
Late Breaking Results: Iterative Design Automation
for Train Control with Hybrid Train Detection

Stefan Engels
Chair for Design Auomation

Technical University of Munich
Munich, Germany

stefan.engels@tum.de

Robert Wille
Chair for Design Auomation

Technical University of Munich
Munich, Germany

robert.wille@tum.de

Abstract—To increase the capacity of existing railway infras-
tructure, the European Train Control System (ETCS) allows the
introduction of virtual subsections. As of today, the planning of
such systems is mainly done by hand. Previous design automation
methods suffer from long runtimes in certain instances. However,
late breaking results show that these methods can highly benefit
from an iterative approach. An initial implementation of the
resulting method is available in open-source as part of the Munich
Train Control Toolkit at https://github.com/cda-tum/mtct.

Index Terms—ETCS, iterative design automation, hybrid train
detection, block signaling, virtual subsection

I. INTRODUCTION

Rail transportation plays a vital role in future and sustainable
mobility. However, the existing infrastructure has only limited
capacity. Building new tracks alone will not suffice to deal with
the increasing demand. To increase capacity on the existing
infrastructure, new train control systems have been developed,
e.g., the European Train Control System (ETCS, [1]). However,
designing those signaling systems on specific railway networks
by hand is cumbersome. Hence, design automation for this
emerging technology is of great interest (see, e.g., [2]–[7]).

A. Basic Principles of Train Control Systems

Most train control systems in the world rely on block
signaling. For this, a railway network is divided into fixed
sections, on each of which at most one train is allowed at the
same time. To decide if a given section is free, the network is
equipped with Trackside Train Detection (TTD). Hence, these
blocks are also called TTD sections.

Train systems based on ETCS allow the train itself to
report its exact position and integrity status (Hybrid Train
Detection, [8]). Because of that, TTD hardware is no longer
needed to safely report a block section as free. Hence, TTD
sections can be separated into smaller virtual subsections (VSS)
allowing for shorter train following times without the need for
additional hardware. While this principle is defined within the
scope of ETCS, it could also be applied to similar standards
such as CTCS (China) or PTC (North America) [9].

Example 1. Consider the track depicted in Fig. 1, which
consists of two TTD sections and two trains T1 and T2. Using
a classical control system, T2 has to slow down (solid orange
line), because it cannot enter TTD 2, which is occupied by T1.
However, if the second block is separated into two VSS, T2

TTD1 TTD2

VSS11 VSS21 VSS22

T2 T1

Fig. 1: Train control with hybrid train detection

can continue at the same speed (dashed orange line), because
VSS 21 is already reported free, allowing for shorter headways.

B. Design Automation for Train Control Systems

To use the additional degree of freedom allowed by VSS, de-
sign automation methods are needed and different design tasks
arise depending on the criterion of optimality [10]. Exemplary,
we focus on the following task: Given an (infeasible) timetable
and railway network, the goal is to place a minimal number
of VSS to make the previously infeasible timetable realizable
under new control systems using hybrid train detection.

Previous methods to solve such design tasks have been
proposed in [2]–[7]. However, they do not incorporate the
flexibility allowed by VSS or suffer from scalability issues.
These late breaking results aim to shed light on what can be
done to reduce the runtime.

II. ITERATIVE APPROACH

Without loss of generality, we base this paper on the most
recent Mixed Integer Linear Programming (MILP) approach
proposed in [7]. On every track segment, it continuously places
an arbitrary number of VSS sections. Theoretically, the number
of such sections is only upper bound since VSS sections have a
predefined minimal length. However, an optimal solution (i.e.,
only using a minimal number of VSS sections) is likely to only
place a small part of the VSS sections it could place in theory.

Because of this, it is promising to limit the number of VSS
the solver is allowed to place, leading to a restricted model.
While this might cut off the optimal (or even all) solutions,
it is suspected to have a great influence on the runtime. This
gives rise to an iterative approach. If the imposed limit is too
tight, it is slowly increased until an (optimal) solution is found.
Since the limit likely has to be updated only a few times, this
approach is promising for runtime reduction.

A flow chart of the resulting iterative algorithm is presented
in Fig. 2. In the following, we present only high-level aspects

https://orcid.org/0000-0002-0844-586X
mailto:stefan.engels@tum.de
https://orcid.org/0000-0002-4993-7860
mailto:robert.wille@tum.de
https://github.com/cda-tum/mtct

Fig. 2: Iterative approach (flowchart)

of how to update those limits. More details can be found in
the implementation, which is part of the Munich Train Control
Toolkit at https://github.com/cda-tum/mtct.

Assume that the restricted model is infeasible (7). Unless
the above-mentioned theoretical limits are already reached (D),
the restricted VSS limits have to be increased (8). Observe that
any feasible solution not found within the restricted model must
violate the imposed VSS limit on at least one track segment.
From this, it is easy to deduce additional constraints that cut off
all configurations that were already considered in the previous
iteration (9). This prevents the solver from spending time on
implications it has already concluded in previous iterations.

On the other hand, the above observation can be used to
prove the optimality of a feasible solution (4, A). It might be
necessary to increase some limits in an extra iteration in order
to prove overall optimality (5). However, this is only to rule
out improbable corner cases. Thus, it might be reasonable to
skip this additional iteration (path indicated by a dotted line
in Fig. 2) and return the current solution (B). In practice one
can assume this solution to only use a minimal number of VSS
sections, however a 100% certain proof is not provided.

III. EVALUATION

To evaluate the proposed method, we test it on the bench-
marks provided by [7] (including real-world instances) using
an AMD Threadripper 5955WX system (16 core 4GHz CPU,
128GB RAM) and the C++ API of Gurobi version 10.0.3 [11].

A. Experimental Analysis

We compare the iterative algorithm to the fully detailed
method proposed in [7] with predefined routes. The respective
runtimes (in seconds) are depicted in Tab. I.

If we skip the theoretical proof of optimality, we can clearly
see a runtime improvement in all instances. On instances
running more than 30 seconds, this was even by a factor
between 8 and 34, i.e., approximately one order of magnitude.
Even though the algorithm does not prove optimality with
100% certainty, the returned solution was in fact the optimal
one (i.e., use a minimal number of VSS sections) on all tested
instances. In particular, it is reasonable to skip the optimality

TABLE I: Experimental results (runtime in seconds)

Algorithm: Original Iterative
Optimality Proof: yes no yes

Single Track Without Station 47.4 1.4 1.4
With Station 43.8 1.7 1.7

Highspeed Track 2 Trains 56.0 5.6 5.6
5 Trains 730.5 87.4 87.4

Simple 2-Track Station 1.0 0.3 0.3

Simple Network 452.7 15.2 46.7

Overtake 2.1 2.0 2.0

Stammstrecke
4 Trains 1.9 1.1 2.1
8 Trains 4.0 2.8 5.6
16 Trains 9.1 5.1 13.8

proof, in which case the proposed method is a significant
improvement on all tested instances.

On the other hand, we observe that proving the optimality
of the obtained solution can take a substantial amount of the
runtime for some instances. This is not unexpected, because the
model obtained from step (5) can be rather large. However, on
long-running instances (whose improvement is arguably more
important) the runtime improvement remains approximately
one order of magnitude. Moreover, we have argued that this
step can be skipped in practice anyway.

B. Conclusions

With these late breaking results, we have seen that design
automation methods for designing the block layout of train
control systems (such as proposed in [7]) can highly benefit
from an iterative approach that restricts the search space and
slowly loosens those restrictions if no solution can be found.
This approach has been implemented open-source as part of
the Munich Train Control Toolkit.

Note that this method might benefit from tighter objective
bounds (steps 6 and 9) using more information on the problem
structure, which is a work in progress.

REFERENCES

[1] L. Schnieder, European Train Control System (ETCS). Springer Berlin
Heidelberg, 2021.

[2] S. Dillmann and R. Hähnle, “Automated planning of ETCS tracks.”
RSSRail, 2019.

[3] B. Luteberget, C. Johansen, and M. Steffen, “Synthesis of railway
signaling layout from local capacity specifications.” FM, 2019.

[4] V. Vignali, F. Cuppi, C. Lantieri, N. Dimola, T. Galasso, and L. Rapagnà,
“A methodology for the design of sections block length on ETCS L2
railway networks,” JRTPM, 2020.

[5] R. Wille, T. Peham, J. Przigoda, and N. Przigoda, “Towards automatic
design and verification for Level 3 of the European Train Control
System.” DATE, 2021.

[6] T. Peham, J. Przigoda, N. Przigoda, and R. Wille, “Optimal railway
routing using virtual subsections.” RSSRail, 2022.

[7] S. Engels, T. Peham, and R. Wille, “A symbolic design method for ETCS
Hybrid Level 3 at different degrees of accuracy.” ATMOS, 2023.

[8] EEIG ERTMS Users Group, “ERTMS/ETCS hybrid train detection,”
Tech. Rep. 16E042, 2022.

[9] J. Pachl, Railway Signalling Principles: Edition 2.0. University Library
Braunschweig, 2021.

[10] S. Engels, T. Peham, J. Przigoda, N. Przigoda, and R. Wille, “Design
tasks and their complexity for Hybrid Level 3 of the European Train
Control System,” 2023.

[11] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.

https://github.com/cda-tum/mtct

	Introduction
	Basic Principles of Train Control Systems
	Design Automation for Train Control Systems

	Iterative Approach
	Evaluation
	Experimental Analysis
	Conclusions

	References

