
Towards Hamiltonian Simulation
with Decision Diagrams

Aaron Sander∗ Lukas Burgholzer∗ Robert Wille∗§
∗Chair for Design Automation, Technical University of Munich, Munich, Germany

§Software Competence Center Hagenberg (SCCH) GmbH, Hagenberg, Austria
aaron.sander@tum.de, lukas.burgholzer@tum.de, robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum/

Abstract—This paper proposes a novel approach to Hamil-
tonian simulation using Decision Diagrams (DDs), which are
an exact representation based on exploiting redundancies in
representations of quantum states and operations. While the
simulation of Hamiltonians has been studied extensively, scaling
these simulations to larger or more complex systems is often
challenging and may require approximations or new simulation
methods altogether. DDs offer such an alternative that has not
yet been applied to Hamiltonian simulation. In this work, we
investigate the behavior of DDs for this task. To this end,
we review the basics of DDs such as their construction and
present how the relevant operations for Hamiltonian simulation
are implemented in this data structure—leading to the first
DD-based Hamiltonian simulation approach. Based on several
series of evaluations and comparisons, we then discuss insights
about the performance of this complementary approach. Overall,
these studies show that DDs indeed may offer a promising new
data structure which, for certain examples, can provide orders
of magnitudes of improvement compared to the state-of-the-art,
yet also comes with its own, fundamentally different, limitations.

Index Terms—Decision Diagrams, Quantum Simulation, Ten-
sor Networks, Quantum Computing

I. INTRODUCTION

Hamiltonian simulation is a powerful tool for understand-
ing the behavior of complex physical systems [1]–[4] and
related problems that can be mapped to Hamiltonians [5]–[7].
However, the development of efficient and accurate simulation
methods remains a significant challenge due the exponential
growth of the number of complex values needed to represent
quantum states and operators. Hence, straightforward solutions
such as statevector simulators [8]–[10] quickly run into scala-
bility issues. Dedicated data structures such as tensor networks
[11], [12] or neural network quantum states [13]–[15] remain
limited in their ability to handle large and complex systems
without reaching limits in memory or runtime requirements—
motivating the research for further complementary methods
which can overcome this limit for certain classes of prob-
lems [16], [17].

In this paper, we introduce Decision Diagrams (DDs) as
a new data structure for simulating Hamiltonians. DDs have
historically found great success in the domain of classical
computing as an efficient means to represent and manipulate
Boolean functions and, hence, classical circuits and sys-
tems [18], [19]. Inspired by their application in classical com-
puting, DDs were adapted to the quantum realm as a core data
structure for quantum circuit simulation [20], [21], quantum
circuit synthesis [22]–[24], quantum circuit verification [25],
and measurements with shallow circuits [26]. however, they
have yet to be applied to more general quantum systems.
Their main advantage rests on exploiting redundancies in

quantum states and operations which can lead to significant
compression in the memory requirements needed to represent
these structures and reduce the runtime necessary to perform
calculations. In this paper, we shed light on their ability to
simulate Hamiltonians and propose them as a complementary
tool to other state-of-the-art methods.

To this end, we first review the basics of Hamiltonian
simulation in Section II and describe the limits for simu-
lating Hamiltonian systems using the current state-of-the-art
methods in Section III. Motivated by that, we then introduce
DDs as a novel, complementary approach in Section IV—
aiming for a self-contained coverage without assuming any
computer science background. Eventually, this leads to the first
Hamiltonian simulation approach based on DDs.

Following this, we conducted several series of evaluations
and comparisons to gain insight into the performance of this
complementary approach. The obtained results (summarized in
Section V) clearly show that, for certain examples, DD-based
Hamiltonian simulation can provide orders of magnitude of
improvement compared to the state-of-the-art, i.e., methods
based on sparse calculations, statevector simulators, and tensor
networks. We also investigated the limitations of this pro-
posed alternative, which are fundamentally different for DDs
compared to the current state-of-the-art methods—requiring a
shift in perspective to fully utilize their benefits. We conclude
from these investigations that DDs offer a promising new data
structure for Hamiltonian simulation that is complementary
to existing approaches and, hence, may continue to play an
important role in the development of efficient and accurate
simulation methods.

II. HAMILTONIAN SIMULATION

In this section, the main concepts of Hamiltonian simula-
tion are reviewed. While the individual descriptions are kept
brief, the interested reader is referred to [27]–[29] for more
information.

A. Quantum Dynamics

Hamiltonian simulation is a computational technique used
to simulate the dynamics of physical systems. The energy
of a system is encoded into a mathematical object called
a Hamiltonian that describes the interactions and states of
a system. Based on this, the dynamics of a system can
be determined by solving the time-dependent Schrödinger
equation for some quantum state |Ψ⟩ and Hamiltonian H , i.e.,

d

dt
|Ψ⟩ = − i

ℏ
H |Ψ(t)⟩ . (1)

This results in the unitary time evolution operator U(t) that is
used to calculate the state at some time t, i.e.,

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ =: U(t) |Ψ(0)⟩ , (2)

where ℏ = 1 for simplicity. It is then possible to calculate the
dynamics of measurable physical quantities called observables
using the expectation value, i.e.,

⟨O(t)⟩ = ⟨Ψ(t)|O|Ψ(t)⟩ = ⟨Ψ(0)|U†(t)OU(t)|Ψ(0)⟩ . (3)

Examples of physical quantities that can be analyzed from
observables include the energy of a system, magnetization,
and the number of particles in a system [30].

B. Product Formula

The matrix exponential defining the time evolution operator
in Eq. (2) is often difficult or impossible to compute, especially
as it grows in size and complexity. In order to perform the
time evolution within a controlled error bound, the Lie product
formula can be used to break this operator into simpler,
more efficient operations [27], [28]. The matrix exponential
is decomposed into its constituent terms based on the Baker-
Campbell-Hausdorff (BCH) formula, i.e.,

exAexB = ex(A+B)+ 1
2x

2[A,B]+O(x3), (4)

where [A,B] is the commutator of A and B defined by
[A,B] := AB −BA.

This results in a matrix analog to the exponential identity
eaeb = e(a+b) which is commonly referred to as the first-order
Suzuki-Trotter decomposition, i.e.,

ex(A+B) = exAexB +O(x2). (5)

From this, it directly follows that

e(A+B) =
(
e

A+B
n

)n

= lim
n→∞

(
e

A
n e

B
n

)n

. (6)

Thus, the unitary time evolution for a Hamiltonian described
by a sum of terms H = A + B can be approximated by a
sequence of discrete timesteps δt = t

n , i.e.,

U(t) = e−iHt ≈
(
e−iδtAe−iδtB

)n

=
(
U(δt)

)n

, (7)

where n is known as the Trotter number. According to Eq. (4),
this approximation is exact whenever A and B commute since
in that case [A,B] = 0. In general, the approximation error
(known as Trotter error) scales with the number of non-
commuting terms in the Hamiltonian H (according to Eq. (4)).
Therefore, Hamiltonians with more non-commuting terms
require more Trotter steps to compensate for the error when
using product formulas. However, this also means that product
formulas perform especially well for simulating Hamiltonians
with commuting or nearly-commuting terms and, in such
cases, only require few Trotter steps.

For an overview on more precise error bounds that take into
account more specific parameters such as system size, see [29].

C. Ising Model
This paper will primarily focus on the transverse field

Ising model as a representative of an important class of
Hamiltonians. In its general form, it models the spins of
interacting particles and is described by the Hamiltonian

H = −
∑
⟨i,j⟩

Jijσ
[i]
x σ[j]

x −
∑
j

gjσ
[j]
z , (8)

where Jij is the interaction strength between nearest-neighbor
spin pairs at sites ⟨i, j⟩ and gj is an external field pointing
perpendicular to the interactions at site j. It is a natural
starting point for Hamiltonian simulation since it can be used
to formulate many computationally hard problems, such as
spin glasses, Quadratic Unconstrained Binary Optimization
problems (QUBOs), or graph partitioning [5]. The following
constrained version of this type of Hamiltonian will be used
to illustrate all proposed concepts and methods throughout the
remainder of this paper.

Example 1. The L-site finite 1D Ising chain is defined by

H = −J

L−2∑
ℓ=0

σ[ℓ]
x σ[ℓ+1]

x − g

L−1∑
ℓ=0

σ[ℓ]
z , (9)

where the parameters are site-independent, i.e., Jij := J and
gℓ := g. Using the product formula, a single Trotter under this
model has the form

U(δt) =

L−2∏
ℓ=0

ei Jδt σ
[ℓ]
x σ[ℓ+1]

x

L−1∏
ℓ=0

ei Jδt σ
[ℓ]
z , (10)

where each term is defined by the rotation gates

Rxx(θ) = e−i θ
2 (σx⊗σx)

=

 cos(θ
2) 0 0 −i sin(θ

2)

0 cos(θ
2) −i sin(θ

2) 0

0 −i sin(θ
2) cos(θ

2) 0

−i sin(θ
2) 0 0 cos(θ

2)

 (11)

and

Rz(θ) = e−i θ
2σz

=
(

e−i θ
2 0

0 ei
θ
2

)
.

(12)

For a 4-site chain, this decomposition is equivalent to the
circuit form with rotation gates applied first to even then odd
sites as sketched in the following figure:

U(δt) ≡

Rxx(−2Jδt)

Rxx(−2Jδt)

Rxx(−2Jδt)

Rz(−2gδt)

Rz(−2gδt)

Rz(−2gδt)

Rz(−2gδt)

D. Heisenberg Model
This paper also considers a related model called the Heisen-

berg model [31] which considers additional spin couplings
along the y- and z-axes. This is represented by the Hamiltonian

H =− Jx
∑
⟨i,j⟩

σ[i]
x σ[j]

x − Jy
∑
⟨i,j⟩

σ[i]
y σ[j]

y

− Jz
∑
⟨i,j⟩

σ[i]
z σ[j]

z − h
∑
j

σ[j]
z .

(13)

Example 2. The XXX Heisenberg model is a subset of
Heisenberg models such that Jx = Jy = Jz . The L-site finite
1D XXX Heisenberg chain is defined by

H =− J
(L−2∑

ℓ=0

σ[ℓ]
x σ[ℓ+1]

x +

L−2∑
ℓ=0

σ[ℓ]
y σ[ℓ+1]

y

+

L−2∑
ℓ=0

σ[ℓ]
z σ[ℓ+1]

z

)
− h

L−1∑
ℓ=0

σ[ℓ]
z .

(14)

For a 4-site chain, a single Trotter step decomposition is
equivalent to the circuit as shown in the following figure:

U(δt) ≡

Rxx(−2Jδt)

Rxx(−2Jδt)

Rxx(−2Jδt)

Ryy(−2Jδt)

Ryy(−2Jδt)

Ryy(−2Jδt)

Rzz(−2Jδt)

Rzz(−2Jδt)

Rzz(−2Jδt)

Rz(−2gδt)

Rz(−2gδt)

Rz(−2gδt)

Rz(−2gδt)

III. MOTIVATION

Hamiltonian simulation, reviewed above, is a crucial tool
for understanding the behavior of quantum systems under
different conditions. The physics research that uses quantum
simulation can help us explore new phenomena and deepen
our understanding of the fundamental workings of quantum
systems. At the same time, quantum simulation can also have
significant implications for material science and chemistry,
enabling researchers to design and develop new materials and
study chemical reactions at the molecular level.

By simulating the behavior of quantum systems using
Hamiltonians, researchers can gain insights into the dynam-
ics of quantum systems, and better understand how they
will behave under different conditions. This is an important
step in bridging theory and experimental results and can
help accelerate the development of new quantum devices
and quantum hardware. By simulating the behavior of these
devices, researchers can optimize their designs and improve
their performance.

Another important application of Hamiltonian simulation is
in the optimization of complex systems. Many problems in
fields such as machine learning [32] and logistics [33] can be
mapped to Hamiltonians, allowing researchers to explore the
energy landscapes and time-dynamics within given constraints.
This can help to identify optimal solutions to complex prob-
lems and drive innovation in fields ranging from drug design
to financial modeling.

A. General Problem

However, despite this broad spectrum of applications,
Hamiltonian simulation, at its core, relies on descriptions of
quantum systems that grow exponentially with system size.
Quantum states and operators, such as those that represent
Hamiltonians, are often described by complex vectors and
matrices, respectively. For example, for a system consisting of
L d-level systems, the quantum state |Ψ⟩ can be represented
by a vector in CdL

, and the operator O can be represented
by a matrix in CdL×dL

. As the system size and complexity
of interactions increase, these objects become increasingly
computationally difficult to simulate due to the exponential
growth in memory requirements and calculation runtime.

Therefore, there is a need for dedicated data structures that
can efficiently simulate quantum systems on classical comput-
ers while scaling well with system size and complexity. This
involves developing new algorithms and techniques that can
represent the exponential growth in a more manageable way.
This makes it possible to study more complex phenomena and
design new materials and devices. As quantum technologies
continue to advance, these classical methods will become
increasingly important for simulating and understanding quan-
tum systems in a wide range of applications.

Example 3. Consider again the scenario from Example 1
and, for simplicity, let J = g = 1. Assume that the system
starts in the all-zero state, i.e., |Ψ(0)⟩ = |0 . . . 0⟩ and that
we are interested in the expectation value of the observable
O = σ

[1]
z at t = 1. Then, using a single Trotter step and, hence,

δt = t
n = 1, this corresponds to the computation as shown in

the following figure:

|0⟩

|0⟩

|0⟩

Rxx(−2)

Rxx(−2)

Rz(−2)

Rz(−2)

Rz(−2)

Z

Rz(2)

Rz(2)

Rz(2)
Rxx(2)

Rxx(2)
⟨0|

⟨0|

⟨0|

This can be applied for multiple values of t such that we can
sample various points of the time evolution of the observable.
Although simple in theory, calculating the expectation value
for even a single time becomes computationally expensive for
large system sizes.

B. Related Work

In the past, various classical methods have been proposed to
tackle the underlying complexity of this problem in different
fashions. Each simulation method has its own strengths and
limitations, and the choice of which method to use depends
on the specific requirements of the simulation such that they
can be seen as complementary to each other.

More precisely, a direct method that can save memory and
computational time is by utilizing sparse vectors and matrices
that only store non-zero terms [34]. This method does not
require the decomposition of the time evolution operator into
local operations, but it still suffers from exponential scaling
according to system size and requires direct construction of
the unitary time evolution operator. This method is easily
accessible as many linear algebra packages such as SciPy have
direct support for sparse data structures and operations such
as the sparse matrix exponential [35].

Statevector simulation [8]–[10] is another method used for
simulating quantum systems by decomposing large unitaries
into circuits as done in the product formula described in
Section II-B. This method is very useful for simulating small
systems and is not limited by long-range interactions or deep
circuits. They do, however, grow exponentially with system
size as it is still necessary to store all the amplitudes of the
statevector.

Tensor networks, on the other hand, were developed to ad-
dress the exponential scaling problem of statevector simulation
in quantum many-body systems [11], [12]. They use local
tensors to describe the quantum state and operations such that
their complexity grows linearly with the system size based on
an Area Law [36]. Tensor networks can represent larger system

sizes than statevector methods, but complex operations such
as deep circuits or Hamiltonians with long-range interactions
require larger tensors to represent, leading to operations be-
coming computationally expensive and requiring high memory
storage [37]. The Time-Evolving Block Decimation (TEBD)
algorithm, which is based on the product formula as described
in Section II-B, is limited to short-range interactions, shallow
circuits, and one-dimensional geometries. The optimization of
the contraction order of the operations in this method is an
active area of research [38]–[42]. Furthermore, the values in
the tensors can be truncated, leading to an approximation of
the state [43].

There are also other relevant state-of-the-art simulation
methods that are not based on the product formula. For ex-
ample, Krylov subspace methods, such as the Time-Dependent
Variational Principle (TDVP, [44]), are not limited to short-
range interactions, but they are more computationally expen-
sive. Neural network quantum states (NQS, [13]–[15]) are
also a promising method for approximate simulation using
Monte Carlo methods, but they may require exponentially
many samples for large system sizes [45].

While all of these methods have pushed our simulation
capabilities forward, each has its own limitations such that
there is no perfect answer to all problems. In this regard,
there continues to be a need for alternative methods which
can expand these capabilities further.

IV. DECISION DIAGRAMS

In this section, we introduce a novel, complementary ap-
proach to classically simulate Hamiltonians based on (quan-
tum) Decision Diagrams (DDs). DDs are a data structure
inspired by Binary Decision Diagrams (BDDs) commonly
used to represent and manipulate Boolean functions in com-
puter science [18]. More specifically, a decision diagram, as
it is considered in this work, is a directed acyclic graph with
complex-valued edge weights that can be used to represent and
manipulate quantum states and operators. DDs have already
shown promise in classical quantum circuit simulation [20],
[21], synthesis [22]–[24], verification [25], and measurements
with shallow circuits [26]. However, their application to
Hamiltonian simulation has not been explored. The remainder
of this section presents an introduction to decision diagrams
as a data structure for Hamiltonian simulation. Our focus is
to make this introduction as self-contained as possible without
assuming any computer science background.

A. Representing Quantum States

The journey towards representing quantum states as de-
cision diagrams starts with the simple case of a single-site
system. The state |Ψ⟩ of such a system is described by two
complex-valued, normalized amplitudes α0 and α1, i.e.,

|Ψ⟩ = α0 |0⟩+ α1 |1⟩ , (15)

where |0⟩ and |1⟩ are the computational basis states of a
two-level system. This is commonly represented as a statevec-
tor

|Ψ⟩ ≡
(
α0 α1

)⊤
. (16)

A rather simple observation and consequence of Eq. (15) is
that this vector can be equally split into a contribution of the
|0⟩ state (α0) and a contribution of the |1⟩ state (α1), i.e.,

(|Ψ⟩︷ ︸︸ ︷
|0⟩
α0

|1⟩
α1

)⊤
. (17)

This decomposition lies at the core of the decision diagram
formalism. The decision diagram representing |Ψ⟩ has the
structure

|Ψ⟩ ≡ (α0 α1)
⊤ ≡

α0 α1

. (18)

It consists of a single node with one incoming edge that
represents the entry point into the decision diagram as well
as two successors that represent the splitting shown from
Eq. (17) and end in a terminal node (the black box). The
state’s amplitudes are annotated to the respective edges. Edges
without annotations correspond to an edge weight of 1.

Example 4. Consider the computational basis states |0⟩ and
|1⟩. Then, the corresponding decision diagrams have the
structures

|0⟩ ≡ (1 0)⊤ ≡
1

|1⟩ ≡ (0 1)⊤ ≡
1

. (19)

In each of the cases, one of the successors ends in the
terminal node, while the other ends in a zero stub (indicated
by a black dot)—notably resembling the corresponding vector
descriptions.

Building off the intuition from a single-site state, we can
move to larger systems.

Example 5. Consider the following statevector of a three-site
system:

|Ψ⟩ =
(

1
2
√
2

1
2
√
2

1
2 0 1

2
√
2

1
2
√
2

1
2 0

)T

(20)

Then, |Ψ⟩ can be recursively split into equally-sized parts
similar to Eq. (17), i.e.,

|q2q1q0⟩︷ ︸︸ ︷
|0q1q0⟩︷ ︸︸ ︷

|00q0⟩︷ ︸︸ ︷(|000⟩1
2
√
2

|001⟩
1

2
√
2

|01q0⟩︷ ︸︸ ︷
|010⟩
1
2

|011⟩
0

|1q1q0⟩︷ ︸︸ ︷
|10q0⟩︷ ︸︸ ︷

|100⟩
1

2
√
2

|101⟩
1

2
√
2

|11q0⟩︷ ︸︸ ︷
|110⟩
1
2

|111⟩
0

)⊤ ,

(21)

where q2, q1, q0 ∈ {0, 1}. This directly translates to the
decision diagram formalism:

q2

q1 q1

q0 q0 q0 q0
1

2
√
2

1
2
√

2
1
2

1
2
√
2

1
2
√
2

1
2

(22)
Each level of the decision diagram consists of decision nodes
with corresponding left and right successor edges. These
successors represent the path that leads to an amplitude
where the local quantum system (corresponding to the level
of the node, annotated here with the labels) is in the |0⟩ (left
successor) or the |1⟩ state (right successor).

At this point, this has just been a one-to-one translation
between the statevector and a fancy graphical representation.
The core, unique feature of decision diagrams is that their
graph structure allows redundant parts to be merged in the
representation instead of representing them repeatedly.

Example 6. Observe how, in the previous example, the left and
the right successor of the top-level (q0) node lead to exactly
the same structure. As a result, the whole sub-diagram does
not need to be represented twice, i.e.,

q2

q1

q0 q0
1

2
√
2

1
2
√

2
1
2

(23)

From a memory perspective, this reduction alone has com-
pressed the overall memory required to represent the state by
50%.

Identifying redundancies in these kind of representations
heavily depends on employing what is referred to as a nor-
malization scheme for the decision diagrams nodes [46]. Such
a normalization scheme makes sure that two decision diagram
nodes that represent the same functionality do indeed have the
same numerical structure. In computer science, this property
is referred to as canonicity [46].

The most commonly used and practically relevant normal-
ization scheme is to normalize the outgoing edges of a node
by dividing both weights by the norm of the vector con-
taining both edge weights and adjusting the incoming edges
accordingly [47]. This normalizes the sum of the squared
magnitudes of the outgoing edge weights to 1 and is consistent
with the quantum semantics, where basis states |0⟩ and |1⟩
are observed after measurement with probabilities that are
squared magnitudes of the respective weights. Normalization
is recursively applied in a bottom-up fashion to ensure that
every possible redundancy is being taken into account.

Example 7. Considering the decision diagram from the pre-
vious example, this results in the following normalized and
reduced decision diagram:

q2

q1

q0 q0

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2 1

(24)

The first two levels (q2 and q1) of the above diagram naturally
encode that the respective sites have a 50/50 (|1/

√
2|2 = 0.5)

probability to be in |0⟩ and |1⟩. Meanwhile, the bottom level
(q0) encodes that the probability of q0 depends on the state of
q1. If q1 is in the |0⟩ state (following the left successor), then
q0 has probability 0.5 in both |0⟩ or |1⟩. If q1 is in the |1⟩
state (following the right successor), it is guaranteed that the
remaining site is in the |0⟩ state.

Overall, statevectors are represented as decision diagrams
conceptionally equivalent to halving the vector in a recursive
fashion until it is fully decomposed. The key idea is to
exploit redundancies in the resulting diagrams to create a more
compact representation. Some interesting properties that are
worth pointing out:

• Decision diagrams can be initialized in their compact
form (as, e.g., shown in Example 7). There is no need
to create the maximally large decision diagram (as, e.g.,
shown in Example 5) or work directly from the statevec-
tor representation at any point in a calculation.

• Determining a particular amplitude of the represented
state corresponds to multiplying the edge weights along
a single-path traversal from the top edge of the decision
diagram (called its root) to a terminal node.

• The efficiency of decision diagrams is commonly mea-
sured by their size, i.e., the number of nodes in the
decision diagram—the smaller the number of nodes, the
higher the compaction achieved by the data structure.
Note that the terminal (node) is typically not counted
towards the size of a decision diagram.

• Any product state naturally has a decision diagram con-
sisting of a single node per site. Highly-redundant states
such as the GHZ state or the W state also have decision
diagrams whose size (i.e., the number of nodes) is linear
in the number of sites. A compact DD does not, however,
correlate to the state being trivial.

• DDs are no "silver bullet." The worst case size of
decision diagrams, corresponding to states with no re-
dundancy, is still exponential in the number of sites.
More specifically, a maximally large decision diagram has
1 + 21 + 22 + · · ·+ 2L−1 = 2L − 1 nodes for L sites.

• In implementation, redundancy in the complex edge
weights is equivalent to comparison of floating point
numbers within some tolerance.

• To reduce visual clutter in illustrations of decision di-
agrams, edge weights are commonly not annotated ex-
plicitly, but their magnitude and phase is reflected in the

thickness and the color of the respective edge. In addition,
to make the correspondence of the individual levels in a
decision diagram to a system’s sites more explicit, the
nodes are frequently annotated with the site’s index as
an identifier. See [48] for further details on common
techniques for the visualization of decision diagrams.

B. Representing Quantum Operators

Quantum operators are fundamentally described by
(complex-valued) matrices. Just like moving from Matrix
Product State (MPS) representations to Matrix Product Oper-
ator (MPO) representations in the domain of tensor networks,
matrix decision diagrams are a natural extension of vector
decision diagrams by an additional dimension. To this end,
consider the base case of a 2× 2 matrix U , i.e.,

U =

(
U00 U01

U10 U11

)
= U00 |0⟩⟨0|+ U01 |1⟩⟨0|+ U10 |0⟩⟨1|+ U11 |1⟩⟨1| . (25)

Then, the decision diagram representing this matrix has the
structure

U ≡

U00 U01 U10
U11

, (26)

which again resembles the general structure of the matrix. Note
that Uij can be interpreted as the transformation of |j⟩ to |i⟩.

Example 8. The following shows decision diagram represen-
tations for selected single-qubit operations:

I =

(
1 0
0 1

)
≡
1 1

X =

(
0 1
1 0

)
≡
1 1

Rz(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
≡

e−i θ
2 ei

θ
2

≡
e−i θ

2

1 eiθ

(27)

The last equivalence demonstrates how a common factor
between the edge weights can be pulled out and attached to
the incoming (root) edge.

The generalization to larger matrices works analogously to
the vector case. To construct the decision diagram representing
a matrix, the matrix is recursively split into quarters and the
four elements correspond to the four successors of the node
for representing that split. As with vector decision diagrams,
a normalization scheme is applied to ensure that the resulting
data structure is canonical and redundancy can be exploited.
The conventional approach is to normalize all edge weights
by the weight with the highest magnitude, selecting the
leftmost one if multiple weights have the same magnitude. It
is important to note that this ensures that all complex numbers
within the decision diagram have a magnitude of at most 1,
although this is subject to the implementation.

Example 9. Consider the maximally-entangling two-qubit
Rxx rotation represented by the matrix

Rxx

(
θ =

π

2

)
=

1√
2

 1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 . (28)

This matrix is equivalent to blocks of 2 × 2 matrices corre-
sponding to the identity I and the Pauli-X matrix, i.e.,

Rxx

(
θ =

π

2

)
=

1√
2

(
I −iX

−iX I

)
. (29)

The corresponding (already reduced) decision diagram has the
following structure:

1√
2

1

−i

−i

1

1 1 1 1
(30)

Notice how the decision diagram naturally resembles the
structure of the matrix. The nodes at the bottom represent
the identity and the X matrix (cf. Eq. (27)) while the node
at the top encodes the redundancy of the upper-left and the
bottom-right quadrant as well as the upper-right and the
lower-left quadrant in Eq. (29). Similar to Example 6, exploit-
ing redundancy has halved the overall memory requirement.

Again, some interesting properties to point out:
• Just as in the vector case, it is always possible to

work with the reduced form of matrix decision dia-
grams right away, i.e., without ever constructing the
exponentially-sized, maximally-large diagram.

• A maximally-large matrix decision diagram for an L-site
two-level system has

∑L
i=1 4

i−1 = 1
3 (4

L−1) nodes, with
each node having up to 4 scalar edge weights, determined
by sparsity, i.e., the number of zero stubs.

• Decision diagrams are not limited to local interactions.
Even long-range interactions between arbitrary sites typ-
ically emit compact representations as decision diagrams.
For example, any two-site interaction between arbitrary
sites can be represented as a decision diagram with at
most 1 + 4(L− 1) nodes—an exponential reduction.

• Decision diagrams are not limited to two-qubit interac-
tions either. For example, controlled quantum gates with
arbitrarily many controls (such as the multi-controlled
Toffoli gate) give rise to decision diagrams with a linear
number of nodes.

C. Fundamental Operations on Decision Diagrams
Merely defining means for compactly representing any kind

of state or operator does not yet allow one to perform Hamil-
tonian simulation. It is crucial to also define efficient means
to work with or manipulate the resulting representations. In
the following, we demonstrate how the most fundamental
operations for Hamiltonian simulation can be carried out
within the decision diagram formalism and how they scale.
We will mostly focus on how operations are realized on

vectors, since the concepts extend from vectors to matrices
in a straight-forward fashion.

The main concept throughout all of these schemes is to
recursively break the respective operations down into sub-
computations. This decomposition then naturally translates to
the recursive decomposition of decision diagrams. As such,
operations generally scale with the number of nodes in the
involved decision diagrams.

Kronecker Product

The Kronecker product is necessary for creating product
states as well as chaining together local operations. For
vectors, it can be expressed as

|Ψ⟩ ⊗ |Φ⟩ =
(
Ψ0 |Φ⟩
Ψ1 |Φ⟩

)
=

Ψ0

(
Φ0

Φ1

)
Ψ1

(
Φ0

Φ1

)
 . (31)

In the decision diagram formalism, this is one of the simplest
operations to perform and is done by simply replacing the
terminal nodes of the first decision diagram with the root node
of the second decision diagram. In case of the above example,
this has the following form:

Ψ

Ψ0 Ψ1

Φ

Φ0 Φ1

⊗ Ψ

Φ

Ψ0 Ψ1

Φ0 Φ1

=

(32)

As such, its complexity is linear in the number of nodes of
the first decision diagram.

Addition

Standard vector addition can be recursively broken down
according to

|Ψ⟩+ |Φ⟩ =
(
Ψ0

Ψ1

)
+

(
Φ0

Φ1

)
= w

(
α0

α1

)
+ w′

(
α′
0

α′
1

)
=

(
wα0 + w′α′

0
wα1 + w′α′

1

)
,

(33)

where w and w′ are common factors of the terms in |Ψ⟩ and
|Φ⟩, respectively.

In the decision diagram formalism, this corresponds to a
simultaneous traversal of both decision diagrams from their
roots to the terminal (multiplying edge weights along the way
until the individual amplitudes are reached) and back again

(accumulating the results of the recursive computations). More
precisely,

Ψ0 Ψ1

w

α0 α1

Φ0 Φ1

w′

α′
0 α′

1

+

Ψ0

wα0

Φ0

w′α′
0

+ Ψ1

wα1

Φ1

w′α′
1

+

=

, (34)

where the dashed nodes represent the respective successor
decision diagrams. Overall, this results in a complexity that
is linear in the size of the larger decision diagram.

Matrix-Vector Multiplication
Matrix-vector multiplication can be handled in a very sim-

ilar fashion as addition. Standard matrix-vector multiplication
can be expressed as

U |Ψ⟩ =
(
U00 U01

U10 U11

)(
Ψ0

Ψ1

)
= w

(
u00 u01

u10 u11

)
w′

(
α0

α1

)
= ww′

(
u00 · α0 + u10 · α1

u01 · α0 + u11 · α1

)
.

(35)

This implies that a multiplication boils down to four smaller
multiplications and two additions. In the decision diagram
formalism, this has the form

U00 U01 U10 U11

w

u00

u01 u10

u11

Ψ0 Ψ1

w′

α0 α1

•

U00

u00

Ψ0

α0

U10

u10

Ψ1

α1

+• • U01

u01

Ψ0

α0

U11

u11

Ψ1

α1

+• •

ww′
=

,
(36)

where the dashed nodes again represent the respective succes-
sor decision diagrams. Overall, this results in a complexity that
scales with the product of the size of both decision diagrams.

Inner Product
Computing the inner product of two vectors can be recur-

sively broken down according to

⟨Ψ|Φ⟩ =
(
Ψ∗

0 Ψ∗
1

)(Φ0

Φ1

)
= w∗ (α∗

0 α∗
1

)
w

(
α′
0

α′
1

)
= w∗w(α∗

0α
′
0 + α∗

1α
′
0)

(37)

This implies that the inner product boils down to two smaller
inner product computations and adding the results. As with
the matrix-vector multiplication, this is done recursively for
each level of the decision diagram. In the decision diagram
formalism, this has the following form

Ψ0 Ψ1

w

α0 α1

Φ0 Φ1

w′

α′
0 α′

1

|⟨ ⟩

Ψ0

α0

Φ0

α′
0|⟨ ⟩

(
Ψ1

α1

Φ1

α′
1|⟨ ⟩
)=

+w∗w′

, (38)

Overall, this results in a complexity that, just as addition,
scales linearly with the size of the larger decision diagram.

Expectation Value
Computing the expectation value of some observable O

for a given state |Ψ⟩ can be reduced to a matrix-vector
multiplication and an inner product computation as follows:

⟨Ψ|O|Ψ⟩ = ⟨Ψ|
(
O |Ψ⟩

)
= ⟨Ψ|Ψ̃⟩ (39)

This directly translates to decision diagrams via Eq. (36)
and Eq. (38). The resulting computation has an overall com-
plexity that scales with the product of the size of both decision
diagrams.

V. EXPERIMENTAL EVALUATIONS

Using the concepts presented above, we implemented the
first Hamiltonian simulation approach based on decision dia-
grams. To this end, we used the open-source DDSIM available
at https://github.com/cda-tum/mqt-ddsim (which is part of the
Munich Quantum Toolkit, MQT) and extended it to support all
necessary gates (such as the various two-qubit rotation gates)
and operations (such as the expectation value). Afterwards,
we conducted several series of evaluations and comparisons to
get insights about the performance of the resulting DD-based
Hamiltonian simulation. More precisely, we first analyzed dif-
ferent scaling characteristics of decision diagrams themselves
followed by comparing their performance to other state-of-the-
art techniques and considering selected best case scenarios. In
this section, we summarize the obtained results and findings.

A. Application of DDs to Hamiltonian Simulation Circuits
In a first series of evaluations, we first analyzed the behavior

of DDs in simulating various combinations of rotation angles
in the Hamiltonian simulation circuits for the Ising and Heisen-
berg models described in Section II-A. The results are shown
in Fig. 1. More precisely, we generated heatmaps, which we
call redundancy landscapes, that show the number of nodes
in the DD after applying each circuit. This was performed for
n = 1 and n = 2 Trotter steps on a system size L = 12
initialized in the |0 . . . 0⟩ state. The x- and y-axis correspond
to the angle of the single- and two-site rotations, respectively.
The node count scaling is normalized across both graphs—
from maximal compaction (dark blue; linear regime) to almost
no compaction (yellow; exponential regime).

0.5

0.3

0.1

-0.1

-0.3

-0.5

xx
/

Isi
ng

n=1
0.5

0.3

0.1

-0.1

-0.3

-0.5

n=2

-0.5 -0.3 -0.1 0.1 0.3 0.5
z/

0.5

0.3

0.1

-0.1

-0.3

-0.5

xx
/

,
yy

/
,

zz
/

He
ise

nb
er

g

-0.5 -0.3 -0.1 0.1 0.3 0.5
z/

0.5

0.3

0.1

-0.1

-0.3

-0.5

250

500

750

1000

1250

1500

1750

2000
Node Count

Fig. 1. Redundancy landscapes for the Ising and Heisenberg model with
L = 12 for n = 1 and n = 2 Trotter step applications of the selected angles.

These landscapes provide an abstract understanding of how
each configuration of angles affects the size of the decision
diagram. By using generalized angles based on the parameters
of the Ising and Heisenberg Hamiltonians, these landscapes
can also help identify the model parameters and timestep sizes
that lead to compact decision diagrams.

From the results, it can be seen that the Ising model
stays compact for one Trotter step, regardless of the angle
combinations—achieving almost maximal compaction. For
two Trotter steps, the landscape begins to saturate such that
there is almost no compaction for large angles. However, for
small angles, the size remains moderate even for multiple
Trotter steps.

For the Heisenberg model, a single Trotter step causes
larger, but still not maximally large, decision diagrams com-
pared to the Ising model. However, multiple Trotter steps
causes the node count of the decision diagram to quickly grow
with respect to the magnitude of the angles.

This suggests that DDs are likely to remain compact for
Ising models and their derivatives, but require more work for
simulating the Heisenberg model.

B. Node Count based on System Size and Trotter Number

In a second series of evaluations, we evaluated the node
count in the DD as various number of Trotter steps are applied
to several system sizes. The results according to the Ising
and Heisenberg models are depicted in Fig. 2. In this figure,
multiple Trotter steps are applied to systems ranging from
size L = 2 to L = 10. The circuits’ angles are fixed and
were selected based on the redundancy landscapes seen in the
previous section. The Ising model shown has a normalized
interaction parameter of J = 1 and weak transverse field of
g = 0.001. The Heisenberg model has interaction parameters
of Jx = Jy = Jz = 1 and a field of h = 1. The timestep size
in both cases is δt = 0.1.

Several insights can be drawn from the plotted results. The
initial slope for the first few Trotter steps has the greatest
impact on scaling, with a maximum node count of 2L−1 in
both models.

0 25 50 75 100
n

1

4

16

64

256

1024

No
de

 C
ou

nt
Ising

0 25 50 75 100
n

Heisenberg

of Sites
L=10
L=9
L=8
L=7
L=6
L=5
L=4
L=3
L=2

Fig. 2. Growth of node count in the decision diagrams for the Ising model
(J = 1, g = 0.001) and Heisenberg model (Jx = Jy = Jz = 1, h = 1)
with timestep size δt = 0.1.

The Ising model exhibits an oscillation in node count,
corresponding to times when the state is more redundant than
others. This oscillation becomes larger as the system size
grows, indicating that larger systems have more redundancies
and more opportunities for significant compression. The lower
and upper bounds of this oscillation converge as the number
of Trotter steps increases.

In contrast, the Heisenberg model converges to its maximum
node count after only two Trotter steps—aligning with the
growth shown in the redundancy landscapes. At this timescale,
the selected Heisenberg model parameters do not exhibit many
redundancies in its DD representation.

These results suggest, again, that the Ising model can
benefit from significant compression over long timescales—
particularly for large systems. The oscillation in its node count
also supports the need to engineer redundancy to maximize the
benefits of the DDs. On the other hand, the Heisenberg model
does not exhibit much redundancy.

C. Comparison with Related Work

In a third series of evaluations, we compare the runtime scal-
ing of the proposed DD-based Hamiltonian simulation against
other simulation methods. More specifically, we compare
against the time needed for an exact calculation with sparse
methods implemented in SciPy [35], the Qiskit statevector
simulator [8], and tenpy TEBD implementation [49]. These
results are shown in Fig. 3. Each plot shows the time for each
method to perform the time evolution and calculation of the
expectation value of a local observable ⟨σz⟩ at the center of
the system. These results are averaged over 10 runs. This is
done with the Ising model with paramters J = 1, g = 0.001,
and timestep size δt = 0.1, but similar results are seen for
other combinations such that this can be seen as a general
guideline.

The results show that, for a single Trotter step, decision
diagrams outperform both the Qiskit statevector simulator and
tenpy TEBD, regardless of the system size. As the number
of Trotter steps increases, however, the advantage of decision
diagrams diminishes for larger systems. We notice that the

runtime begins to converge with that of the sparse method.
These findings suggest that decision diagrams are most advan-
tageous for problems that can be solved in a single Trotter step.
For multiple Trotter steps, they still provide a computational
advantage for small systems, but the runtime converges, in
the worst case, to the time required for a sparse method to
compute the exact result.

These results show that DDs can indeed serve as a comple-
mentary alternative to current Hamiltonian simulation meth-
ods. As these results are based on the current state-of-the-art
implementation of decision diagrams, it is expected that future
work will lead to improved scaling for many Trotter steps and
different models.

D. Selected Examples
In a final series of evaluations, we considered what we

observed to be current best case scenarios for the considered
DD-based Hamiltonian simulation, i.e., a 5-site Ising model
and a 1000-site nearest-neighbor (Edwards-Anderson) spin
glass chain without a field. These cases correspond to the
results seen in Section V-C, i.e., small systems regardless of
the number of Trotter steps and problems that can be solved
in a single Trotter step, respectively.

The results of the 5-site Ising model can be seen in Fig. 4a.
We show the time evolution of the two-site correlation function
between the two ends of a 5-site chain ⟨σ[0]

x σ
[4]
x ⟩, evolving

under an Ising model with parameters J = 1, g = 0.001.
This plot contains 100 sampled points, each Trotterized with
a timestep δt = 0.1, i.e., Jt = 0.1 requires 1 Trotter step and
Jt = 10 requires 100 Trotter steps. The runtime plot clearly
shows that DDs outperform the methods typically used for a
system of this size by an order of magnitude.

Fig. 4b shows the results of the spin glass model. This model
has Ising interactions along one direction without a field.
This is equivalent to the generalized Ising model presented in
Eq. (8) such that the parameters J are chosen randomly from
a Gaussian distribution with mean 0 and standard deviation 1.
This means the terms of the Hamiltonian commute which
eliminates the Trotter error in Eq. (4). The time evolution of
a local observable ⟨σ[499]

z ⟩ at the center of the chain is plotted
with 100 sampled points for timestep δt = 0.1. Each point is
calculated with a single Trotter step.

For systems of this size, tensor networks are currently the
state-of-the-art method, as sparse methods and statevector sim-
ulators grow too large to be used efficiently. In this example,
we also see that DDs outperform tensor networks by an order
of magnitude.

These results indicate that the current implementation of
DDs offers a significant computational advantage over other
methods for small systems as well as for problems that can
be solved in one Trotter step.

VI. CONCLUSION

In this work, we proposed Decision Diagrams (DDs) as a
promising new data structure for Hamiltonian simulation. The
obtained results show that DDs can efficiently handle highly
redundant models, such as Ising-type models, surpassing stat-
evector simulators and tensor networks in memory and runtime
requirements. For problems solvable in a single Trotter step,
DDs can efficiently scale to large systems, while for multiple

10 100 1000
L

10 2

10 1

100

Ru
nt

im
e

(s
)

n=1

5 10 15 20
L

n=10

Sparse (SciPy) Statevector (Qiskit) TEBD (tenpy) DD (DDSim)

2 4 6 8 10 12 14
L

n=100

Fig. 3. Runtime scaling of various methods for simulating the Ising model J = 1, g = 0.001, and timestep size δt = 0.1. Each corresponds to this being
performed with n Trotter steps.

0.0 2.5 5.0 7.5 10.0
Jt

2×10 10

1×10 10

0

1×10 10

2×10 10

3×10 10

4×10 10

[0
]

x
[4

]
x

Correlation Function (L=5)

Sparse SV TEBD DD

3.07s

10.72s

87.24s

0.91s

Runtime

(a) Time evolution of a two-site correlation function between the ends of a
chain under the Ising model J = 1, g = 0.001 for L = 5 sites

0 2 4 6 8 10
t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

[4
99

]
z

Local Observable (L=1000)

Sparse SV TEBD DD

1179.7s

150.4s

Runtime

(b) Time evolution of an Edwards-Anderson spin glass model with Gaussian
distributed interaction parameters J with mean 0 and standard deviation 1

Fig. 4. Selected examples and their runtime requirement for different methods

Trotter steps, DDs show an advantage over other methods
for small systems. As the number of Trotter steps increases,
DDs eventually converge to the runtime requirements of sparse
methods. However, our analysis of more complex models,
such as the Heisenberg model, suggests that these models do
not show as promising results, likely due to the lower level

of redundancy. Further research is needed to explore DDs’
potential for more complex models.

Still, these initial results already suggest that DDs could
hold promise for problems that can be formulated as Ising
models, such as QUBOs and graph problems. Additionally,
preliminary application of DDs to long-range and higher-
dimensional models have shown promise, although they ex-
hibit redundancies that are not captured in the current decision
diagram formalism. Therefore, future research could explore
these higher-dimensional models and find ways to engineer
redundancy in problem formulations in order to guarantee
compact DDs.

We also acknowledge that the limitations of DDs are
fundamentally different from those of current state-of-the-art
methods, requiring a shift in perspective to fully utilize their
benefits. Using DDs for Hamiltonian simulation opens up the
possibility of implementing techniques from the field of graph
theory, potentially allowing for sophisticated approximation
techniques that could improve the scaling. The creation of ap-
proximation methods and finding ways to engineer redundancy
in problem formulations are a promising next step for DDs and
are left to future research.

In conclusion, this work demonstrates that DDs offer a
promising new data structure for Hamiltonian simulation,
especially for problems formulated with redundancies in mind.
Future research can focus on refining the implementation of
DDs and exploring their application to more complex models
and problems. We anticipate that DDs will continue to play
an important role in the development of efficient and accurate
simulation methods.

ACKNOWLEDGMENTS

This work received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
101001318), was part of the Munich Quantum Valley, which is
supported by the Bavarian state government with funds from
the Hightech Agenda Bayern Plus, and has been supported
by the BMWK on the basis of a decision by the German
Bundestag through project QuaST.

REFERENCES

[1] J. Ignacio Cirac and Peter Zoller, “Goals and opportuni-
ties in quantum simulation,” en, Nature Physics, vol. 8,
no. 4, pp. 264–266, 2012, Number: 4 Publisher: Nature
Publishing Group. DOI: 10.1038/nphys2275.

[2] Richard P. Feynman, “Simulating physics with comput-
ers,” en, International Journal of Theoretical Physics,
vol. 21, no. 6, pp. 467–488, 1982. DOI: 10 . 1007 /
BF02650179.

[3] I. M. Georgescu, S. Ashhab, and Franco Nori, “Quan-
tum simulation,” Reviews of Modern Physics, vol. 86,
no. 1, pp. 153–185, 2014, Publisher: American Physical
Society. DOI: 10.1103/RevModPhys.86.153.

[4] Andrew J. Daley et al., “Practical quantum advantage
in quantum simulation,” en, Nature, vol. 607, no. 7920,
pp. 667–676, 2022, Number: 7920 Publisher: Nature
Publishing Group. DOI: 10.1038/s41586-022-04940-6.

[5] Andrew Lucas, “Ising formulations of many NP prob-
lems,” Frontiers in Physics, vol. 2, 2014. DOI: 10.3389/
fphy.2014.00005.

[6] Zhidong Zhang, “Mapping between Spin-Glass Three-
Dimensional (3D) Ising Model and Boolean Satisfiabil-
ity Problem,” en, Mathematics, vol. 11, no. 1, p. 237,
2023, Number: 1 Publisher: Multidisciplinary Digital
Publishing Institute. DOI: 10.3390/math11010237.

[7] Hannes Leipold and Federico M. Spedalieri, “Con-
structing driver Hamiltonians for optimization problems
with linear constraints,” en, Quantum Science and Tech-
nology, vol. 7, no. 1, p. 015 013, 2021, Publisher: IOP
Publishing. DOI: 10.1088/2058-9565/ac16b8.

[8] Qiskit contributors, Qiskit: An open-source framework
for quantum computing, 2023. DOI: 10.5281/zenodo.
2573505.

[9] Ville Bergholm et al. “PennyLane: Automatic differenti-
ation of hybrid quantum-classical computations.” arXiv:
arXiv:1811.04968. (2022), preprint.

[10] Cirq: A python framework for creating, editing, and
invoking Noisy Intermediate Scale Quantum (NISQ)
circuits. [Online]. Available: https : / / github . com /
quantumlib/Cirq.

[11] Román Orús, “Tensor networks for complex quantum
systems,” en, Nature Reviews Physics, vol. 1, no. 9,
pp. 538–550, 2019, Number: 9 Publisher: Nature Pub-
lishing Group. DOI: 10.1038/s42254-019-0086-7.

[12] Jacob C. Bridgeman and Christopher T. Chubb,
“Hand-waving and Interpretive Dance: An Introduc-
tory Course on Tensor Networks,” en, Journal of
Physics A: Mathematical and Theoretical, vol. 50,
no. 22, p. 223 001, 2017, arXiv:1603.03039 [cond-mat,
physics:hep-th, physics:quant-ph]. DOI: 10.1088/1751-
8121/aa6dc3.

[13] Giuseppe Carleo and Matthias Troyer, “Solving the
quantum many-body problem with artificial neural net-
works,” Science, vol. 355, no. 6325, pp. 602–606, 2017.
DOI: 10.1126/science.aag2302.

[14] Markus Schmitt and Markus Heyl, “Quantum many-
body dynamics in two dimensions with artificial neural
networks,” Physical Review Letters, vol. 125, no. 10,

p. 100 503, 2020. DOI: 10 . 1103 / PhysRevLett . 125 .
100503.

[15] Irene López Gutiérrez and Christian B. Mendl, “Real
time evolution with neural-network quantum states,”
Quantum, vol. 6, p. 627, 2022. DOI: 10.22331/q-2022-
01-20-627.

[16] Xiaosi Xu et al., A Herculean task: Classical simulation
of quantum computers, arXiv:2302.08880 [quant-ph],
2023. DOI: 10.48550/arXiv.2302.08880.

[17] Yiqing Zhou, E. Miles Stoudenmire, and Xavier Wain-
tal, “What Limits the Simulation of Quantum Comput-
ers?” Physical Review X, vol. 10, no. 4, p. 041 038,
2020, Publisher: American Physical Society. DOI: 10.
1103/PhysRevX.10.041038.

[18] S. Minato, “Zero-suppressed BDDs for set manipula-
tion in combinatorial problems,” in Design Automation
Conf., 1993, pp. 272–277.

[19] Tom van Dijk, Robert Wille, and Robert Meolic,
“Tagged BDDs: Combining reduction rules from differ-
ent decision diagram types,” in 2017 Formal Methods in
Computer Aided Design (FMCAD), 2017, pp. 108–115.
DOI: 10.23919/FMCAD.2017.8102248.

[20] Thomas Grurl, Jürgen Fuß, and Robert Wille, “Noise-
Aware Quantum Circuit Simulation With Decision Dia-
grams,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 42, no. 3,
pp. 860–873, 2023, Conference Name: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems. DOI: 10.1109/TCAD.2022.3182628.

[21] Alwin Zulehner and Robert Wille, “Advanced simula-
tion of quantum computations,” IEEE Trans. on CAD
of Integrated Circuits and Systems, 2019.

[22] A. Zulehner and R. Wille, “One-pass design of re-
versible circuits: Combining embedding and synthesis
for reversible logic,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 37, no. 5, pp. 996–1008,
2018.

[23] Mehdi Saeedi, Robert Wille, and Rolf Drechsler, “Syn-
thesis of quantum circuits for linear nearest neighbor ar-
chitectures,” Quantum Information Processing, vol. 10,
no. 3, pp. 355–377, 2011. DOI: 10.1007/s11128-010-
0201-2. arXiv: 1110.6412.

[24] Philipp Niemann, Robert Wille, and Rolf Drechsler,
“Efficient synthesis of quantum circuits implementing
Clifford group operations,” in Asia and South Pacific
Design Automation Conf., 2014, pp. 483–488.

[25] Lukas Burgholzer and Robert Wille, “Advanced equiv-
alence checking for quantum circuits,” IEEE Trans. on
CAD of Integrated Circuits and Systems, 2021.

[26] Stefan Hillmich et al., “Decision Diagrams for Quan-
tum Measurements with Shallow Circuits,” in 2021
IEEE International Conference on Quantum Computing
and Engineering (QCE), arXiv:2105.06932 [quant-ph],
2021, pp. 24–34. DOI: 10.1109/QCE52317.2021.00018.

[27] Seth Lloyd, “Universal quantum simulators,” Science,
vol. 273, no. 5278, pp. 1073–1078, 1996. DOI: 10.1126/
science.273.5278.1073.

[28] Naomichi Hatano and Masuo Suzuki, “Finding Ex-
ponential Product Formulas of Higher Orders,” in
Quantum Annealing and Other Optimization Methods,

vol. 679, Springer Berlin Heidelberg, 2005, pp. 37–68.
DOI: 10.1007/11526216_2.

[29] Andrew M. Childs et al., “Theory of Trotter error with
commutator scaling,” Physical Review X, vol. 11, no. 1,
p. 011 020, 2021. DOI: 10.1103/PhysRevX.11.011020.

[30] D.J. Griffiths, Introduction to Quantum Mechanics.
Pearson Prentice Hall, 2005.

[31] W. Heisenberg, “Zur Theorie des Ferromagnetismus,”
de, Zeitschrift für Physik, vol. 49, no. 9, pp. 619–636,
1928. DOI: 10.1007/BF01328601.

[32] David Sherrington, “Neural networks: The spin glass
approach,” en, in North-Holland Mathematical Library,
vol. 51, Elsevier, 1993, pp. 261–291. DOI: 10 . 1016 /
S0924-6509(08)70040-0.

[33] Roman Martonak, Giuseppe E. Santoro, and Erio
Tosatti, “Quantum annealing of the Traveling Sales-
man Problem,” Physical Review E, vol. 70, no. 5,
p. 057 701, 2004, arXiv:cond-mat/0402330. DOI: 10 .
1103/PhysRevE.70.057701.

[34] Dominic W. Berry et al., “Efficient Quantum Algo-
rithms for Simulating Sparse Hamiltonians,” en, Com-
munications in Mathematical Physics, vol. 270, no. 2,
pp. 359–371, 2007. DOI: 10.1007/s00220-006-0150-x.

[35] Pauli Virtanen et al., “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020. DOI: 10 .1038/
s41592-019-0686-2.

[36] M. B. Hastings, “An Area Law for One Dimen-
sional Quantum Systems,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2007, no. 08,
P08024–P08024, 2007, arXiv:0705.2024 [cond-mat,
physics:math-ph, physics:quant-ph]. DOI: 10 . 1088 /
1742-5468/2007/08/P08024.

[37] Guifré Vidal, “Efficient classical simulation of slightly
entangled quantum computations,” Phys. Rev. Lett.,
vol. 91, p. 147 902, 14 2003. DOI: 10 . 1103 /
PhysRevLett.91.147902.

[38] Johnnie Gray and Stefanos Kourtis, “Hyper-optimized
tensor network contraction,” Quantum, vol. 5, p. 410,
2021.

[39] Cupjin Huang et al., “Efficient parallelization of tensor
network contraction for simulating quantum computa-
tion,” en, Nature Computational Science, vol. 1, no. 9,

pp. 578–587, 2021, Number: 9 Publisher: Nature Pub-
lishing Group. DOI: 10.1038/s43588-021-00119-7.

[40] Reza Haghshenas, “Optimization schemes for
unitary tensor-network circuit,” en, Physical
Review Research, vol. 3, no. 2, p. 023 148, 2021,
arXiv:2009.02606 [cond-mat, physics:quant-ph]. DOI:
10.1103/PhysRevResearch.3.023148.

[41] Frank Schindler and Adam S. Jermyn, “Algorithms
for tensor network contraction ordering,” en, Machine
Learning: Science and Technology, vol. 1, no. 3,
p. 035 001, 2020, Publisher: IOP Publishing. DOI: 10.
1088/2632-2153/ab94c5.

[42] Eli A. Meirom et al., Optimizing Tensor Net-
work Contraction Using Reinforcement Learning,
arXiv:2204.09052 [quant-ph], 2022. DOI: 10 . 48550 /
arXiv.2204.09052.

[43] Ulrich Schollwöck, “The density-matrix renormaliza-
tion group in the age of matrix product states,” Annals
of Physics, vol. 326, no. 1, pp. 96–192, 2011. DOI:
10.1016/j.aop.2010.09.012.

[44] Jutho Haegeman et al., “Time-dependent variational
principle for quantum lattices,” Physical Review Letters,
vol. 107, no. 7, p. 070 601, 2011. DOI: 10 . 1103 /
PhysRevLett.107.070601.

[45] Sheng-Hsuan Lin and Frank Pollmann, “Scaling of
neural-network quantum states for time evolution,”
Physica Status Solidi (b), vol. 259, no. 5, p. 2 100 172,
2022. DOI: 10.1002/pssb.202100172.

[46] Philipp Niemann et al., “QMDDs: Efficient quantum
function representation and manipulation,” IEEE Trans.
on CAD of Integrated Circuits and Systems, 2016.

[47] Stefan Hillmich, Igor L. Markov, and Robert Wille,
“Just like the real thing: Fast weak simulation of quan-
tum computation,” in Design Automation Conf., 2020.

[48] Robert Wille, Lukas Burgholzer, and Michael Artner,
“Visualizing decision diagrams for quantum comput-
ing,” in Design, Automation and Test in Europe, 2021.

[49] Johannes Hauschild and Frank Pollmann, “Efficient
numerical simulations with Tensor Networks: Tensor
Network Python (TeNPy),” SciPost Phys. Lect. Notes,
p. 5, 2018, Code available from https : / / github. com/
tenpy/tenpy. DOI: 10.21468/SciPostPhysLectNotes.5.
arXiv: 1805.00055.

