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Abstract—We are at the dawn of a new “computing age” in
which quantum computers hopefully will find their way into
practical applications. However, while impressive accomplish-
ments can be observed in the physical realization of quantum
computers, the development of automated tools and methods that
provide assistance in the design and realization of applications
for those devices is at risk of not being able to keep up with this
development anymore—leaving a situation where we might have
powerful quantum computers but hardly any proper means to
actually use them.

The ERC Consolidator project “Design Automation for Quan-
tum Computing” aims to provide a solution for this upcoming
design gap by developing efficient and practically relevant de-
sign methods for this emerging technology. While the current
state of the art suffers from the interdisciplinarity of quantum
computing (leading to the consideration of inappropriate models,
inconsistent interpretations, and “wrong” problem formulations),
this project builds a bridge between the design automation
community and the quantum computing community. This will
allow to fully exploit the potential of design automation which is
hardly utilized in quantum computing yet.

This intermediate stage report provides an overview of the
motivation and approach of the project as well as showcases
selected results and outreach activities conducted in the first two
years of the project.

I. INTRODUCTION & MOTIVATION

In the 1970s, researchers started to utilize quantum mechan-
ics to address questions in computer science and information
theory—establishing new research directions such as quantum
computing [1]. Here, quantum bits (i.e., qubits) serve as
elementary information unit, which—in contrast to classical
bits—can not only be in one of its two orthogonal basis
states (denoted |0⟩ and |1⟩ using Dirac notation), but also in
an almost arbitrary superposition of both (i.e., α |0⟩ + β |1⟩,
where the complex factors α and β satisfy αα∗ + ββ∗ = 1).
This allows an n-qubit quantum system to represent 2n

different complex values at once—exponentially many more
than classical n-bit systems (which can only represent n
different Boolean values at a time). Together with further
quantum-mechanical phenomena such as entanglement, this
allows for substantial improvements in information density as
well as computation power and motivated the establishment of
dedicated research areas in computer science and information
theory investigating and exploiting this potential.

One of these research areas, namely quantum computing,
covers the development of applications that exploit these
quantum-mechanical effects in order to solve certain prob-
lems significantly faster (in the best case, exponentially
faster) than classical computers. First quantum applications
such as Grover’s Search or Shor’s Algorithm which improve

database search [2] or enable integer factorization in poly-
nomial time [3] (a “killer application” that would change
the way cryptography works today [4]), respectively, have
already been proposed in the last century. Since then, cor-
responding developments have significantly broadened and, in
the meantime, cover a huge variety of quantum applications
for quantum chemistry, solving systems of linear equations,
physical simulations, machine learning, quantum finance, and
many more [5]–[7].

These developments are significantly triggered by the fact
that quantum computers are reaching feasibility, i.e., are ma-
turing from an “academic vision” implemented in laboratory
experiments towards a practical reality supported in compute
centers. In fact, a broad spectrum of technologies, including
superconducting qubits [8], [9], ion traps [10], [11], neutral
atoms [12], [13], and more are gaining momentum. This is
also confirmed by the involvement of “big players” such as
IBM, Google, Microsoft, Eviden, Intel, as well as the emerge
of several specialized startups such as AQT, Rigetti, IonQ,
Quantinuum, IQM, and many more.

All these accomplishments are leading to an increasing
complexity in the design of corresponding quantum computing
applications and systems that often can and soon will not
be handled manually anymore. This demands for dedicated
design automation solutions. In the classical realm (i.e., for
electronic circuits and systems), sophisticated design tools for
that are taken for granted today and constitute a main reason
for the utilization and penetration of electronic devices into
almost all parts of our daily life. In contrast, the development
of design methods for quantum computing is in its infancy and
far away from the performance and impact of their classical
counterparts. The three main reasons for this are:

1) Complexity: Many design problems in these areas are of
combinatorial and exponential nature (some have even
been proven to be NP-complete [14], coNP-hard [15],
or QMA-complete [16]). Even presumably simple tasks
such as the logic simulation of a circuit (which has a
linear complexity in the classical realm) suddenly yield
on exponential complexity (since an exponential number
of amplitudes must be considered). The experience of
the design automation community may be able to tackle
this complexity. In fact, many efficient solutions have
been developed for problems with similar complexity
in the classical realm. But most of the experts in
quantum computing do not have a background in design
automation and, hence, this potential is left untapped.
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2) Terminology and Formalizations: Vice versa, experts
in design automation often do not have a sufficient
background in quantum computing. Since, additionally,
terminologies as well as formalizations are often un-
clear and/or ambiguous to design automation experts,
frequently “wrong problems” are addressed or inappro-
priate models, faulty assumptions, or misleading cost
metrics are used. Because of that, the potential of design
automation (which dominates the design of classical
systems today) is not fully exploited yet.

3) Interdisciplinarity: A closer interaction between the
quantum computing community and the design automa-
tion community would help addressing many of these
problems. But bridging the gap between both commu-
nities requires lots of resources and time to exchange
with experts and stakeholders of the field. Different
“languages” as well as “cultures” in the respective fields
additionally complicates interactions.

Overall, the little interaction and exchange between experts
of design automation and quantum computing are the main
reasons why many relevant problems in the design of quantum
computing have not or insufficiently been considered yet. As
a result, we may end up in a situation, where we may have
powerful quantum computers but hardly any proper means to
actually use them.

II. APPROACH

The ERC Consolidator project “Design Automation for
Quantum Computing” aims to provide a solution for this
upcoming design gap by developing efficient and practically
relevant methods for corresponding design tasks. To this end,
the following approach is applied:

• Categorizing and defining design tasks: As indicated
above, a significant problem is that design tasks for
quantum computing are often not clearly defined and that
existing tools are often not categorized in a fashion which
is accessible for the design automation community. Even
worse, there often is no clear and precise terminology for
these tasks. For example, in the context of compilation
terms like synthesis, decomposition, and mapping are
used, referring to the same or similar concepts. These are
all justified since quantum computations are commonly
described by so-called quantum circuits even though they
describe a sequence of operations applied to a set of
qubits (i.e., more like a quantum program). However,
there is no clear definition how the different parts of
the design flow are termed—leading to a situation where
different terms are often used for the same task or where
different tasks are referred to by the same term. Hence,
categorizing and defining design tasks is a first important
step.

• Identifying and disseminating design problems: Next, we
identify practically relevant design problems in the quan-
tum domain for which no or only unsatisfying solutions
are available and disseminate the corresponding problem

formulations and relevant models (based on the catego-
rization and definition from the first step) to the design
automation community. By this, a broad community with
knowledge in clever data structures, reasoning engines,
search algorithms, etc. is supplied with design tasks that
often contain combinatorial problems—allowing for the
development of accordingly adjusted versions of existing
design tools and, thus, advancing research in the quantum
domain by the establishment of design automation for
quantum computing.

• Developing design solutions: Eventually, the previous two
steps serve as the basis to develop design automation tools
for quantum computing—the main step of this project.
They will tackle practically relevant tasks that have not
yet been addressed at all or only in an unsatisfactory
fashion. By this tool support, the current state of the art
in quantum computing is significantly advanced and it is
expected to handle the increasing complexity of future
quantum computers. The outcome of this objective is not
supposed to serve as a stand-alone tool for quantum com-
puting (such as IBM’s Qiskit [17], Google’s Cirq [18], or
Microsoft’s Quantum Azure [19]), but rather a free and
open source set of tools from which certain methods can
be incorporated into the stakeholder’s tools.

To make this approach work, the project requires a signifi-
cant amount of cooperation with stakeholders. Thus far, there
is still far too little coordination between the design automation
community and the quantum community. Consequently, many
design approaches proposed in the past have either addressed
the “wrong problems” or failed to reach the end users (as
partially discussed above). The project aims for addressing
this issue by building a bridge between both “sides”: providing
techniques and new ideas from the design automation domain,
but also expertise and insights from the quantum domain. To
this end, a broad network of partners and contacts has been
established (see Fig. 1) which is used for the development
of a common terminology as well as taking the role of an
interpreter or mediator between both communities.

III. SELECTED RESULTS

In the following, selected results which have been obtained
in the first two years of the project are briefly presented. To
this end, the corresponding design tasks are briefly reviewed
first. Afterwards, a brief sketch shows how design automation
expertise has been applied to address these tasks. All solutions
have been made available as open-source implementations. A
brief Python code snippet for each design task shows how easy
the resulting methods can be applied.

For more details, references for further reading are pro-
vided. Moreover, further design tasks considered in the project
are described online at https://www.cda.cit.tum.de/research/
quantum/. Finally, all methods developed in the projects thus
far are integrated into the Munich Quantum Toolkit (MQT)—a
collection of design automation tools and software for quan-
tum computing. The overarching objective of this toolkit is to
provide solutions for design tasks across the entire quantum
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Fig. 1: Partners and contacts

software stack, which are particularly driven by expertise from
the design automation community. More information about
the MQT is available at https://www.cda.cit.tum.de/research/
quantum/mqt/.

A. Quantum Circuit Simulation

Simulating quantum circuits on a classical machine is
essential for the development of (prototypes of) quantum
algorithms, for considering the behavior of physical quantum
computers, as well as for studying error models. In fact,
classical simulations of quantum computations provide deeper
insights, since they allow one to observe the individual ampli-
tudes of a quantum state (which is impossible when executing
a quantum computation on a quantum device). Moreover,
costly executions on real quantum devices—whose availability
is still rather limited—can be avoided when using simulators.

The classical simulation of quantum circuits is commonly
conducted by performing consecutive matrix-vector multipli-
cation, which many simulators realize by storing a dense
representation of the complete state vector in memory and
evolving it correspondingly (see, e.g., [20]–[24]). This ap-
proach quickly becomes intractable due to the exponential
growth of the quantum state with respect to the number of
qubits—quickly rendering such simulations infeasible even on
supercomputing clusters. Simulation methodologies based on
decision diagrams [25]–[27] are a promising complementary
approach that frequently allows to reduce the required memory
by exploiting redundancies in the simulated quantum state.

MQT offers the decision diagram-based quantum circuit
simulator DDSIM (available at https://github.com/cda-tum/

mqt-ddsim and https://pypi.org/project/mqt.ddsim/) [27]–[33]
that simulates quantum circuits defined in various formats such
as OpenQASM or Qiskit Quantum Circuits.

Example 1: The following listing shows how to use DDSIM
as a backend for IBM Qiskit for the 3-qubit GHZ state.

from qiskit import *
from mqt import ddsim
circ = QuantumCircuit(3)
circ.h(0)
circ.cx(0, 1)
circ.cx(0, 2)
provider = ddsim.DDSIMProvider()
backend = backend.get_backend(’qasm_simulator’)
job = execute(circ, backend, shots=10000)
print(job.result().get_counts(circ))

B. Quantum Circuit Mapping

Since several quantum computers in the NISQ era are
bound by connectivity constraints, only support a limited
set of elementary gates, and are heavily affected by noise,
high-level descriptions of quantum algorithms have to be
compiled through different layers of abstraction before being
executable on the actual quantum computer. A major part of
this compilation flow consists of mapping, i.e., making an al-
ready decomposed circuit conform to the device’s connectivity
constraints (usually provided as a coupling map).

A circuit is typically mapped to the actual device by
inserting SWAP operations into the circuit—dynamically
permuting the location of the circuit’s logical qubits on the
device’s physical qubits such that each operation conforms
to the coupling map. Due to the inherent influence of noise
and short coherence times of today’s quantum computers, it
is of utmost importance to keep the overhead induced by the
mapping procedure as low as possible. As this problem has
been shown to be NP-complete [14], there is a high demand
for automated and efficient solutions.

MQT offers the quantum circuit mapping tool QMAP (avail-
able at https://github.com/cda-tum/mqt-qmap and https://pypi.
org/project/mqt.qmap/) that allows one to generate circuits
which satisfy all constraints given by the targeted architecture
and, at the same time, keep the overhead in terms of addition-
ally required quantum gates as low as possible. More precisely,
different approaches based on design automation techniques
are provided, which are generic and can be easily configured
for future architectures. Among them is a general solution for
arbitrary circuits based on informed-search algorithms [34],
[35] as well as a solution for obtaining mappings ensuring
minimal overhead with respect to SWAP gate insertions [36],
[37].

Example 2: Assume we want to perform the computation
simulated in Ex. 1 on the five-qubit IBMQ London quantum
computer. Then, mapping the circuit to that device merely
requires the following lines of Python:

from mqt import qmap
from qiskit.providers.fake_provider import FakeLondon
backend = FakeLondon()
circ_mapped, results = qmap.compile(circ, backend)
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Fig. 2: The Munich Quantum Software Stack [38]

C. Quantum Circuit Verification

Compiling quantum algorithms results in different repre-
sentations of the considered functionality, which significantly
differ in their basis operations and structure but are still
supposed to be functionally equivalent. Consequently, check-
ing whether the originally intended functionality is indeed
maintained throughout all these different abstractions becomes
increasingly relevant in order to guarantee an efficient, yet cor-
rect design flow. Existing solutions for equivalence checking
of quantum circuits suffer from significant shortcomings due
to the immense complexity of the underlying problem—which
has been proven to be QMA-complete [16]. However, certain
quantum mechanical characteristics provide impressive poten-
tial for efficient equivalence checking of quantum circuits.

MQT offers the quantum circuit equivalence checking
tool QCEC (available at https://github.com/cda-tum/mqt-qcec
and https://pypi.org/project/mqt.qcec/) which explicitly ex-
ploits these characteristics based on the ideas outlined in [39]–
[41].

Example 3: Verifying that the quantum circuit from Ex. 1
has been compiled correctly in Ex. 2 merely requires the
following lines of Python:

from mqt import qcec
results = qcec.verify(circ, circ_mapped)
print(results)

The available methods include a strategy especially suited for
verifying compilation results [42], as well as dedicated random
stimuli generation schemes [43].

IV. SELECTED OUTREACH ACTIVITIES

To “get the word out” and, indeed, “build a bridge” be-
tween the design automation community and the quantum
computing community, numerous outreach activities have been
conducted in the project. This includes several tutorials, special
sessions, panel organizations, and more in conferences from
both communities (such as DATE, DAC, Quantum Week, etc.).
Besides that, the project has actively reached out to partners
and contacts (see above), is represented in committees and
advisory boards, and initiated as well as supported a significant
number of initiatives. In the following, two selected examples
of the project’s outreach activities are briefly presented.

A. Munich Quantum Software Stack

Eventually, to make quantum computing a success, a so-
phisticated software stack is required which is able to connect
the end users (usually domain experts from the respective
application areas) with the experimentalists who provide the
actual quantum computing hardware platforms. However, the
development of such a software stack is far from trivial: end
users expect to use the respective platforms without having
to understand the specific physical underpinnings, while plat-
form developers, who are typically physical experimentalists,
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assume that quantum circuits developed to be executed on
their respective platforms follow specific physical constraints
and are aware of system specific constraints and conditions.
Any software stack must be able to act as a “glue” between
these two worlds, which keeps everything together.

The Munich Quantum Valley—a huge quantum computing
initiative composed of over 300 researchers from various do-
mains such as physics, engineering, computer science, domain
experts, etc.) aims at developing such a software stack in a
holistic and full-stack manner. The currently developed stack
will support direct access for experiments, integration with
HPC systems, and driving implicit quantum compilation as
well as optimization toolkits which, eventually, enable multiple
quantum computer backends.

The currently developed approach is sketched in Fig. 2 (see
previous page, taken from [38]). Users can access the system
either via a dedicated portal with multiple language backends
(top left) or via HPC systems using traditional schedulers
like SLURM (bottom left), which drive hybrid applications
capable of offloading parts of their computation to quantum
computing backends. The relevant parts of the programs are
then processed via a quantum resource manager as well as
corresponding quantum design tools (top-right). Finally, the
resulting quantum circuits are executed by a suitable backend
system (bottom right). This workflow is opaque for the user,
hides the particular complexities, and still enables “expert
paths” for experimental computations.

Obviously, the tools developed within this project perfectly
address the needs of the quantum design tools sketched in
the top-right corner of Fig. 2. Accordingly, the project heavily
works together with the MQV-initiative—contributing to one
of the world’s leading software stacks for quantum computing.

B. Munich Quantum Software Forum

In October 2023, the Munich Quantum Software Forum
brought the “who’s who” in quantum computing software
together for a two-days exchange meeting. The forum featured
renowned representatives from academia and industry who
presented existing software tools as well as recent develop-
ments, including:

• Leon Stok (IBM) covering Qiskit
• Austin Fowler (Google) covering Stim, Pymatching, and

Scinter
• Mathias Soeken (Microsoft) covering Azure Quantum
• Eric Kessler (Amazon) covering Amazon Braket
• Ross Duncan (Quantinuum) covering TKET
• Fred Chong (UChicago) covering the ColdQuanta plat-

form
• Costin Iancu (Lawrence Berkeley National Laboratory)

covering BSQKit
• Ivana Kurečić (Xanadu) covering PennyLane
• Laura Schulz (LRZ) covering the Munich Quantum

Ecosystem
• Lukas Burgholzer (TU Munich) covering the Munich

Quantum Toolkit (MQT)

Fig. 3: Munich Quantum Software Forum

Additionally, 16 further software tools and initiatives were
presented through brief pitch presentations and poster sessions.
A video available at https://youtu.be/x99N7uOKJ1U provides
a brief summary of the event.

Overall, the event attracted more than 200 participants
covering the entire spectrum of the community including
computer scientists, physicists, engineers, and mathematicians,
representatives from universities and research centers but also
start-ups and established companies, graduate students, PhD
students, and postdocs but also junior developers, senior devel-
opers, and managers, as well as long-term quantum computing
“veterans” and beginners.

Video recordings, presentation slides, as well as posters
from the event are available at https://www.cda.cit.tum.de/
research/quantum/2023_mqsf_summary/.

V. CONCLUSIONS

Quantum computing is becoming a reality and the corre-
sponding complexity of its applications demands for sophisti-
cated design and software solutions. In the past two years, the
ERC Consolidator project “Design Automation for Quantum
Computing” has worked towards providing the basis for that.
To this end, it explicitly tries to build a bridge between the
design automation community and the quantum computing
community. The results obtained thus far showcase the poten-
tial of design automation for this emerging technology and the
corresponding outreach activities confirm its potential. It is the
goal of this project to eventually establish design automation
for quantum computing—a goal for which the current results
provide a great basis and which shall be completed in the
remaining duration of the project.
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