
On Optimal Subarchitectures forQuantum Circuit Mapping

TOM PEHAM, Technical University of Munich, Germany

LUKAS BURGHOLZER, Johannes Kepler University, Austria
ROBERT WILLE, Technical University of Munich, Germany and Software Competence Center Hagenberg

GmbH, Austria

Compiling a high-level quantum circuit down to a low-level description that can be executed on state-of-the-art

quantum computers is a crucial part of the software stack for quantum computing. One step in compiling

a quantum circuit to some device is quantum circuit mapping, where the circuit is transformed such that

it complies with the architecture’s limited qubit connectivity. Because the search space in quantum circuit

mapping grows exponentially in the number of qubits, it is desirable to consider as few of the device’s physical

qubits as possible in the process. Previous work conjectured that it suffices to consider only subarchitectures of

a quantum computer composed of as many qubits as used in the circuit. In this work, we refute this conjecture

and establish criteria for judging whether considering larger parts of the architecture might yield better

solutions to the mapping problem. We show that determining subarchitectures that are of minimal size, i.e.,

from which no physical qubit can be removed without losing the optimal mapping solution for some quantum

circuit, is a very hard problem. Based on a relaxation of the criteria for optimality, we introduce a relaxed

consideration that still maintains optimality for practically relevant quantum circuits. Eventually, this results

in two methods for computing near-optimal sets of subarchitectures—providing the basis for efficient quantum
circuit mapping solutions. We demonstrate the benefits of this novel method for state-of-the-art quantum

computers by IBM, Google and Rigetti.

1 INTRODUCTION
Quantum computing [1] is an emerging technology where computations are governed by

quantum-mechanical principles. Despite its relative infancy, even currently available quantum

computers impose many challenges on quantum algorithm designers—increasing the need for

design automation methods in the realm of quantum computing. One critical challenge (for devices

based on superconducting qubits [2]) arises from the limited connectivity of the physical qubits on

these quantum computers. Instead of allowing multi-qubit gates between arbitrary qubits, a

coupling map dictates which pairs of qubits may interact with each other over the course of a

computation. Any quantum circuit executed on an actual device needs to conform to those

restrictions. Thus, similar to classical computing, high-level quantum algorithms need to be

compiled to the target architecture—encompassing many individual steps, such as synthesis, qubit

allocation/placement, qubit routing, optimization, and scheduling [3]–[14].

In the following, we focus on the steps dictated by the limited connectivity of the devices,

i.e., qubit allocation/placement and routing, which is commonly referred to as quantum circuit
mapping. Mapping a quantum circuit first requires allocating the circuit’s logical qubits on the

device’s physical qubits, i.e., identifying a subarchitecture of the whole device where the circuit

shall be executed. Then, the logical qubits need to be routed on the physical qubits so that any

operation in the circuit is executed on qubits that are connected on the device’s coupling map.

This is commonly conducted by inserting SWAP gates into the circuit which allow dynamically

changing the logical-to-physical qubit assignment [3]–[9], [12]–[14].

In order to ensure reliable execution of the resulting circuit, it is crucial to keep the overhead

introduced through routing as small as possible. Unfortunately, determining optimal mappings

of quantum circuits is an NP-hard problem [7], [15]—mainly due to the involved search space

growing exponentially in the number of considered qubits. This is exacerbated by the fact that

quantum computers are not available in arbitrary sizes. At the time of writing, e.g., IBM hosts

systems using 1, 5, 7, 27, 65, 127, and 433 qubits. This means that, in many cases, significantly more

qubits are available on an architecture than are strictly needed for mapping a quantum circuit. This
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is going to become even more problematic as the size-gap between newer generations of quantum

computers increases. For example, IBM plans to provide a quantum computer with 1121 qubits

in 2023 [16]. A quick solution for this problem is to just pick a subarchitecture of the device that

contains as many qubits as needed. While this keeps the search space for qubit routing as small as

possible, it could be possible that incorporating more qubits than needed—effectively increasing

the search space—allows for solutions requiring less overhead. Experimental results on optimal

quantum circuit mapping conjectured that this is not the case [13], [14]—suggesting that optimality

is preserved by restricting the search space to the bare minimum.

In this work, we answer this question by showing that considering larger subarchitectures can

indeed yield better mappings. Naturally, the next step is to ask which subarchitectures should be

considered during mapping so that no essential parts of the search space are cut off. Unsurprisingly,

determining subarchitectures that are as small and that contain all optimal mapping solutions for

any quantum circuit of a specified size turns out to be a very hard problem. Luckily, the general

notion of such optimal subarchitectures is hardly needed for mapping practical quantum circuits.

This work defines and analyzes minimal sets of subarchitectures that allow for optimal mapping

solutions for all but the most esoteric quantum circuits with a certain number of qubits, while

drastically reducing the search space in many cases. To this end, the subarchitectures are ranked

according to their coverage of optimality, i.e., the number of quantum circuits that can be optimally

mapped to a given subarchitecture.

The resulting software is integrated into the open-source tool QMAP (available at

https://github.com/cda-tum/qmap), which is part of the Munich Quantum Toolkit (MQT), and can

be used to compute various sets of subarchitectures with a trade-off between complexity and

coverage of optimality. For convenience, it includes a pre-computed library of subarchitectures for

common quantum computing devices. Our results considering state-of-the-art quantum computers

demonstrate the benefits of using the generated sets as the basis for quantum circuit

mappers—allowing to significantly reduce the overall complexity of the search space—while still

ensuring that essential parts of the search space are covered for most quantum circuits.

The rest of this paper is structured as follows. Section 2 provides the necessary background in

graph theory and quantum circuit mapping required to present the ideas in this work. After

Section 3 introduces the problem this work aims to address, Section 4 defines two criteria that

allow for the existence of better mapping solutions on larger subarchitectures and gives a complete

characterization of optimal subarchitectures. Two algorithms for constructing near-optimal

subarchitectures are presented in Section 5. Section 6 demonstrates the benefits of this novel

method for existing quantum computing architectures. Finally, Section 7 concludes this paper.

2 BACKGROUND
The connectivity of qubits in modern NISQ [17] devices is described via the architecture’s coupling

graph. Therefore, a lot of jargon related to graph theory will be used in the discussions on optimal

subarchitectures. This section briefly introduces the relevant graph-theoretic concepts as well as

the basics of quantum circuit mapping. For a comprehensive introduction to graph theory the

reader is referred to any standard textbook such as [18].

2.1 Graph Theory
A graph 𝐴 = (𝑉 , 𝐸) is comprised of a set of vertices 𝑉 and a set of edges 𝐸 ⊆ 𝑉 × 𝑉 connecting

vertices. The size of a graph is the number of vertices in the graph denoted |𝐴| = |𝑉 |. 𝐴 is called

undirected if the pair (𝑣,𝑤) ∈ 𝐸 is unordered, otherwise it is called directed.

Two graphs 𝐴 = (𝑉𝐴, 𝐸𝐴), 𝐴′ = (𝑉𝐴′ , 𝐸𝐴′ ) are isomorphic (denoted 𝐴 � 𝐴′) if there is a bijective
function ℎ : 𝑉𝐴 → 𝑉𝐴′ such that (ℎ(𝑣), ℎ(𝑤)) ∈ 𝐸𝐴′ iff (𝑣,𝑤) ∈ 𝐸𝐴.

https://github.com/cda-tum/qmap
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𝑞3 ↦→ 𝑄3 : • 𝑞3

𝑞2 ↦→ 𝑄2 : • • × 𝑞0

𝑞1 ↦→ 𝑄1 : • × × 𝑞2

𝑞0 ↦→ 𝑄0 : × 𝑞1

(c) Mapped circuit

Fig. 1. Example instance of the mapping problem

A graph𝐴′ = (𝑉𝐴′ , 𝐸𝐴′ ) is a subgraph of𝐴 = (𝑉𝐴, 𝐸𝐴) (denoted𝐴′ ⊑ 𝐴) if𝑉𝐴′ ⊆ 𝑉𝐴 and 𝐸𝐴′ ⊆ 𝐸𝐴.

If 𝐴′ is a proper subgraph, i.e., 𝐴′ ≠ 𝐴 we write 𝐴′ ⊏ 𝐴. 𝐴′ is subgraph isomorphic to 𝐴 if there is a

subgraph 𝐴′′ ⊑ 𝐴 such that 𝐴′ � 𝐴′′. An induced subgraph of a vertex set𝑉 ′ ⊆ 𝑉 in 𝐴 = (𝑉 , 𝐸) is a
subgraph 𝐴′ ⊑ 𝐴 with 𝐴′ = (𝑉 ′, 𝐸′) and the property that, if any vertices 𝑣,𝑤 ∈ 𝑉 ′ are connected
in 𝐴, then (𝑣,𝑤) ∈ 𝐸′. In an overloading of notation we also call a subgraph 𝐴′ = (𝑉 ′, 𝐸′) of 𝐴 an

induced subgraph, if 𝐴′ is the induced subgraph of 𝑉 ′ in 𝐴.

A path in a graph 𝐴 = (𝑉 , 𝐸) is a (non-empty) sequence of distinct vertices 𝑝 = (𝑣0, 𝑣1, · · · , 𝑣𝑛−1)
with 𝑣𝑖 ∈ 𝑉 , 0 ≤ 𝑖 < 𝑛 and (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸, 0 ≤ 𝑖 < 𝑛. The length of this path is denoted |𝑝 |. For two
vertices 𝑣,𝑤 ∈ 𝑉 , 𝑝𝐴 (𝑣,𝑤) gives a shortest path between 𝑣 and𝑤 in 𝐴. The longest shortest path in

a graph is called the graph’s diameter.

2.2 Quantum Circuit Mapping
Although the topic of quantum computing is vast and fascinating, understanding its intricacies is not

required in order to understand the contents of this work. All one needs to know about quantum

computing is that, as in classical computing, there is a circuit model for quantum computing.

Graphically, a quantum circuit is made up of wires representing qubits and gates representing
transformations of qubits denoted on the respective wires. A quantum circuit can then be written

as a sequence of gates 𝐺 = 𝑔0 · · ·𝑔 |𝐺 |−1, where |𝐺 | denotes the number of gates in the circuit

(also called the circuit’s size). Quantum gates can act on individual qubits or on multiple qubits

simultaneously.

Existing quantum computers usually offer a native gate set comprised of a family of singe-qubit

gates complemented with some two-qubit gate (e.g. the controlled not or CNOT gate). In addition,

these quantum computers often do not allow execution of two-qubit gates between any qubit

pair. Instead, the target device’s architecture only allows interactions between certain qubits. This

restricted connectivity is expressed through the device’s coupling graph 𝐴 = (𝑄, 𝐸), where 𝑄 are

physical qubits and (𝑄𝑖 , 𝑄 𝑗 ) ∈ 𝐸 if a two-qubit gate can be executed between 𝑄𝑖 and 𝑄 𝑗 . Coupling

graphs can be directed or undirected. In the former case, executing a gate like the two-qubit CNOT

on a directed edge (𝑄𝑖 , 𝑄 𝑗 ) can only be performed with𝑄𝑖 as the first and𝑄 𝑗 as the second qubit. In

the following, we only consider undirected coupling graphs as our ideas can be straightforwardly

extended to the directed case. For the sake of brevity we will use the term architecture when

referring to the coupling graph of a quantum computing architecture.

To run a quantum algorithm on a target device, the logical qubits 𝑞 first have to be mapped

to the physical qubits 𝑄 . A qubit assignment is an injective function 𝛼 : 𝑞 → 𝑄 , i.e., a function

that uniquely assigns each logical qubit a physical qubit. As long as |𝑞 | ≤ |𝑄 |, such a mapping

can always be obtained. Executing a quantum circuit 𝐺 = 𝑔0 · · ·𝑔 |𝐺 |−1 on a device with coupling

graph 𝐴 and initial assignment 𝛼 is only possible if all two-qubit gates of the circuit act on qubits

connected on the architecture. If this is not possible, the assignment has to be changed dynamically

throughout the circuit in order for each gate of 𝐺 to be executable. This is generally accomplished

by adding SWAP gates to the circuit, which exchange two qubits in an assignment.
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The mapping problem for a quantum circuit is to find an initial assignment 𝛼 and a (potentially

empty) sequence of SWAP insertions such that the entire circuit can be executed on the target

architecture. We denote the optimal, i.e. minimal, number of swaps when mapping a quantum

circuit 𝐺 to architecture 𝐴 with 𝑠opt (𝐺,𝐴).
Example 1. Assume the circuit shown in Fig. 1a is to be mapped to the architecture defined by the

coupling graph shown in Fig. 1b. No initial assignment exists such that this circuit can be executed
without inserting SWAP gates. Taking the initial assignment 𝛼 depicted on the left-hand side of Fig. 1c
allows the direct execution of the first three CNOT gates. However, the CNOT between logical qubits
𝑞3 and 𝑞0 cannot be executed with this assignment. Inserting a SWAP between physical qubits 𝑄1 and
𝑄0 followed by a SWAP between physical qubit 𝑄1 and 𝑄2 leads to the assignment

{𝑞3 ↦→ 𝑄3, 𝑞2 ↦→ 𝑄1, 𝑞1 ↦→ 𝑄0, 𝑞0 ↦→ 𝑄2}.

Therefore, the CNOT between 𝑞3 and 𝑞0 translates to a 𝐶𝑁𝑂𝑇 between 𝑄3 and 𝑄2 which can be
directly executed.

It is easy to see, that mapping a circuit can always be done by choosing some initial layout

and greedily inserting SWAP gates. This leads to circuits with many SWAP gates—an undesirable

property on NISQ devices due to the relatively high error rate of two-qubit gates. However, finding

good solutions to the mapping problem is a challenging task in general and has even been shown

to be NP-hard [7], [15], [19], [20]. Although these works make slightly different assumptions about

the qubit mapping problem, the problem’s complexity stays the same overall.

3 CONSIDERED PROBLEM
Given an 𝑛-qubit quantum circuit 𝐺 and an architecture 𝐴 (with |𝐴| ≥ 𝑛), the search space of the

mapping problem is spanned by:

(1) Qubit allocation: Which subarchitecture 𝐴′ of 𝐴 consisting of at least 𝑛 qubits shall be

considered for the subsequent routing?

(2) Qubit routing: Assuming that |𝐴′ | qubits have been allocated, which of the |𝐴′ |!
permutations—realizing arbitrary transitions between assignments via sequences of SWAP

gates—to consider in front of every two-qubit gate?

As evident from the above, the search space in quantum circuit mapping grows exponentially

with respect to the number of physical qubits allocated for the mapping process, i.e., the size of the

considered subarchitecture. Thus, pruning parts of this search space is absolutely crucial for aiding

mapping methods in efficiently traversing the search space. However, while limiting the search

space, in general, increases the efficiency of mapping techniques (since a smaller search space is

easier to explore), it bears the risk of cutting off regions which contain optimal/efficient solutions.

Consequently, extra care has to be taken when

(1) reducing the number of allocated physical qubits |𝐴′ |, or
(2) limiting the considered permutations during qubit routing.

Most existing techniques that try to efficiently find good mapping solutions tend to focus on the

second aspect, i.e., limiting the number of considered permutations or combinations of SWAPs

during qubit routing [9], [13], [21]–[27]. On the other hand, the first aspect has hardly been

considered thus far.

Example 2. In order to get an impression of the qubit allocation problem, Fig. 2 shows all non-
isomorphic subgraphs of the 16-qubit ibmq_guadalupe architecture—grouped by their number of
qubits. Assume that a 9-qubit circuit shall be mapped to this architecture. Then, every subgraph with
at least 9 qubits is a potential candidate for mapping—amounting to a total of 91 options.
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Fig. 2. Non-isomorphic subgraphs (marked as ) of the 16-qubit ibmq_guadalupe architecture (shown in the
middle) grouped by their number of qubits.

Ideally, one would strive to allocate as few qubits as possible, in particular only as many as there

are logical qubits in the circuit. This would entail the greatest search-space reduction as only as

many qubits are allocated as are strictly necessary to ensure the existence of a mapping. Cutting

off parts of the search space might, however, have the unwanted effect of eliminating optimal or

even efficient solutions. Experimental evaluations on optimal quantum circuit mapping suggested

that this is not the case [13], [14].

This work remedies this misconception by showing that considering larger than strictly necessary

subarchitectures can be beneficial when searching for efficient solutions. This shows, once and for

all, that considering subarchitectures of minimal size is not sufficient. However, instead of being

content with a negative result, we then explore the following problem.

Central Problem. Let𝐴′ and𝐴′′ be two subarchitectures of an architecture𝐴.𝐴′ is said to possess
higher coverage than 𝐴′′, i.e., 𝐴′′ <𝑛

cov 𝐴
′ with respect to 𝑛 ∈ N if:

• Any quantum circuit 𝐺 over 𝑛 qubits can be optimally mapped to 𝐴′ with no more SWAPs
than are needed for mapping 𝐺 to 𝐴′′, i.e., ∀𝐺 : 𝑠opt (𝐺,𝐴′) ≤ 𝑠opt (𝐺,𝐴′′).
• There is a quantum circuit 𝐺 over 𝑛 qubits that can be mapped to 𝐴′ using less SWAPs than
required for mapping it to 𝐴′′, i.e, ∃𝐺 : 𝑠opt (𝐺,𝐴′) < 𝑠opt (𝐺,𝐴′′).

If only the first property is fulfilled we write 𝐴′′ ≤𝑛cov 𝐴′.
The problem of finding the optimal subarchitectures of 𝐴 for a given size 𝑛 is the problem of finding

the smallest (with respect to the size of the subarchitectures) maximal elements with respect to <𝑛
cov, i.e.,

min

|𝐴′ |
max

≤𝑛cov
{𝐴′ : 𝐴′ ⊑ 𝐴}.
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𝑞3 : •
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𝑞1 : •
𝑞0 :

(a) Quantum Circuit

𝑄0
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𝑄2

𝑄3

𝑄4

(b) Architecture

𝑞0𝑄4 : × 𝑞0

𝑞3 ↦→ 𝑄3 : • 𝑞3

𝑞2 ↦→ 𝑄2 : • • 𝑞2

𝑞1 ↦→ 𝑄1 : • 𝑞1

𝑞0 ↦→ 𝑄0 : ×
(c) Optimally mapped circuit

Fig. 3. Optimal solution to the mapping problem from Fig. 1 considering the complete architecture

4 EXISTENCE OF BETTER MAPPINGS ON LARGER SUBARCHITECTURES
In this section, we show that considering larger subgraphs can, under certain circumstances, lead

to better solutions for the mapping problem. To this end, Section 4.1 and Section 4.2 establish

two criteria that allow for ranking subarchitectures according to their coverage. These criteria

are constructive in the sense that they allow for the definition of a method for computing good

subarchitectures (with respect to <𝑛
cov

)—trading off subarchitecture size and, by extension, search

space size for the mapping problem, and likelihood of eliminating efficient mapping solutions.

Afterwards, we give a complete characterization of the smallest maximal elements with respect

to <𝑛
cov

among all the non-isomorphic subarchitectures of a given architecture. This proves that

merely considering the subgraphs 𝐴′ of an architecture 𝐴 with as many qubits as the circuit to be

mapped can lead to situations where the optimal solution to the mapping problem is no longer

contained in the search space induced by the allocated qubits.

The proofs in this work require somewhat technical circuit constructions. Instead of listing the

details here, an intuition of these constructions will be given. These can be generalized to arbitrary

(sub-)architectures.

4.1 Subarchitectures with Shorter Connections
The first criterion is based on the observation that subarchitectures with shorter connections

between certain qubits potentially allow for better mappings—even if they involve more qubits. An

example illustrates the idea:

Example 3. Consider again the circuit shown in Fig. 1a and assume it shall be mapped to the
5-qubit ring architecture shown in Fig. 1b. Previously, in Example 1, the circuit has been mapped to the
4-qubit line 𝑄0 −𝑄1 −𝑄2 −𝑄3, which resulted in the addition of two SWAP gates in order to satisfy
the coupling constraints (as illustrated in Fig. 1c). It can be shown that this is the optimal number of
SWAP operations given that only four of the architecture’s qubits are considered.

If, however, the whole architecture is considered (i.e., including the idle qubit𝑄4), the optimal solution
just requires a single SWAP. The resulting circuit is shown in Fig. 3.

Based on the previous example, it is clear that extending a subarchitecture to a larger one might

admit a better mapping for a quantum circuit if the path between some qubits is shorter in the larger

subgraph. This insight suggests a natural way of ordering the subarchitectures of an architecture:

Definition 1. Let the (partial) order ⪯ be defined as a relation on graphs with the following
properties:
Let 𝐴 = (𝑉𝐴, 𝐸𝐴) and 𝐴′ = (𝑉𝐴′ , 𝐸𝐴′ ) be two graphs. Then, 𝐴′ ≺ 𝐴 iff 𝐴′ ⊑ 𝐴 with subgraph
isomorphism ℎ and there are two nodes that have a shorter path between them in 𝐴 than the
corresponding nodes in 𝐴′, i.e.,

∃ 𝑣,𝑤 ∈ 𝑉𝐴′ : |𝑝 (𝑣,𝑤) | > |𝑝 (ℎ(𝑣), ℎ(𝑤)) |.
If 𝐴′ and 𝐴 are only subgraph isomorphic with no shorter paths then we write 𝐴′ ⪯ 𝐴.
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This order has the desirable property that𝐴′ ⪯ 𝐴 iff the optimal mapping of an arbitrary quantum

circuit 𝐺 to the larger architecture 𝐴 is at least as good as the mapping of𝐺 to subarchitecture 𝐴′,

i.e.,𝐴′ ≤ |𝐴
′ |

cov
𝐴. The reason for this is simple: Since𝐴′ is a subarchitecture of𝐴, any quantum circuit

𝐺 mapped to 𝐴′ can be mapped to 𝐴 in exactly the same fashion.

Moreover, this partial ordering provides a way of ranking the subarchitectures of an architecture:

Theorem 4.1. Let 𝐴′ be a subarchitecture of an architecture 𝐴 such that 𝐴′ ≺ 𝐴. Then, a quantum
circuit𝐺 exists that is cheaper to map to𝐴 instead of𝐴′, i.e., 𝑠opt (𝐺,𝐴) < 𝑠opt (𝐺,𝐴′) and, by extension,
𝐴′ < |𝐴

′ |
cov 𝐴.

Proof Sketch. The intuition behind the proof is that, given 𝐴′ ≺ 𝐴, there exist vertices 𝑣 and

𝑤 in 𝐴′ that have a shorter connection in 𝐴. If, during mapping, an interaction between 𝑣 and𝑤 is

required, this interaction can be realized more efficiently in 𝐴 due to the shorter connection. □

Example 4. Consider again the scenario from Example 3. Then, the 4-qubit line is strictly smaller
than the 5-qubit ring with respect to ⪯ (i.e., line ≺ ring) since it holds that

|𝑝line (𝑄0, 𝑄3) | = 3 > 2 = |𝑝ring (𝑄0, 𝑄3) |.

As a consequence of Theorem 4.1, there exists a circuit (e.g., the one shown in Fig. 1a) which has a more
efficient mapping solution on the 5-qubit ring (see Fig. 3) as compared to the 4-qubit line (see Fig. 1c).

For any graph 𝐴 and subgraph 𝐴′, the set of desirable subarchitectures D(𝐴′, 𝐴) is given by the

maximal elements with respect to ≺, i.e.,

D(𝐴′, 𝐴) =
{
𝐷 : 𝐴′ ⊑ 𝐷 ⊑ 𝐴 and �𝐷 ′ ⊑ 𝐴 : 𝐴′ ≺ 𝐷 ′ ∧ 𝐷 ≺ 𝐷 ′

}
.

This set contains all subarchitectures worth considering during mapping due to their potential of

providing a better mapping solution according to the ranking defined by the order ⪯.

4.2 Subarchitectures without Shorter Connections

As shown above, a better mapping can potentially be achieved if two qubits have a shorter

connection on a larger subarchitecture than the one originally considered. The natural follow-up

question is: Can a single additional qubit, that does not lead to a shorter connection between some

qubits, bring any improvements in mapping a particular quantum circuit? In the following, we give

an affirmative answer. The main idea is that, given an architecture 𝐴 and a subarchitecture 𝐴′, a
larger subarchitecture 𝐴′ ⊑ 𝐴′′ ⊑ 𝐴 can allow for a better mapping, if it contains at least one more

subarchitecture of size |𝐴′ | that is not isomorphic to 𝐴′. Again, an example illustrates the idea:

Example 5. Instead of a 5-qubit ring (as in Example 3), consider an architecture as shown on the
bottom of Fig. 4. This architecture contains two non-isomorphic 4-qubit subarchitectures as shown in
the middle of Fig. 4—a “line” and a “T”-shaped subarchitecture. The quantum circuits 𝐺 and 𝐺 ′ shown
on top of the subarchitectures can be mapped to the respective subarchitecture without SWAPs, while
they require a single SWAP to be realized on the other subarchitecture.
Now, consider the quantum circuit 𝐺4𝐺 ′4, i.e., a circuit composed of four repetitions of each of the

two circuits described above. Mapping this circuit to either of the 4-qubit subarchitecture requires
at least four SWAPs (since every repetition of the circuit which was not designed for the respective
subarchitecture introduces a SWAP). However, it only takes three SWAPs to transform the qubit
assignment on the “line” subarchitecture to a qubit assignment on the “T”-shaped subarchitecture on
the whole architecture. Therefore, considering the whole architecture allows for a better mapping than
mapping to either subarchitecture.
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Fig. 4. 5-qubit architecture (bottom), its 4-qubit subgraph candidates (marked as ), and two circuits each of
which can be mapped to one of the subgraphs without SWAPs (top).

The following theorem formalizes this observation:

Theorem 4.2. Let 𝐴′, 𝐴′′ be equally-sized (i.e., |𝐴′ | = |𝐴′′ | = 𝑛), non-isomorphic (i.e., 𝐴′ � 𝐴′′)
proper induced subarchitectures of an architecture 𝐴 (i.e., 𝐴′ ⊏ 𝐴 and 𝐴′′ ⊏ 𝐴).Then there is a
quantum circuit 𝐺 that is cheaper to map to 𝐴 than to each individual subarchitecture, i.e., 𝐴′ <𝑛

cov 𝐴

and 𝐴′′ <𝑛
cov 𝐴.

Proof Sketch. The intuition behind this proof is that, similar to Example 5, for each

subarchitecture, a circuit can be constructed, that does not require any SWAPs to be executed on

that subarchitecture, but will require at least one SWAP on the other subarchitecture. In addition,

there is a certain number of SWAPs 𝑆 that is needed to transform an assignment to 𝐴′ to an

assignment to 𝐴′′ on the whole architecture. If 𝐺 ′ (𝐺 ′′) is the circuit corresponding to 𝐴′ (𝐴′′),
then the circuit 𝐺 = (𝐺 ′)𝑆+1 (𝐺 ′′)𝑆+1 is cheaper to map to 𝐴 than to either 𝐴′ or 𝐴′′. □

Thus, even a single additional qubit that does not induce a shorter connection may yield a better

overall mapping.

4.3 Characterizing Optimal Subarchitectures
In the above, the benefit of an additional qubit is due to different parts of a circuit being more

efficiently executable on different subarchitectures. This implies that all the desirable

subarchitectures need to be covered in order to not lose optimality. The following example

demonstrates, that extra care needs to be taken when determining such a covering.

Example 6. The architecture𝐴 shown in Fig. 5 has, among others, the three 5-qubit subarchitectures
labeled 𝐴′, 𝐴′′ and 𝐴′′′. It is immediate that 𝐴′′ and 𝐴′′′ are isomorphic. According to Theorem 4.2,
there exists a 5-qubit circuit𝐺 that can be more efficiently mapped to a subarchitecture of𝐴 containing
𝐴′ and 𝐴′′ than to each individual subarchitecture. There are two possible options for covering both
subgraphs on 𝐴 by either connecting 𝐴′ −𝐴′′ or 𝐴′ −𝐴′′′. However, since the connection between 𝐴′

and 𝐴′′ is shorter, it has to be ensured that this graph is chosen over the alternative.

Thus, a truly-optimal subarchitecture not only needs to cover any of the desirable subarchitectures

but also has to allow for the shortest possible transformation between them. The last piece of

the puzzle to characterize optimal subarchitectures of an architecture is that merely considering

subarchitectures still does not suffice to guarantee that the optimal solution is not lost.
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𝐴′′
𝐴′

𝐴′′′

Fig. 5. Subarchitecture transformations

Example 7. Consider again the circuit in Fig. 1a. Example 3 showed that this circuit can be more
efficiently mapped to a 5-qubit ring than to a 4-qubit line. In Section 4.1, this was attributed to the
shorter connection between two qubits in the larger architecture. A more general observation is that
any arrangement of (logical) qubits on the device can potentially be permuted more efficiently on the
larger architecture. Similarly, in Example 5, the 5-qubit architecture allows for the transformation of
any linear arrangement of qubits to a “T”-shaped arrangement, which was not possible on either of it
subgraphs.

This brings us to the final characterization and theorem for optimal subarchitectures.

Unfortunately, the precise formulation and proof of this theorem are very technical. For the sake of

brevity, an informal version of the theorem is listed here.

Theorem 4.3. The 𝑛-qubit optimal subarchitectures· of an architecture are those that allow to realize
any sequence of 𝑛-qubit arrangements as efficiently as it could be realized on the whole architecture.

This is an extremely restrictive requirement! There are way more arrangements of 𝑛 qubits

than there are 𝑛-qubit subarchitectures of an architecture. For example, while there is only one

4-qubit “line” subarchitecture up to isomorphism, there are twelve non-unique ways to arrange

four qubits on a line. Any sequence of these arrangements needs to be realizable as efficiently

on the potential subarchitecture than it would be on the whole architecture. This makes the

“hunt” for optimal subarchitectures of an architecture look grim. It seems that not much is gained

by characterizing optimal subarchitectures according to Theorem 4.3 as it still does not suggest

a method for computing optimal subarchitectures. The real insight of this theorem is that it

demonstrates just how general optimal subarchitectures are and that qubits cannot easily be

neglected for the purpose of reducing the search space in quantum circuit mapping.

One might even be tempted to conclude that on any given architecture 𝐴 one cannot neglect

any physical qubits when mapping a quantum circuit 𝐺 over 𝑛 < |𝐴| qubits without potentially
excluding essential parts of the search space. However, this pessimism is misplaced, as the following

simple example shows.

Example 8. Consider a 5-qubit “line” architecture. Then, the optimal mapping of any 4-qubit
quantum circuit requires only four physical qubits. Theorem 4.3 explains why: None of the twelve
possible arrangements of four qubits on a line can be transformed into each other more efficiently using
the additional qubit.

Computing optimal subarchitectures according to Theorem 4.3 is an incredibly complex problem

due to the sheer number of possible arrangements. Fortunately, the requirements of Theorem 4.3

are way to strict in practice and it generally suffices to cover only the subarchitectures suggested by

Theorem 4.1 and/or Theorem 4.2. How these near-optimal sets of subarchitectures are computed, is

shown next.
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Fig. 6. ibmq_guadalupe architecture (top left), its non-isomorphic
9-qubit subarchitectures (marked as ) and the corresponding
desirable subarchitectures (with additional qubits marked as
and qubits not included in the subarchitecture marked as )—
forming the set of subarchitecture candidates for 9-qubit circuits.
Multiple subarchitectures may lead to the same candidate.

Fig. 7. Optimal subarchitecture candidates
(marked as ) for 9-qubit circuits on the
ibmq_guadalupe architecture.

5 COMPUTING NEAR-OPTIMAL SUBARCHITECTURES
Based on the criteria derived in the previous section, we now demonstrate two ways of computing

sets of subarchitectures to be considered for mapping which only depend on the number of qubits of

the circuit to be mapped. As a result, for any particular architecture, these subarchitecture candidates
can be computed a-priori without any particular information about the circuits.

5.1 Candidates for Optimal Subarchitectures
Assume that an 𝑛-qubit circuit 𝐺 is to be mapped to an architecture 𝐴 with |𝐴| ≥ 𝑛. Let Sub𝑛 (𝐴)
denote the set of all induced subarchitectures 𝐴′ of 𝐴 with size 𝑛, i.e.,

Sub𝑛 (𝐴) = {𝐴′ : 𝐴′ ⊑ 𝐴 and |𝐴′ | = 𝑛}.
According to Theorem 4.1, this set of subarchitectures is probably not a set of optimal

subarchitectures since the architecture might contain “better” subarchitectures. Instead, for each of

its elements, the corresponding set of desirable subarchitectures should be considered. Thus, an

initial set of subarchitecture candidates Cand𝑛 (𝐴) is given by

Cand𝑛 (𝐴) =
⋃

𝐴′∈Sub𝑛 (𝐴)
D(𝐴′, 𝐴) .

Example 9. Consider the 16-qubit ibmq_guadalupe architecture shown on the top left of Fig. 6 and
assume that a 9-qubit circuit shall be mapped to this architecture. Then, Fig. 6 shows the architecture’s
seven non-isomorphic 9-qubit subarchitectures (marked as ). On this architecture, the only way to
decrease the distance between two qubits is to close the central ring of the architecture. In four out of
seven cases, closing the ring indeed shortens the path between two qubits (marked as ). Overall, the set
of mapping candidates for 9-qubit circuits Cand9 (ibmq_quadalupe) consists of five subarchitectures
ranging from nine to thirteen qubits.
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According to Theorem 4.2, if a subarchitecture subsumes two non-isomorphic smaller

subarchitectures, then this larger subarchitecture needs to be considered in order to not lose out on

optimality. Thus, the set of optimal subarchitecture candidates OptCand𝑛 (𝐴) is given by the

smallest subarchitectures of 𝐴 (with respect to ⊑) that contain all subarchitecture candidates for 𝑛
qubits, i.e.,

OptCand𝑛 (𝐴) = min

⊑

©­­­­­­«
⋂

𝐶∈Cand𝑛 (𝐴)

subarchitectures of𝐴 containing𝐶︷                  ︸︸                  ︷
{𝐴′ : 𝐶 ⊑ 𝐴′ ⊑ 𝐴}︸                                         ︷︷                                         ︸

intersection over all subarchitecture candidates

ª®®®®®®¬
This set is never empty, since, in the worst case, it consists of 𝐴 itself (the entire architecture, per

definition, has all subarchitecture candidates as subarchitectures). Although, in many cases, the

elements of OptCand𝑛 (𝐴) contain less qubits. Note that these candidates are optimal in the sense

that no larger subarchitectures can be constructed using Theorem 4.1 and Theorem 4.2 that are an

improvement with respect to ≤𝑛
cov

.

Example 10. Consider again the ibmq_guadalupe architecture from the previous example. Then,
Fig. 7 shows the optimal subarchitecture candidates for 9-qubit circuits. It is easy to check, that both
indeed contain all five subarchitecture candidates illustrated in Fig. 6 and that removing any of their
qubits would exclude one of them. While, in this case, only a single qubit is saved compared to the
whole architecture, this still constitutes a significant reduction in the search space (e.g., by a factor of
16 due to only having to consider 15! instead of 16! possible permutations).

By utilizing the derived subarchitectures to map quantum circuits, the search space can be greatly

reduced without cutting away essential parts.

5.2 Adaptively Covering Subarchitecture Candidates
Although OptCand𝑛 (𝐴) describes exactly those subarchitectures of an architecture 𝐴 that are

optimal with respect to Theorem 4.1 and Theorem 4.2, the requirement that these subarchitectures

must contain all subarchitecture candidates is a very strong one. Since the resulting

subarchitectures need to encompass many non-isomorphic subarchitectures, they frequently are

large in size compared to the circuit to be mapped. Theorem 4.2 implies that this requirement

cannot be dropped without potentially cutting away parts of the search space potentially

containing optimal solutions. However, the structure of the circuits in the proof of Theorem 4.2 is

still rather “artificial” since converting between different 𝑛-qubit subarchitectures in a single

circuit is hardly relevant in practice. Thus, this criterion might be deliberately dropped in order to

reduce the size of the subarchitectures to be considered—leaving only the subarchitecture

candidates for mapping.

The number of subarchitecture candidates Cand𝑛 (𝐴) is, in general, bounded. In particular, if a

architecture𝐴with𝑛 qubits has diameter𝑑 , at most
𝑛 (𝑛−1)

2
(𝑑−1) qubits can be added to improve the

connectivity of the circuit. As architectures for currently existing devices exhibit low connectivity,

the number of qubits that can be added to improve the connectivity of an architecture tends

to be quite small. However, the sheer number of candidates can grow rather large and trying

out every possible one can become exceedingly expensive—even if taking parallel execution into

account. Thus, it might be desirable to find a collection of subarchitectures (with a limited number

of elements) that covers all the subarchitecture candidates.
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Definition 2. Let 𝐴 be an architecture and let Cand𝑛 (𝐴) denote the set of subarchitecture
candidates for 𝑛-qubit circuits. Then, the set of covering candidates CovCand𝑛 (𝐴) is given by the
subarchitectures of 𝐴 containing any of the subarchitecture candidates, i.e.,

CovCand𝑛 (𝐴) =
⋃

𝐶∈Cand𝑛 (𝐴)
{𝐴′ : 𝐶 ⊑ 𝐴′ ⊑ 𝐴}

Moreover, a subarchitecture covering Cov𝑛 (𝐴) is a subset of CovCand𝑛 (𝐴) with the property that
for every subarchitecture candidate, there is at least one element in the covering that contains that
candidate as a subarchitecture, i.e., Cov𝑛 (𝐴) ⊆ CovCand𝑛 (𝐴) such that

∀𝐶 ∈ Cand𝑛 (𝐴) ∃𝐴′ ∈ Cov𝑛 (𝐴) : 𝐶 ⊑ 𝐴′ .

Algorithm 1 Compute subarchitecture covering

Input
𝐴 Architecture

𝑛 Number of qubits

𝑘 Max. size of covering

Output
Cov𝑛 (𝐴) Covering of 𝐴 such that |Cov𝑛 (𝐴) | ≤ 𝑘

Initialize Cov𝑛 (𝐴) ← Cand𝑛 (𝐴)
Initialize queue← ⋃

𝐶∈Cand𝑛 (𝐴) {𝐴′ : 𝐶 ⊑ 𝐴′ ⊑ 𝐴}
Sort queue with respect to the number of vertices.

while | Cov𝑛 (𝐴) | > 𝑘 do
𝐷 ← pop(queue)
Let Cov𝐷 ← {𝐶 ∈ Cov𝑛 (𝐴) : 𝐶 ⊑ 𝐷}
if | Cov𝐷 | > 1 then

Update Cov𝑛 (𝐴) ← (Cov𝑛 (𝐴) \ Cov𝐷 ) ∪ {𝐷}
end if

end while

(a) 4-element covering

(b) 2-element covering

Fig. 8. Different subarchitecture
coverings (marked as ) for 9-qubit
circuits on the ibmq_guadalupe
architecture.

Finding a minimal subarchitecture covering (with respect to the number of elements) is actually

very easy, since the entire architecture, per definition, covers all subarchitecture candidates—at

the disadvantage of having the largest number of qubits. In contrast, the set of subarchitecture

candidates trivially forms the maximal covering—having the least number of qubits but the highest

number of candidates. In order to determine a subarchitecture covering that is as small as possible

while still containing subarchitectures over as few qubits as possible, we propose the greedy

algorithm as sketched in Algorithm 1.

The algorithm starts off with the subarchitecture candidates as a covering and then iteratively

picks a covering candidate (from smallest to largest). If the candidate covers more than a single

architecture in the currently considered covering, the candidate replaces all covered architectures.

This process is repeated until the size of the covering has been reduced to the desired size. This

algorithm is guaranteed to terminate since, in the worst case, the entire architecture is returned.

The bottleneck of this algorithm is the computation of the non-isomorphic subarchitectures, as it

requires solving many instances of the (sub-)graph isomorphism problem. During the computation
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of the non-isomorphic subarchitectures, the set Cand𝑛 (𝐴) can be constructed on the fly. Because

the ordering ≺ is dependent on the sub-graph isomorphism relation, it can be deduced during the

sub-graph isomorphism check of two subarchitectures. If it is determined that 𝐴′ ⊑ 𝐴′′, then it is

simply a matter of determining whether there are two nodes in 𝐴′′ that are closer in 𝐴′′ than in 𝐴′

to determine whether 𝐴′′ ≺ 𝐴′. The set D(𝐴′, 𝐴) can then be computed as the transitive closure.

Example 11. Once more, consider the ibmq_guadalupe architecture from the previous examples.
Then, Fig. 8 shows a four- and a two-element subarchitecture covering for 9-qubit circuits as
determined by Algorithm 1. While the four-element covering shown in Fig. 8a contains smaller
architectures (specifically, three 9-qubit, and one 13-qubit architecture), Fig. 8b shows that all three
9-qubit architectures can be covered by a single 11-qubit subarchitecture.

Overall, Algorithm 1 allows one to adaptively cover all the subarchitecture candidates—offering

a trade-off between the number of subarchitectures to consider and their respective size. The

computed covering ensures that all practically relevant parts of the search space (i.e., excluding the

pathological cases covered by Theorem 4.2 and Theorem 4.3) are considered during the subsequent

mapping.

6 RESULTING TOOL
All of the above findings have been used to develop a Python-based tool that computes

subarchitectures with a high coverage for a given architecture and size. In particular, this tool

computes optimal subarchitecture candidates as discussed in Section 5.1 and minimal

subarchitecture coverings using Algorithm 1. The tool is integrated into the quantum circuit

mapping tool QMAP (https://github.com/cda-tum/qmap), which is part of the Munich Quantum
Toolkit (MQT) [28]. All graph computations are performed using the retworkx library [29] which

uses the VF2 algorithm [30] to solve the (sub-)graph isomorphism problem. Since the subgraph

isomorphism problem is NP-hard [31], Algorithm 1 is inherently an exponential algorithm (at least

as long as the question of P and NP is not settled). To compute all non-isomorphic subarchitectures

of an architecture, one needs to first compute all subarchitectures of which there are an

exponential number with respect to the size of the whole architecture. To demonstrate the runtime

of computing optimal subarchitectures and the effect of mapping to subarchitectures, experimental

evaluations were conducted on a 3.6 GHz Intel Xeon W-1370P machine running Ubuntu 20.04 with

128GiB of main memory. Each evaluation’s time limit was set to 24 hours. The current version of

the tool performs all computations using a single thread. In principle, all non-isomorphic

subarchitectures can be computed in parallel, which could accelerate the computation of optimal

subarchitectures for larger architectures. In the sections that follow, we will show how the tool can

be used to analyze state-of-the-art quantum computing architectures.

6.1 Optimal Subarchitectures and Coverings
The resulting tool was used to compute optimal subarchitecture candidates and minimal

subarchitecture coverings for three representative quantum computing architectures: the 16-qubit

ibmq_guadalupe architecture, another 16-qubit architecture consisting of two connected 8-qubit

rings that serve as the foundation of Rigetti’s quantum computing architectures, and a 23-qubit

part of Google’s Sycamore chip. More precisely, Table 1 lists the total number of connected

subarchitectures and non-isomorphic subarchitectures for the three architectures, as well as the

optimal subarchitecture candidates and minimal subarchitecture coverings for two different

numbers of qubits for each device.

First, results confirm the findings illustrated before concerning the ibmq_guadalupe architecture.

Since it is based on a 12-qubit ring, the optimal candidates from 8 qubits onward are all at least

https://github.com/cda-tum/qmap
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Table 1. Example subarchitectures

Architecture |𝐴 | Connected

Subarchitectures

Non-isomorphic

Subarchitectures

Optimal Candidates Coverings

ibmq_guadalupe 8 Qubits 10 Qubits 8 Qubits 10 Qubits

16 746 110

Rigetti 10 Qubits 7 Qubits 10 Qubits 7 Qubits

16 1312 184

Sycamore 7 Qubits 13 Qubits 7 Qubits 13 Qubits

23 300015 24786

.

.

. + 95

of size 12 because that is the point at which there are shorter connections between qubits on the

ring. Therefore it is quite hard to reduce the number of qubits of the considered subarchitectures

during mapping on the ibmq_guadalupe. However, because the search space in quantum circuit

mapping is exponential in the number of allocated qubits, every qubit saved by using Algorithm 1

significantly reduces the complexity of the mapping problem.

Things get more interesting with the 16-qubit Rigetti architecture which has a nice symmetry to

it. The two central elements of this architecture are the 4-qubit ring in the middle and the 8-qubit

rings attached to it. This is reflected in the covering graphs shown in Table 1, which can be roughly

separated into subgraphs containing the 4-qubit ring and subgraphs containing the 8-qubit ring.

Finally, the Sycamore architecture by Google is an extreme case as it has a higher connectivity

than any other superconducting quantum circuit architecture considered here. This is reflected in the

large number of non-isomorphic subarchitectures contained in the 23-qubit architecture. Because

of this high connectivity, one would expect that, according to Theorem 4.1, subarchitectures can be

improved by adding additional qubits to complete the many 4-qubit rings present in the Sycamore

architecture. And, indeed, it can be observed that, even for 13 qubits, the optimal subarchitecture

candidate uses all but one of the architecture’s qubits. Furthermore, it is hard to compute a small set

of covering architectures. This makes the trade-off between coverage of optimal mapping solutions,

complexity, and number of subarchitectures that need to be considered during quantum circuit

mapping tricky. Even for the 13 qubit case, no covering with less than 97 elements can be found

that does not contain a subarchitecture with more than 18 qubits. However, this is still a significant

reduction from the 1153 desirable subarchitectures for 13 qubits.

Overall, Table 1 demonstrates just how hard it can be to reduce the size of subarchitectures

considered for qubit allocation. This fact makes the theoretical findings provided in this work and

the resulting tool especially appealing because they aid in understanding and tackling this difficult

problem and provide a solid foundation for handling the enormous search space for future quantum

circuit mapping techniques.
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Table 2. Construction of the partial order ≺ for architectures of different sizes

Architecture |𝐴| Connected Non-isomorphic 𝑡 [s]

ibmq-lima 5 17 6 0.002

ibm-lagos 7 37 9 0.003

ibmq-guadalupe 16 746 110 1.380

ibmq-toronto 27 43721 5197 2544.954

sycamore-1-ring 4 13 4 0.000

sycamore-2-ring 6 40 9 0.001

sycamore-3-ring 8 117 24 0.012

sycamore-4-ring 9 218 28 0.020

sycamore-5-ring 11 609 111 0.368

sycamore-6-ring 13 1852 276 2.406

sycamore-7-ring 14 3343 383 4.592

sycamore-8-ring 16 9118 2004 93.152

sycamore-9-ring 18 27435 4156 402.590

sycamore-10-ring 19 49420 5364 665.922

sycamore-full 23 300015 24786 14 240.843

rigetti-1-ring 8 57 8 0.193

rigetti-2-ring 16 1312 184 2.176

rigetti-3-ring 24 31033 6181 1703.185

rigetti-4-ring 32 - - timeout

6.2 Computing the Partial Order ≺
To showcase the runtime scaling of computing optimal subarchitectures, consider Table 2. It

illustrates the runtime with respect to the size of a given architecture and its number of different

subarchitectures (isomorphic as well as non-isomorphic) when constructing the initial ordering ≺
of the subarchitectures—the computationally most expensive part of Algorithm 1. The considered

architectures are comprised of different IBM quantum computers as well as versions of the Rigetti

and Google architectures considered in the previous section. The Rigetti and Google architectures

are comprised of 8- and 4-qubit rings, respectively, which are connected on a regular grid. For these

architectures the number of connected rings for which ≺ has been computed, were varied to show

the runtime dependency.

Architectures with more than 30 qubits could not be evaluated within 24 hours using the current

version of the tool. This is mainly due to the current implementation not taking advantage of all

available hardware resources, e.g., via parallelization. While there is naturally still a limit to the

size of the considered architectures, a more optimized implementation can help analyze larger and

more intricate architectures. The runtimes also suggest an optimization when mapping smaller

circuits to regularly repeating architectures: instead of computing ≺ on the entire architecture, one

can pick a smaller subarchitecture that is likely to contain most of the relevant subarchitectures

for the circuit in question. This way, one can hope to gain a significant speedup whithout losing

out on too many subarchitectures, as the runtime increases more drastically with the size of the

architecture than the number of non-isomorphic subarchitectures.
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Table 3. Optimal mapping with different subarchitectures

(a) 4-qubit circuits on 6-qubit architecture

Subarchitecture #SWAP 𝑡 [s]

Two-local-random

ring 9 0.290

line 12 1.077

fork 8 0.054

cover 8 3.228

full 8 11.798

Portfolio VQE

ring 9 0.251

line 12 0.554

fork 8 0.038

cover 8 0.294

full 8 12.621

QFT Entangled

ring 3 0.106

line 5 0.758

fork 6 0.043

cover 5 0.292

full 3 1.602

Realamprandom

ring 9 0.449

line 12 2.563

fork 8 0.050

cover 8 1.556

full 8 4.359

(b) 5-qubit circuits on 7-qubit architecture

Subarchitecture #SWAP 𝑡 [s]

Graphstate

ring 1 0.055

line 3 0.086

fork 2 0.034

cover 2 0.138

full 1 61.213

AE

ring 6 2.424

line 6 1.495

fork 4 0.581

cover 4 5.259

full 4 227.778

QPE Exact

ring 6 79.959

line 7 10.945

fork 5 0.599

cover 5 115.252

full 5 1189.601

QGAN

ring 6 0.873

line 6 0.884

fork 4 0.267

cover 4 1.482

full 4 171.095

6.3 Impact onQuantum Circuit Mapping
In order to illustrate the potential impact of considering optimal subarchitectures for quantum

circuit mapping, Table 3 shows the effects of subarchitectures on the runtime and number of

SWAPs when mapping quantum circuits. To this end, the exact mapper available in

QMAP (https://github.com/cda-tum/qmap) [14] was used for exact mapping, and the benchmarks

were taken from the benchmark library MQTBench (version 0.2.2) [32].

As architectures, a the 6- and 7-qubit architectures in Fig. 9 were considered. Both are comprised

of a central ring of qubits with one additional qubit connected to one of the qubit rings. This way, the

number of different non-isomorphic subarchitectures is kept small while seeing the effect of having

shorter connections, different subarchitectures, and covering subarchitectures. There are only 5

subarchitectures to consider: the central ring (ring), the 4- (5-) qubit line (line), the 3- (4-) qubit line
with an additional qubit connected to one of the middle qubits (fork), the subarchitecture containing
both line and fork (cover), and the entire architecture itself (full). The optimal subarchitecture for 4-

and 5-qubit circuits on both architectures is the entire architecture itself. However, from Table 3, we

can see that mapping to the entire architecture is often quite costly in terms of runtime compared to

mapping to subarchitectures. A 2-subarchitecture covering can be obtained by taking the ring and

cover subarchitectures together. This often yields much better runtimes without losing the optimal

solution because it is guaranteed to be contained in these two subarchitectures by Theorem 4.3.

This table also shows the validity of Theorem 4.1, as the additional qubit completing the ring

actually helps to improve the quality of the mapping. According to Theorem 4.2, there are circuits

that are cheaper to map to cover than to the two smaller architectures line and fork. This theoretical
property was not observed in the experiments as the considered real-world quantum circuits where

way too shallow and structured to possibly benefit from being mapped to cover.

https://github.com/cda-tum/qmap
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Fig. 9. Architectures for optimal quantum circuit mapping

7 CONCLUSION AND FUTUREWORK
In this work, we introduced the notion of optimal subarchitectures for mapping 𝑛-qubit quantum

circuits and disproved a previous conjecture that all 𝑛-qubit quantum circuits can be mapped to

some 𝑛-qubit subarchitecture of a quantum computing device without potentially eliminating

optimal mapping solutions. In fact, quite the opposite is the case: trying to reduce the number

of qubits considered in the qubit allocation process without cutting off essential parts of the

search space in the subsequent mapping is incredibly difficult. Despite this theoretical result,

the structure of the quantum circuits that require such large optimal subarchitectures is pretty

artificial, and the conditions for optimality can be relaxed a bit. Hence, we introduced an algorithm

for computing subarchitectures that constitutes a trade-off between coverage of optimality and

architecture complexity. The resulting tool is integrated into the open-source tool QMAP (available

at https://github.com/cda-tum/qmap), which is part of the Munich Quantum Toolkit (MQT).

Based on this first method for computing near-optimal subarchitectures, there are several possible

directions for improvement:

• Quantum circuits used in real-world applications naturally possess a lot of structure. It

might, therefore, be possible to compute optimal subarchitectures for certain classes of
quantum circuits instead of any quantum circuit of a given size. These classes can probably

be deduced from two-qubit interaction patterns repeatedly found in real-world quantum

circuits.

• In this work, no distinction was made between isomorphic subarchitectures of a quantum

computing device. In reality, neither the qubits nor the connections between them on

an architecture are equally reliable. Consequently, placing a certain subarchitecture on a

different part of thewhole architecturemight yieldmore reliable circuit executions. Tools like

mapomatic [33] exist that search for low-noise subarchitectures given an already-compiled

quantum circuit. Such information could additionally be included in the methodology for

determining suitable subarchitectures to provide for quantum compilers that consider noise.

• In order to compute (near-)optimal subarchitectures of future large-scale quantum

computers, more efficient algorithms than the one initially presented here will have to be

developed. A promising approach is to take advantage of the highly symmetric structure of

real-world quantum computing architectures.

To summarize, this work has laid the groundwork for further research into the problem of

computing (near-)optimal subarchitectures of state-of-the-art quantum computers. This first work

is a good starting point for more methods and improvements that can help develop quantum circuit

mappers that can handle the mapping problem for large-scale quantum computers in an efficient

way.

https://github.com/cda-tum/qmap
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