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Abstract—Quantum computers are becoming a reality thanks
to the accomplishments made in recent years. The quantum
computers available today offer hundreds of qubits but are
still limited in the number of operations they can perform
before errors accumulate and the quantum state decays. In
regard to the error accumulation, non-local operations such as
CX or CZ are main contributors. One promising solution to
reduce the number of required non-local operations is to make
a more efficient use of the quantum hardware by exploiting the
inherent high-dimensional capabilities of quantum systems. In a
process called circuit compression, non-local operations between
qubits are mapped to local operations in qudits, i.e., higher-
dimensional systems. In this work, we present a strategy for
enabling quantum circuit compression with the aim of mapping
clusters of qubits in a given circuit to the mixed-dimensional
qudits of the target hardware. Further, we discuss the principles
of circuit compression as well as the physical structure of qubits
and qudits, before introducing a new representation that captures
the essence of quantum operations, affecting the different logical
levels in the quantum states in nodes and edges of a graph. Based
on this, we propose an automated approach for mapping qubit
circuits of arbitrary gate sets to mixed-dimensional quantum
systems, lowering the number of non-local operations. Empirical
evaluations confirm the effectiveness of the proposed approach,
reducing the number of non-local operations by up to 50% for
almost half of the cases. Finally, the corresponding source code
is available freely at github.com/cda-tdum/qudit-compression.

Index Terms—quantum computing, circuit compression, qudits

I. INTRODUCTION

The emergence of quantum computers promised a way of
solving relevant problems in both industry and academia that
are intractable on classical computers. We are currently in the
era of Noisy Intermediate-Scale Quantum (NISQ) devices [1].
This kind of quantum computer hosts up to several hundreds
of qubits and supports a limited set of quantum operations that
work on the qubits. There are multiple technologies that may
be used to realize quantum hardware, such as superconducting
circuits [2], single photons [3], neutral atoms [4], and trapped
ions [5]. Despite the impressive scaling, NISQ devices suffer
from noise in the qubits and the operations. A key observation
for improving the performance is that, while the implementa-
tions of quantum computers so far mostly use two-level qubits
only, the underlying physics support exploiting with a degree
of efficiency arbitrary d logical levels in the form of qudits
(quantum digits).

Research on qudit design and qudit computation has a
long history. So far the efforts are primarily focusing on
conceptual studies of algorithms for ideal qudits and their
comparison to qubits [6]. A qudit system not only enables
storage and processing of more information per quantum

particle, but it also features a richer set of logical operations [7]
that give the potential to make information processing more
efficient. Consequently, the improvements of qudit compu-
tation algorithmic and circuit complexity have been shown
for a wide class of problems [6]. Additionally, demonstration
of basic qudit control has been demonstrated in numerous
physical platforms, from trapped ions [8], [9], to photonic
systems [10]–[13], superconducting circuits [14], [15], Ryd-
berg atoms [16], nuclear spins [17], cold atoms [18], nuclear
magnetic resonance systems [19] and molecular spin [20].
More recently, a demonstration of a universal qudit quantum
processor with error rates that are competitive to qubit systems
has shown not only conceptual advantages but also practical
advantages in the implementations [9].

However, as of today most algorithms are designed with
qubits in mind. This trend is doomed to change as recent
developments in the field of quantum algorithms have proved
that a more natural architecture for implementing complex
applications [21], [22] are based on multi-level logic. Fur-
thermore, simulations of models representing fermion-boson
interactions, on qubit-qudit based quantum computers, would
be a significant step toward real time simulations of quantum
electrodynamics and other field theories with continuous or
larger symmetry groups [23]–[26], due to more efficient en-
codings on mixed-dimensional platforms.

Gate decompositions present a reduced complexity on
mixed-dimensional systems due to the temporal expansion
of the Hilbert space with auxiliary levels. This is similar
to the effect of using ancilla qubits, but with a simpler
circuit complexity and hardware design [27]. This leaves a
large potential to create algorithms and circuits untapped,
since exploiting higher dimensions to store and manipulate
information leads to smaller circuits that have a higher chance
of succeeding due to the smaller noise accumulated.

Notably, just increasing the dimension of all qudits in a
quantum circuit still leaves room for improvement [28], [29].
Although, enabling the usage of qudits of different dimensions
optimizes, the compactness of the circuit, finally at a compet-
itive error rate and experimental control [9].

An important aspect of realizing the impact of high-mixed-
dimensional systems is the need for new automated methods,
software frameworks, and theory [30]–[34]. Therefore, in this
paper, we propose an efficient approach to optimize non-
local operations in qubit circuits (such as CX or CZ) by
mapping them to corresponding circuits that operate on qudits
of mixed-dimensions. To this end, we first introduce a method
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of abstracting the interactions between qubits of a circuit by a
graph-based representation. Based on this graph, we propose to
create a clustering over the state space of the qubits—grouping
together qubits with frequent interactions. The dimensions of
the individual qudits are determined under consideration of
a user-defined number for the preferred dimensionality that
reflects the capability of the targeted hardware.

Overall, the proposed solution will, for the first time, enable
circuit compression for mixed-dimensional systems. Evalua-
tions show a drastic reduction in the number of non-local
gates that have to be used to realize a given functionality—
substantially reducing a main contributor to errors in quantum
circuits. The source code used in the evaluation is avail-
able under the MIT license at github.com/cda-tdum/qudit-
compression as part of the Munich Quantum Toolkit (MQT).

The remainder is organized as follows: Section II gives
a brief background on quantum computations with qubits
and qudits. Section III describes the considered problem,
reviews the state of the art, and summarizes the contribution
of this paper. Section IV introduces the proposed approach
of compressing qubit circuits into qudit circuits in detail.
Section V evaluates the proposed approach. Finally, Section VI
concludes the paper.

II. BACKGROUND

In this section, briefly review the basics of quantum infor-
mation processing with a focus on mixed-dimensional quan-
tum logic.

In classical computations, the primary unit of information
is the bit (binary digit), which can exclusively be observed
in either the 0 or the 1 state. This concept can easily be
generalized to quantum computers, with the qubit (quantum
bit) as the corresponding unit of information for quantum
computations. The crucial difference to the classical case,
however, is that qubits can be in any linear combination of
|0⟩ and |1⟩ (using Dirac’s bra-ket notation). Qubits are usually
constructed by restricting the natural multi-level structure
of the underlying physical carriers of quantum information.
These systems, therefore, natively support multi-level logic
with the fundamental unit of information termed a qudit
(quantum digit). A qudit is the quantum equivalent of a d-
ary digit with d ≥ 2, whose state can be described as a
vector in the d-dimensional Hilbert space Hd. The state of
a qudit can thus be written as a linear combination |ψ⟩ =
α0 · |0⟩+α1 · |1⟩+ . . .+αd−1 · |d− 1⟩, or simplified as vector
|ψ⟩ = [ α0 α1 ... αd−1 ]

T, where αi ∈ C are the amplitudes
relative to the orthonormal basis of the Hilbert space—given
by the vectors |0⟩, |1⟩, |2⟩, ..., |d− 1⟩. The squared magnitude
of an amplitude |αi|2 defines the probability with which the
corresponding basis state i will be observed when measuring
the qudit. Since the probabilities have to add up to 1, the
amplitudes have to satisfy

∑d−1
i=0 |αi|2 = 1.

Example 1. Consider a system of one qudit with only three
energy levels (also referred to as qutrit). The quantum state
|ψ⟩ =

√
1/3 · |0⟩+

√
1/3 · |1⟩+

√
1/3 · |2⟩ is a valid state with

equal probability of measuring each basis. Equivalently, the
quantum state may be represented as vector

√
1/3 · [ 1 1 1 ]

T.
In a similar fashion, quantum systems of mixed

dimensions can be constructed. Extending the previous

qutrit state by a qubit enables represention of the following
state |ψ′⟩ =

√
1/3 · |0⟩|0⟩+

√
1/3 · |1⟩|1⟩+

√
1/3 · |2⟩|0⟩—

equivalently represented by the vector
√

1/3 · [ 1 0 0 1 1 0 ]
T

Two key properties that distinguish quantum computing
from classical computing are superposition and entanglement.
A qudit is said to be in a superposition of states in a given
basis when at least two amplitudes are non-zero relative to this
basis. Entanglement, on the other hand, describes a form of
superposition born from interactions in multi-qudit systems.
Entanglement is a powerful form of quantum correlation,
where the quantum information is encoded in the state of
the whole system and cannot be extracted from the individual
qudits anymore. The state of a single d-level qudit system can
be manipulated by operations which are represented in terms
of d× d-dimensional unitary matrices U , i.e., matrices that
satisfy U†U = UU† = I . For a quantum circuit consisting of
multiple mixed-dimensional qudits, the unitary matrix will be
of dimension

∏
i di ×

∏
i di with di denoting the dimension

of each qudit. The state after the application of U can be
determined by multiplying the corresponding input state from
the left with the matrix U .

III. MOTIVATION

In this section, we discuss the concept of circuit compres-
sion, which aims at reducing the amount of resources required
by a computation. The use case considered in this work
is enabling the reduction in number of non-local operations
by mapping a given qubit circuit to a mixed-dimensional-
qudits architecture—enabling efficient usage of the available
resources.

A. Considered Problem

A common way to quantify the cost of a qubit circuit is to
count the number of non-local gates—commonly controlled
phase-rotations (CZ) or controlled negations (CX, also referred
to as CNOT). This is motivated by the higher error rates
due to more complicated experimental controls as the number
of affected qubits grows. In this regard, circuit compression
aims at improving the quality of computation by reducing the
number of operations in a sequence, with particular focus on
non-local operations, and, subsequently, the number of qubits
(or qudits) in the circuit.

More precisely, the process of circuit compression combines
sets of qubits in the given circuit to qudits of suitable dimen-
sion, and translates the local and non-local operations in the
given circuit to local multi-level operations in the resulting
compressed circuit. Since the compressed circuit may use
qudits of varying dimensions, it is also referred to as mixed-
dimensional circuit. Importantly, the routine preserves the
original computation, while optimizing the usage of resources
provided by the quantum hardware.

Example 2. Figure 1 illustrates the process of circuit com-
pression. The input to the routine is a qubit (i.e., two-level)
circuit with a multitude of local operations, interleaved with
entangling operations between all the qubits. It is possible to
observe that the first two qubits from the top interact with
two-qubit operations with a high frequency. Accordingly, a
compressed circuit (as shown on the right-hand side) could
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Fig. 1: Example of a 3 qubit circuit compressed into a ququart and qubit circuit. The squares represent qubit local operations,
while the cubes represent multi-dimensional local operations. The black lines between the black dots represent non-local
operations (CZ). The operation of compression shows how going from a qubit circuit to a qudit circuit allows to reduce the
number of entangling operation at the cost of local high-dimensional ones.

combine these two qubits into a ququart (i.e., four-level qudit).
This enables all the operations applied on the original first two
qubits to be translated into local operations on the ququart.

This circuit compression results in a drastic reduction of
non-local operations in the resulting circuit: only one non-
local operation is required in between the ququart and the
remained qubit.

B. State of the Art

The topic of quantum circuit compression has recently
moved into the focus of researchers. It has been timidly ex-
plored, with outcomes that shed some light on the conceptual
understanding on the relation between qubit logic and qudit
logic, and on the experimental realization of qubit circuits
compression. In the following, we discuss two recent works
that represent the state of the art on circuit compression.

In Ref. [35], the authors present a proof-of-concept of a
workflow for the compression of qubit circuits into a qudit
platform, which comprises transpilation, simulation, and post-
processing. Crucially, the presented workflow works on the
assumption that qudit circuits are described only by a given set
of high-level operations such as multi-controlled Toffoli gates.

The procedure described by Ref. [35] starts with the map-
ping of qubit circuits to a qudit platform with a fixed dimen-
sionality per qudit in order to reduce qubits and entangling
operations. This is accomplished through the enumeration of
all possible mappings, which is only computable for small
instances. The problem of finding mapping methods that can
scale polynomially with the size of the qubit circuit remains
an open one. The transpilation of non-local operations is in
linear time complexity, but this is again only possible due to
the restriction of the work to a specific multi-qubit entangling
gate set.

Ref. [36] analyses the problem of circuit compression of
qubit circuits on qudit circuits, again with qudits of a fixed
dimension, with a focus on multi-qubit entangling gates. The
emphasis is on the circuit complexity bounds after performing
a compression, which is shown to be combinatorial in the
dimensions of the considered systems. There is a discussion
on the further improvement that can be gained by expressing
non-local operations in the qudit space, with specific experi-
mental realizations on different technologies. The introduction
of algorithmic methods and heuristics that could define an
efficient mapping for quantum circuit compression guided by
the physical capabilities of the qudit platform remains an open
problem.

Ref. [37] proposes a compression scheme for supercon-
ducting ququarts, consisting of a new gate-set for performing
qubit-ququart gates and relative mapping procedure to assign
qubits to ququarts. Although being complete, the approach
is extremely technology specific and the number of levels
is constrained to maximum four, while several technology
platform can outperform the target architecture studied.

C. Contribution
In this work we investigate quantum circuit compression

from arbitrary qubit circuits into mixed-dimensional quantum
systems, to enable the potential benefits in terms of improved
circuit efficiency. To this end, we present a new set of design
automation tools that enable automatic and efficient quantum
circuit compression.

The proposed approach of mapping qubit circuits to qudit
circuits (quantum circuit compression) consists of two steps:

1) Encoding the qubit logic into a Hilbert space generated
by the combination of suitable higher dimensional car-
riers and

2) translating the non-local qubit operations into either
(i) corresponding non-local operations between mixed-
dimensional qudits or (ii) local operations within a qudit.

The encoding in the context of the first task can be achieved
by constructing the tensor product of the single qudits’ state
spaces. The crucial part of this step is to find suitable di-
mensions for the individual qudits. We propose an efficient
algorithm to cluster the qubits in the given circuit to reduce
the number of non-local operations between the clusters that
will subsequently compress into qudits. The mapping method
improves the efficiency of compilation algorithms by finding
an efficient logic encoding, that will lead to shorter circuits
compared to a naive one, such as the ladder-type coupling [31].
Further, the mixed dimensionality avoids wasting efforts in
controlling information not necessary for the computation.

The second step encompasses the translation of the
non-local qubit operations into genuine entangling two-qudit
operations. This step is important to ensure that the resulting
qudit circuit can be executed on a physical quantum com-
puter with the appropriate non-local operations in the higher
dimensions. In this regard, while the mapping routine is going
to be a necessary and useful preliminary step, a dedicated
compiler for high and mixed-dimensional quantum systems
is the suitable candidate to produce close-to-optimal results.
The simple translation of the qubit entangling operations to
qudit ones would just require the construction of correct pulses
by optimization, however the strength of mixed-dimensional



Fig. 2: On the left the multi-controlled Toffoli, MCX gate. On the right, a qubit circuit representing the transpiled version of
the MCX gate to two-qubit interactions and local gates (U1, U2, U3 and Hadamard). The two colored outlines represent the
individual qudits, where sub-portions of the qubit circuit are assigned to, depending on the results of the mapping.

systems is the richer entangling gate set given by the choice
of a specific technology.

An example illustrates the idea behind both the proposed
steps.

Example 3. Figure 2 demonstrates the mapping from a four
qubit circuit with a single three-controlled Toffoli (MCX) gate.
The implementation of the MCX is rather expensive in terms
of number of operations. After transpiling the original gate
into single-qubit gates and CZ gates, the physical interactions
between the qubits are observable and can be used to cluster
the qubits. In this case, the clusters are on the first two and
last two qubits, which subsequently get compressed into two
ququarts (qudits of dimension four). The translation step then
results in only one gate, the controlled-exchange [9] (CEX)
gate.

In the following section, we introduce an algorithm that
efficiently compresses qubit circuit into qudit circuits. The
proposed solution will, for the first time, enable circuit com-
pression for mixed-dimensional systems.

IV. MAPPING TO MIXED-DIMENSIONAL SYSTEMS

In this section, we describe a method to compress qudit
circuits into mixed-dimensional qudit circuits. More precisely,
this section describes the proposed approach to cluster qubits
in a given circuit based on the local and non-local opera-
tions and translate these clusters into a circuit with qudits
of corresponding dimensionality. Before, however, we briefly
review the benefits in exploiting different qudit platforms and
entanglement structures since they play an important role in
determining appropriate mappings.

A. Rationale for Qudit Systems
Qudit technology platforms present several challenges,

but promise to show near-term advantages over equivalent
qubit realizations. In fact, qudit systems have lower deco-
herence rates [6], they can use higher energy states for
implementing error correcting codes [38] and more efficient
encoding schemes [39].

In Ref. [40] is presented a comparative study between all the
most prominent qudit technologies, in terms of gate efficiency
for systems composed of sets of qubits or qudits. This allows
to understand the trade-offs required between the scaling of
information density inside a quantum circuit and noise error
rates. The efficiency of qudit gates must always be larger
than the multi-qubit one by a factor O(d2/ log2(d)). Given
equivalent Hilbert space dimensions, viable qudit platforms

Fig. 3: The black solid lines are local operations between basis
states, the black dots. The colored lines are the entangling
structure of CZ, CX, and CZ on two qubits.

are capable of outperforming equivalent state-of-the-art multi-
qubit ones in gate fidelity for pure dephasing. Moreover, this
performance could be extended to qudits with d as large as
40 or more. The reflections that come naturally with this
analysis is that qubit circuit compression can be performed
with different performances depending on the structure of
the quantum circuit, but especially on the capabilities of the
technology platform chosen for implementing d-leveled cir-
cuits. Performing the most efficient compression of a specific
qubit circuit will require the choice of the most suitable
dimensionality of the target qudits, and consequently the right
technology that can efficiently realize that circuit.

B. Entanglement Structures
Entanglement is a powerful quantum mechanical effect and

a key component in the efficiency of quantum computations.
Two or more qubits are in an entangled state, if their state
cannot be written as a product of states of the individual
qubits. Moreover, the entangling power or structure of non-
local operations corresponds to the amount of entanglement
generated by an operation, accompanied by the analysis of how
the constituent basis states of an entangled state are affected
by it.

Example 4. Figure 3 illustrates three different examples of
entangling structures for two qubits.

• ZZ (green line) entangles |0⟩ and |1⟩ of Q0 with |0⟩ and
|1⟩ of Q1, respectively.

• CX (red line) entangles |1⟩ of Q0 with |0⟩ and |1⟩ of Q1.
• CZ (red line) entangles |1⟩ of Q0 with |1⟩ of Q1.

The graph is derived from the matrix representations of the
operations and provides an insight on the physical application
of the pulses representing these operations. The three opera-
tions present three completely different entangling structures;



Fig. 4: A transpiled circuit where the operations are applied
to the single levels, the colored gates are respectively U gates
and Hadamard. There are weights assigned to each operation.

although the CX and CZ have the same amount of entropy or
entanglement, these physical measures are spread in different
ways, as graphically represented. The ZZ has double the
amount of entanglement, and we can visually represent it as
the application of two CZ on the upper and lower nodes of
the graph.

C. Mapping Qubit Circuits by Clustering Weighted Graphs
Recall from the previous sections that the objective of map-

ping qubit circuits to mixed-dimensional quantum systems to
suitable qudits is to reduce the number of qudits and non-local
operations. In this section, we utilize a graph representation of
circuits, where nodes correspond to levels in the qubit states
and edges correspond to non-local operations between them,
if the nodes belong to two different qubits, or local operations
if two nodes belong to the same qubit.

Since the single levels of the qubit have now an increased
relevance, we will represent quantum circuits with each qubit
split into level 0 and level 1, as in Figure 4. In the graph,
edges with a high weight signify many local or non-local
operations between the corresponding nodes and, as such,
promising candidates of nodes to be included in a cluster.

To transform a given circuit into the graph representation,
it is first transpiled to only unitary local operations and
controlled-Z (CZ) gates. This enables an easy discrimination
between local and non-local operations when more sophisti-
cated gates are used. The choice of the CZ gate also simplifies
the resulting graph since it is only a one-edge connection be-
tween the |1⟩ of two different qubits (see Figure 3). Moreover,
it is a well studied gate with useful properties for application
between two qudits [36], [41].

Every operation in the quantum circuit is assigned a weight,
and the corresponding edge will store the sum of all the
weights of all the operations applied to it. The weight rep-
resents the attraction between two distinct levels in the graph.
Further, the weight of local operations is 4 times higher than
that of CZ gates.

Although the error rates of entangling operations being one
order of magnitude higher than the local ones, the cost of
implementation of a qubit local operations transpiled into a
non-local one in the qudit circuit is roughly estimated to be
at least 4 times higher, as it supposed that a local operation
transpiled to an entangling operation will require several swap
operations to make the operation feasible. In this way, the
graph allows also to split the logic of a single qubit between
two qudits, when necessary. This can be useful when a qubit
has no local operations but is frequently used as control or as

Fig. 5: Initial and clustered graph. The left-hand side of
shows the corresponding initial (unlabeled) graph of levels
and weights between the levels. The right-hand side shows the
clustered graph with a ququad (green nodes, four dimensions)
and a qubit (red nodes, two dimensions).

Fig. 6: Compiling into qudit circuit–illustrates a clustering on
a graph as well as the correspondingly compiled circuit.

an ancilla. The control level can be mapped together with the
target qubit inside the same qudit, giving a local connotation
to the previous entangling relation.

Once the weighted graph is retrieved, levels with high
interaction should ideally be mapped to the same qudit. This
is achieved with an adaption of the K-means algorithm. We
refer to the GCLU software that implements the K-means
and M-algorithm for graph clustering [42] for details on
this algorithm. The algorithm effectively has the objective of
assembling together nodes that maximize the total sum of the
weights on the edges internal to the cluster, while it minimizes
the total sum of the weights of the edges connecting two
different clusters. Since the mapping to qudit systems requires
the minimization of entangling operations, in this way the
algorithm reduces the number of qubit operations and also the
number of entangling operations in-between qudits that need
to be transpiled.

Since running K-means on the graph enables results only
where the final qudits always have local operations, we
propose a second construction, that considers the possibility
of having qudits without local operations—referred to as
full connectivity. The initial construction of the graph remains
identical, but in an additional step, all pairs of nodes without an
edge between them are connected by an edge with a small but
non-zero weight. Figure 5 shows how the results of clustering
a graph following only the circuit’s connectivity.

Figure 6 shows how once the final mapping is produced, the
transpilation step can take place. For this step, the efficient
realization of the entangling operations between qudits is
assumed to be solved externally from the tool by a compiler,
and that the experimental control is up to the task.

V. EVALUATION

In this section, we evaluate the method proposed in this
paper. To this end, we consider a set of established algorithms



TABLE I: Evaluation of the proposed approach comparing the number of required non-local CZ gates
Benchmark Full Connectivity Circuit Connectivity

Name Qubits #CZ Qudits #CZ Ratio Qudits #CZ Ratio

Amplitude Est. 10 90 [8x1,2x1,4x3] 78 0.867 [8x1,2x1,4x3] 78 0.867
31 918 [8x2,16x1,2x5,4x8] 878 0.956 [128x1,2x6,4x9] 858 0.935

GHZ State 10 9 [4x5] 4 0.444 [4x5] 4 0.444
15 14 [2x1,4x7] 7 0.500 [2x1,4x7] 7 0.500
31 30 [2x1,4x15] 15 0.500 [8x1,2x2,4x13] 15 0.500

Graph State 10 10 [8x1,2x1,4x3] 4 0.400 [16x1,1x1,4x3] 6 0.600
15 15 [2x1,4x7] 8 0.533 [2x1,4x7] 8 0.533
31 31 [2x1,4x15] 16 0.516 [2x1,4x15] 16 0.516

Grover no-Ancillas 10 39 032 [32x1,2x3,4x1] 36 924 0.946 [32x1,2x3,4x1] 36 924 0.946
QAOA (Max-Cut) 10 40 [8x1,2x1,4x3] 16 0.400 [8x1,2x1,4x3] 16 0.400

15 60 [2x1,4x7] 32 0.533 [2x1,4x7] 32 0.533
Quantum Phase Est. Inexact 10 102 [8x1,2x1,4x3] 81 0.794 [8x1,2x1,4x3] 81 0.794

15 231 [16x1,2x3,4x4] 202 0.874 [16x1,2x3,4x4] 202 0.874
31 963 [64x1,2x5,4x10] 886 0.920 [32x1,2x4,4x11] 891 0.925

VQE (Max-Cut with TwoLocal ansatz) 10 90 [4x5] 80 0.889 [4x5] 80 0.889
15 210 [2x1,4x7] 196 0.933 [2x1,4x7] 196 0.933

W-State 10 18 [4x5] 8 0.444 [4x5] 8 0.444
15 28 [2x1,4x7] 14 0.500 [2x1,4x7] 14 0.500
31 60 [2x1,4x15] 30 0.500 [2x1,4x15] 30 0.500

“Ratio” is the fraction of CZ gates in the compressed and initial circuits.

working on qubits and compress them to circuits working on
a mixed-dimensional set of qudits.

The implementation is available freely under the MIT li-
cense at github.com/cda-tdum/qudit-compression as part of
the Munich Quantum Toolkit (MQT). It is completely written
in Python 3, with exception of the external dependencies
Qiskit [43] and GCLU Software [42]. This section provides
benchmarks for the problem of circuit compression to mixed-
dimensional systems, solved through the realization of a new
mapping solution for qubit circuits towards high and mixed-
dimensional systems.

The evaluations were performed on a server running
GNU/Linux using an Intel(R) Xeon(R) W-1370P (at 3.6GHz)
and 128GiB main memory. The execution time is dependent
on Qiskit [43] and Python version under which the initial
parsing and analysis of the qubit circuit is performed, and on
the number of iterated runs of the clustering algorithm. The
clustering procedure is run 20 000 times, with 4 as preferable
dimensions of the clusters. The clustered physical dimensions
are converted in terms of dimensions of the single qudit spaces.
Each of the considered benchmarks has a total execution time
in the order of seconds.

The results are presented in Table I. The first group of
columns contains the basic information on the considered
benchmark: The name of the algorithm, the number of qubits,
and the number of CZ gates after decomposition. The fol-
lowing two column groups contain the information on the
resulting qudit circuits for “Circuit Connectivity” (edges in
the graph correspond to the connections of the states ac-
cording to the circuit) and “Full Connectivity” (all nodes
in the graph are pair-wise connected). The “Qudit” column
lists the dimensions of the qudits in the resulting circuit in
the form Dimension x Count, e.g., 4x3 denoting three qudits
of dimension four. Following, the columns “#CZ” give the
number of non-local CZ operations in the circuits—with the
“Ratio” between the compressed circuit and the initial qubit
circuit. In many of the benchmark instances, the compressed
circuits need less than 50% of the non-local gates compared to
the initial qubit circuit. The method has always success even

if with a small percentage of improvement.
There is an instance of the Max-Cut problem, solved with

two different algorithms, namely QAOA and VQE. One set
of solutions is squarely set around 40% to 50%, while the
other group is around 90%. Circuit structure plays a major
role in mapping to a mixed-dimensional, albeit the study of
the reasons is beyond the scope of this work.

Overall, the results confirm the drastic reduction in the
number of non-local operations as mixed-dimensional qudits
are used to realize the circuit. This reduction directly translates
to a reduction of one of the main contributors for errors in
quantum operations for the circuits.

VI. CONCLUSION

In this work, we proposed an approach to compress qubit
circuits into qudit circuits. While qudits offer a richer state-
space, most algorithms as of today are developed with qubits
in mind. The proposed method enables utilizing the best
of both worlds: The algorithms can be based on two-level
qubits but during the eventual execution the hardware can
efficiently exploit higher-dimensions. The evaluations showed
a significant reduction in the number of non-local quantum
operations and, therefore, a reduction in one of the main contri-
butions of undesired noise due to errors in quantum operations.
Possible future work comprises a stronger consideration of the
hardware to create clusters that are more compliant to specific
gate sets imposed by the qudit platform.
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