilation time at runtime and the resulting compiled
circuit quality have been evaluated and denoted side-by-side,
e.g., in Fig. 5a and Fig. 5b for the combination e = 1, p = 0.3.

The results show that the proposed compilation scheme is
faster than all Qiskit compilations for all the combinations
evaluated of e and p as indicated in the left figures of
Fig. 5. When comparing the time reduction depending on the
sample probability p, it is noteworthy that the improvement
is higher for both p = 0.7 cases compared to p = 0.3 cases.
The higher p is, the closer the predicted encoding is to the
actual problem instances, and consequently, less compilation
overhead is induced.

The respective qualities of the compiled circuits are indi-
cated on the right of Fig. 5. The proposed approach, again,
outperforms Qiskit’s O0 and is on par or only slightly worse
than the most optimized Qiskit compilation O3 in most cases.
When again comparing the p = 0.7 cases to the p = 0.3 cases,
p = 0.7 leads to a smaller overhead in terms of the number of
two-qubit gates and even outperforms Qiskit’s O3 for many
evaluated problem instances for e = all (as shown in Fig. 5h).

The evaluations demonstrate that the proposed compilation
scheme achieves a promising trade-off between compilation
time and compiled circuit quality. For scenarios where the
compilation time at runtime is of prime importance, Qiskit’s
fastest compilations are the baselines to beat—which the pro-
posed approach is strictly doing for all problem instances. On
top of that, the compiled circuit quality is always better than
Qiskit’s O0 and in the vast majority of cases comparable to
Qiskit’s most optimized O3 compilation—which comes with
an inferior compilation time by several orders of magnitude
and, by that, is often not a viable option in those scenarios.

VI. APPLICATION:
SATELLITE MISSION PLANNING PROBLEM

So far, the benefits of the proposed compilation scheme
have been shown and evaluated based on the rather academic
MaxCut problem. In this section, an application from the space
industry (taken from [43]) is introduced and the proposed
compilation scheme is applied to highlight the benefit it offers
for a real-world use-case.

A. Motivation

Currently, there are hundreds of satellites orbiting the Earth
with the goal of photographing certain locations. However,
each satellite usually has only a very narrow field-of-view
and, therefore, needs to physically rotate its optics between
capturing different locations while it is moving on its orbit
with constant speed. As a consequence, it may not be possible
to take images of all to-be-captured locations. Additionally,
the time to determine which locations to select is critical and
must stay within a fixed time budget—otherwise the result
is worthless, since the satellite may already passed the first
location.

https://github.com/cda-tum/mqt-problemsolver


20 40 60 80 100
Qubits

10 3

10 2

10 1

100

101

102

Ti
m

e 
[s

]

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(a) Compilation time at runtime: e = 1 and p = 0.3.

20 40 60 80 100
Qubits

102

Nu
m

be
r o

f t
wo

-q
ub

it 
ga

te
s

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(b) Compiled circuit quality: e = 1 and p = 0.3.

20 40 60 80 100
Qubits

10 4

10 2

100

102

104

Ti
m

e 
[s

]

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(c) Compilation time at runtime: e = 1 and p = 0.7.

20 40 60 80 100
Qubits

102

103

Nu
m

be
r o

f t
wo

-q
ub

it 
ga

te
s

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(d) Compiled circuit quality: e = 1 and p = 0.7.

20 40 60 80 100
Qubits

10 2

10 1

100

101

Ti
m

e 
[s

]

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(e) Compilation time at runtime: e = all and p = 0.3.

20 40 60 80 100
Qubits

102

103

104

105

Nu
m

be
r o

f t
wo

-q
ub

it 
ga

te
s

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(f) Compiled circuit quality: e = all and p = 0.3.

20 40 60 80 100
Qubits

10 3

10 2

10 1

100

101

102

Ti
m

e 
[s

]

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(g) Compilation time at runtime: e = all and p = 0.7.

20 40 60 80 100
Qubits

102

103

104

105

Nu
m

be
r o

f t
wo

-q
ub

it 
ga

te
s

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(h) Compiled circuit quality: e = all and p = 0.7.

Fig. 5: Experimental evaluation of the proposed approach for various parameter choices.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
.

 

1

2

3
4

0

L4

L2

L3L1

L0

Fig. 6: Satellite mission planning problem with five to be
imaged locations (L0 to L4) with two infeasible location pairs:
L1/L2 and L2/L3.

Example 12. Consider a satellite that is tasked to take photos
of five locations (L0 to L4) as shown in Fig. 6. While the
locations L0 and L1 are distant and provide enough time for
the physical rotation of the optics, there is a selection problem
for locations L1 to L3: If the location L1 is selected, it is in-
feasible to also select the location L2. Furthermore, if location
L2 is selected, location L3 becomes infeasible. Therefore, the
maximum number of feasible locations is achieved by selecting
all except L2—resulting in four captured locations.

B. Quantum Computing Approach

In [43], this problem has already been approached using a
quantum annealing ansatz. Therefore, a problem formulation
as a Quadratic Unconstrained Binary Optimization (QUBO)
problem was proposed.

In addition to the quantum annealing approach, this problem
can also be solved using gate-based quantum computing,
e.g., using QAOA. For that, a simplified problem formulation
compared to [43] has been chosen where each location can be
captured from one position on the orbit. By that, each location
is encoded as one qubit representing if that location has been
selected for capturing or not—with the goal of capturing as
many locations as possible while still being physically feasible.

Since QAOA is used—similar as in Fig. 3—also the circuit
structure for the satellite mission planning problem is similar:
Whenever two locations cannot be feasibly selected, there is a
RZZ gate (similar to the edges between nodes in the MaxCut
problem). The main difference to the MaxCut QAOA example
is a weight factor for every qubit (encoded by a RZ gate) to
represent the dependencies between selecting varies locations
as shown in Fig. 7 in its uncompiled form for the problem
instance depicted in Fig. 6. Additionally, all RZZ gates in
the problem layer are multiplied by a factor γ determined
by the specific problem instance and its translation to an Ising
Hamiltonian.

q0

q1

q2

q3

q4

State Prep.

H

H

H

H

H

×Repetitions

Weight Factor

RZ(θ0 · 2αi)

RZ(θ1 · 2αi)

RZ(θ2 · 2αi)

RZ(θ3 · 2αi)

RZ(θ4 · 2αi)

Cost Layer

γ · 2αi

γ · 2αi

Mixer Layer

RX(2βi)

RX(2βi)

RX(2βi)

RX(2βi)

RX(2βi)

Fig. 7: Satellite problem encoded using QAOA.

C. Experimental Evaluation

The satellite mission planning problem is evaluated with
similar parameters as the MaxCut problem:

• Number of locations considered (and, therefore, qubits):
5 to 100 with a step size of 5.

• Chosen algorithm: QAOA with 3 repetitions.
• Targeted devices: ibmq_quito, ibmq_montreal, and

ibmq_washington with 5, 27, and 127 qubits, respectively.
Each problem instance is compiled to the smallest but
sufficiently large device.

• Predictive encoding assumption: Each pair of subsequent
locations is either feasible or infeasible (e = 1).

• Problem instance creation: With sample probability
p = 0.4 a pair of to-be-captured locations is infeasible.

Using the compilation scheme proposed in Section IV
results in a significantly reduced compilation time at run-
time compared to Qiskit’s compilation schemes (as depicted
in Fig. 8a) while maintaining comparable compiled circuit
quality (as depicted in Fig. 8b)—similar to the results of the
experimental evaluations described in Section V. The proposed
approach is almost always faster than all baselines while the
difference becomes even more distinct with an increasing
number of qubits. Regarding the compiled circuit quality, the
proposed compilation scheme always outperforms Qiskit’s O0
and is only slightly worse than Qiskit’s most optimized O3
compilation—which is inferior by several orders of magnitude
in compilation time.

VII. DISCUSSION

All those mentioned benefits do not come for free. For
the predictive encoding, a suitable quantum algorithm and a
respective encoding of the problem class must be determined
and applied. This alone is challenging and requires expert
knowledge in both quantum computing and the problem
domain—constituting a whole research domain on its own.
The closer the anticipated problem instance comes to the actual
problem instance, the better will be the compilation quality.



20 40 60 80 100
Qubits

10 1

100

101

102

Ti
m

e 
[s

] Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(a) Compilation time at runtime: p = 0.4.

20 40 60 80 100
Qubits

102

103

Nu
m

be
r o

f t
wo

-q
ub

it 
ga

te
s

Proposed Scheme
Qiskit's O0
Qiskit's O1
Qiskit's O2
Qiskit's O3

(b) Compiled circuit quality: p = 0.4.

Fig. 8: Experimental evaluation for the satellite use-case.

Additionally, the encoding scheme must be chosen so that
the circuit adjustment step—which adjusts the already fully
executable pre-compiled quantum circuit to represent the ac-
tual problem instance and not the anticipated one—can be
conducted efficiently. Therefore, it is recommended to only
delete quantum gates from the pre-compiled circuit. Inserting
new gates could, in the worst case, destroy the mapping so
that this compilation step needs to be re-done—impairing the
desired compilation time at runtime improvement. Hence, it
heavily influences the trade-off between reduced compilation
time and compiled circuit quality—if it is either slow or
ineffective, the benefits of the proposed compilation scheme
dissolves.

To adapt the proposed scheme for arbitrary problems, some
one-time manual effort is required to setup the predictive
encoding based on the assumptions made. The degree of
required work needed depends very much on the selected
quantum algorithm. For some algorithms such as the Vari-
ational Quantum Eigensolver (VQE, [4]) it is simple since
the whole quantum circuit is problem-independent and can
be pre-compiled already by the approaches mentioned in Sec-
tion III-B. For other algorithms such as Grover [44] or Quan-
tum Phase Estimation (QPE, [45]) it is less straight-forward to
find efficient assumptive problem instances, since it is harder
to find an overarching anticipated problem instance that can be
encoded as a general-purpose circuit where all other possible
problem instances can be derived from.

VIII. CONCLUSIONS

Compilation is an essential—but time-consuming—part of
quantum workflows solving problems from any kind of appli-
cation domain and is currently almost exclusively conducted
at runtime. Additionally, every single problem instance is
compiled from scratch, even though they share a similar struc-
ture. This becomes even more severe for frequently recurring
problems.

In this paper, we proposed a comprehensive pre-compilation
scheme to reduce the compilation time at runtime based on
predictive encoding at compile-time and a respective circuit
adjustment at runtime. For that, a general-purpose quantum
circuit is created—subsuming a wide variety of problem
instances—and pre-compiled. As soon as the actual problem
instance becomes known, the pre-compiled circuit is adjusted
to represent the actual problem and not the anticipated one.

Experimental evaluations on QAOA for the MaxCut prob-
lem as well as a case study involving a satellite mission
planning problem show that this reduces the compilation time
at runtime by several orders of magnitude compared to Qiskit’s
compilation schemes while maintaining comparable compiled
circuit quality. All implementations are available on GitHub
(https://github.com/cda-tum/mqt-problemsolver) as part of the
Munich Quantum Toolkit (MQT).

However, implementing this proposed pre-compilation
scheme comes with a considerable one-time effort, since a suit-
able predictive encoding scheme to create the general-purpose
circuit is highly dependent on the problem class and the se-
lected quantum algorithm to solve it. In addition, the encoding
scheme must be chosen so that the circuit adjustment step can
be conducted efficiently. Therefore, this work constitutes a first
step towards a general comprehensive pre-compilation scheme,
but further steps are necessary.

ACKNOWLEDGMENTS

This work received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
101001318), was part of the Munich Quantum Valley, which is
supported by the Bavarian state government with funds from
the Hightech Agenda Bayern Plus, and has been supported
by the BMWK on the basis of a decision by the German
Bundestag through project QuaST, as well as by the BMK,
BMDW, and the State of Upper Austria in the frame of the
COMET program (managed by the FFG).

https://github.com/cda-tum/mqt-problemsolver


REFERENCES

[1] N. Stamatopoulos et al., “Option pricing using quantum
computers,” Quantum, 2020.

[2] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum Gen-
erative Adversarial Networks for learning and loading
random distributions,” npj Quantum Information, 2019.

[3] S. Harwood, C. Gambella, D. Trenev, A. Simonetto,
D. Bernal Neira, and D. Greenberg, “Formulating and
Solving Routing Problems on Quantum Computers,”
IEEE Transactions on Quantum Engineering, 2021.

[4] A. Peruzzo et al., “A variational eigenvalue solver on a
photonic quantum processor,” Nature Communications,
2014.

[5] N. Quetschlich, L. Burgholzer, and R. Wille, “Towards
an Automated Framework for Realizing Quantum Com-
puting Solutions,” in Int’l Symp. on Multi-Valued Logic,
2023.

[6] B. Poggel, N. Quetschlich, L. Burgholzer, R. Wille, and
J. M. Lorenz, “Recommending Solution Paths for Solv-
ing Optimization Problems with Quantum Computing,”
in Int’l Conf. on Quantum Software, 2023.

[7] N. Quetschlich, L. Burgholzer, and R. Wille, “Predict-
ing Good Quantum Circuit Compilation Options,” in
Int’l Conf. on Quantum Software, 2023.

[8] N. Quetschlich, L. Burgholzer, and R. Wille, “Compiler
Optimization for Quantum Computing Using Reinforce-
ment Learning,” in Design Automation Conf., 2023.

[9] Qiskit contributors, “Qiskit: An open-source framework
for quantum computing,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.2573505.

[10] S. Sivirajah, S. Dilkes, A. Cowtan, W. Simmons, A.
Edgington, and R. Duncan, “TKET: A Retargetable
Compiler for NISQ devices,” Quantum Science and
Technology, 2020.

[11] C. Developers, Cirq, version v1.2.0, 2023. [Online].
Available: https://doi.org/10.5281/zenodo.8161252.

[12] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis,
E. Smith, and USDOE, “Berkeley quantum synthesis
toolkit (bqskit) v1,” 2021. [Online]. Available: https :
//www.osti.gov/biblio/1785933.

[13] Amazon Braket Python SDK, Amazon Web Services,
2022. [Online]. Available: https : / / github . com / aws /
amazon-braket-sdk-python.

[14] Azure Quantum documentation, Microsoft, 2022. [On-
line]. Available: https : / / learn . microsoft . com / en - us /
azure/quantum/.

[15] B. Giles and P. Selinger, “Exact synthesis of multiqubit
Clifford+T circuits,” Physical Review A, 2013.

[16] M. Amy, D. Maslov, M. Mosca, and M. Roetteler,
“A meet-in-the-middle algorithm for fast synthesis of
depth-optimal quantum circuits,” IEEE Trans. on CAD
of Integrated Circuits and Systems, 2013.

[17] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary
quantum gate realizations for multiple-control Toffoli
gates,” in Int’l Symp. on Multi-Valued Logic, 2011.

[18] A. Zulehner and R. Wille, “One-pass design of re-
versible circuits: Combining embedding and synthesis
for reversible logic,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 2018.

[19] P. Niemann, R. Wille, and R. Drechsler, “Advanced
exact synthesis of Clifford+T circuits,” Quantum Infor-
mation Processing, 2020.

[20] T. Peham, N. Brandl, R. Kueng, R. Wille, and L.
Burgholzer, “Depth-optimal synthesis of Clifford cir-
cuits with SAT solvers,” in Int’l Conf. on Quantum
Computing and Engineering, 2023.

[21] M. Y. Siraichi, V. F. dos Santos, S. Collange, and
F. M. Q. Pereira, “Qubit allocation,” in Int’l Symp. on
Code Generation and Optimization, 2018.

[22] A. Zulehner, A. Paler, and R. Wille, “An efficient
methodology for mapping quantum circuits to the IBM
QX architectures,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 2019.

[23] A. Matsuo and S. Yamashita, “An efficient method for
quantum circuit placement problem on a 2-D grid,” in
Int’l Conf. of Reversible Computation, 2019.

[24] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping
quantum circuits to IBM QX architectures using the
minimal number of SWAP and H operations,” in Design
Automation Conf., 2019.

[25] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping
problem for NISQ-era quantum devices,” in Int’l Conf.
on Architectural Support for Programming Languages
and Operating Systems, 2019.

[26] T. Peham, L. Burgholzer, and R. Wille, “On Optimal
Subarchitectures for Quantum Circuit Mapping,” ACM
Transactions on Quantum Computing, 2023.

[27] S. Hillmich, A. Zulehner, and R. Wille, “Exploiting
Quantum Teleportation in Quantum Circuit Mapping,”
in Asia and South Pacific Design Automation Conf.,
2021.

[28] A. Zulehner and R. Wille, “Compiling SU(4) quantum
circuits to IBM QX architectures,” in Asia and South
Pacific Design Automation Conf., 2019.

[29] H. Mohammadbagherpoor et al., “Exploring airline
gate-scheduling optimization using quantum comput-
ers,” 2021. arXiv: 2111.09472.

[30] R. Orús, S. Mugel, and E. Lizaso, “Quantum comput-
ing for finance: Overview and prospects,” Reviews in
Physics, 2019.

[31] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum ap-
proximate optimization algorithm,” 2014. arXiv: 1411.
4028.

[32] F. Dominguez, J. Unger, M. Traube, B. Mant, C. Ertler,
and W. Lechner, “Encoding-independent optimization

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.8161252
https://www.osti.gov/biblio/1785933
https://www.osti.gov/biblio/1785933
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python
https://learn.microsoft.com/en-us/azure/quantum/
https://learn.microsoft.com/en-us/azure/quantum/
https://arxiv.org/abs/2111.09472
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028


problem formulation for quantum computing,” 2023.
arXiv: 2302.03711.

[33] M. Weigold, J. Barzen, F. Leymann, and M. Salm, “En-
coding patterns for quantum algorithms,” IET Quantum
Communication, 2021.

[34] M. Schuld and F. Petruccione, “Machine learning with
quantum computers.” Springer, 2021.

[35] T. Alexander et al., “Qiskit pulse: Programming quan-
tum computers through the cloud with pulses,” Quantum
Science and Technology, 2020.

[36] B. Li et al., “Pulse-level noisy quantum circuits with
QuTiP,” Quantum, 2022.

[37] H. Silvério et al., “Pulser: An open-source package for
the design of pulse sequences in programmable neutral-
atom arrays,” Quantum, 2022.

[38] A. Botea, A. Kishimoto, and R. Marinescu, “On the
complexity of quantum circuit compilation,” in Sympo-
sium on Combinatorial Search, 2018.

[39] D. Kudrow et al., “Quantum rotations: A case study
in static and dynamic machine-code generation for
quantum computers,” SIGARCH Comput. Archit. News,
2013.

[40] P. Gokhale et al., “Partial compilation of variational
algorithms for noisy intermediate-scale quantum ma-
chines,” in Int’l Symposium on Microarchitecture, 2019.

[41] J. Cheng, H. Deng, and X. Qian, “Accqoc: Accelerating
quantum optimal control based pulse generation,” 2020.
arXiv: 2003.00376.

[42] T. Peham, L. Burgholzer, and R. Wille, “Equivalence
checking of parameterized quantum circuits: Verifying
the compilation of variational quantum algorithms,” in
Asia and South Pacific Design Automation Conf., 2023.

[43] T. Stollenwerk, V. Michaud, E. Lobe, M. Picard, A.
Basermann, and T. Botter, “Image acquisition plan-
ning for earth observation satellites with a quantum
annealer,” 2020. arXiv: 2006.09724.

[44] L. K. Grover, “A fast quantum mechanical algorithm
for database search,” Proc. of the ACM, 1996.

[45] A. Y. Kitaev, “Quantum measurements and the Abelian
Stabilizer Problem,” 1995. arXiv: arXiv : quant - ph /
9511026.

https://arxiv.org/abs/2302.03711
https://arxiv.org/abs/2003.00376
https://arxiv.org/abs/2006.09724
https://arxiv.org/abs/arXiv:quant-ph/9511026
https://arxiv.org/abs/arXiv:quant-ph/9511026

	Introduction
	The Quantum Computing Workflow
	General Idea
	Motivation
	Related Work

	Proposed Compilation Scheme
	Compile-time Steps
	Circuit Adjustment Step

	Experimental Evaluation
	Setup
	Results

	Application: Satellite Mission Planning Problem
	Motivation
	Quantum Computing Approach
	Experimental Evaluation

	Discussion
	Conclusions

