MNT Bench: Benchmarking Software and Layout Libraries for Field-coupled Nanocomputing

Simon Hofmann*, Marcel Walter*, and Robert Wille*[‡]

*Chair for Design Automation, Technical University of Munich, Germany [‡]Software Competence Center Hagenberg GmbH, Austria

Email: {simon.t.hofmann, marcel.walter, robert.wille}@tum.de

Abstract—As Field-coupled Nanocomputing (FCN) gains traction as a viable post-CMOS technology, the EDA community lacks public benchmarks to evaluate the performance of academic and commercial design tools. We propose *MNT Bench* to address this gap by providing a platform for researchers to compare algorithms across a diverse set of benchmarks generated by multiple physical design tools. These benchmarks span various clocking schemes and gate libraries, with *MNT Bench* being consistently updated to integrate the latest advancements in the field. In fact, using *MNT Bench*, we were able to provide layouts that are substantially better (in terms of area) than everything the community generated thus far.

I. INTRODUCTION

Since the recent experimental demonstration of a working nanoscale OR gate [1] with a footprint of less than 30 nm² implemented using *Silicon Dangling Bonds* (SiDBs) [2] as a *Field-coupled Nanocomputing* (FCN) technology on a hydrogen-passivated silicon surface [3], new physical design methods [4]–[7] and optimization algorithms [8], [9] have been developed to improve the gate-level layouts suitable for FCN.

To further foster the collaboration between different research groups and facilitate the access to state-of-the-art layouts for benchmarking, simulation, and fabrication, this work introduces *MNT Bench* as part of the *Munich Nanotech Toolkit* (MNT), whose web interface, as seen in Figure 1, is available online,¹ as a pip package,² and as an open-source GitHub repository.³ *MNT Bench* offers a wide range of gatelevel layouts generated on top of different underlying clocking schemes using multiple gate libraries, physical design algorithms, and optimizations in combination with the network descriptions in verilog-format to serve as a benchmark for the development of new methodologies in the area of design automation for FCN.

II. MNT BENCH

MNT Bench encompasses five major contributions:

 Establishment of a website providing convenient access to benchmark files and tracking FCN domain advancements through regular updates.

¹https://www.cda.cit.tum.de/mntbench

Welcome to the Munich Nanotech Benchmark Library (MNT Bench)!

	-						
Abstraction Level	Gate Library	Clocking Scheme	Physical Design Algorithm	Optimization Algorithm			
Select the abstraction level:	Select the used gate library:	Select the underlying clocking	Select the physical design	If Ortho or NanoPlaceR has been			
Network (. v)	🗌 QCA ONE 🕒	scheme:	algorithm used to create the	chosen, please also select the			
Gate-level (.fgl)	Bestagon	2DDWave	chosen layouts:	applied optimization algorithms:			
		USE	Exact	Post-Layout Optimization			
		RES	Ortho (+45°)	Input Ordering			
		ESR	NanoPlaceR				
		ROW					
		Most optimal:					
		Best					
Abstraction Level	Gate Library	Clocking Scheme	Physical Design Algorithm	Optimization Algorithm			
Network Gate-level	QCA One Bostagen	Cartosian Grid Hexagonal Grid	cast ortho NamPlaceR	Arth Ingel			
	Image: Description Not Image: Description Not		solution in a set of the set	Control Contro			

Figure 1: *MNT Bench* provides an intuitive web interface, facilitating the selection of desired benchmark functions and enabling users to apply filters based on their requirements.

- 2) Generation of layouts for various clocking schemes and gate libraries utilizing available physical design and optimization algorithms. These can be filtered according to the user's criteria on the website, allowing new design automation tools to be objectively benchmarked.
- 3) Generation of the best layouts in terms of area for multiple benchmarks using the optimal combination of design automation tools for each function, which can be downloaded for benchmarking, simulation, or fabrication.
- 4) Development and implementation of a novel gate-level file format (*.fgl*), which offers a standardized and human-readable representation of FCN layouts.

²https://pypi.org/project/mnt.bench

³https://github.com/cda-tum/mnt-bench

Table I: Most efficient layouts w.r.t. area discovered thus far for multiple benchmarks sets, available in MNT Bench.

BENCHMARK			QCA ONE [15] GATE LIBRARY			BESTAGON [16] GATE LIBRARY									
Set	Name	I / O	N	$w \times h =$	A	t	Algorithm	Clk. Scheme	ΔA	$w \times h$	= A	. 1	Algorithm	Clk. Scheme	ΔA
Trindade16 [11]	2:1 MUX XOR XNOR Half Adder Full Adder Parity Gen. Parity Check.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 4 \\ 4 \\ 6 \\ 5 \\ 10 \\ 15 \\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 12 \\ 16 \\ 15 \\ 20 \\ 55 \\ 28 \\ 44 \end{array} $	$\begin{array}{c} < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ 2 \end{array}$	exact exact exact exact exact exact exact exact	2DDWave RES 2DDWave USE 2DDWave ESR 2DDWave	$\begin{array}{c} \pm 0 \% \\ \pm 0 \% \\ -6.3 \% \\ -16.7 \% \\ -21.4 \% \\ \pm 0 \% \\ -8.3 \% \end{array}$	3×5 2×3 2×3 3×5 3×9 3×4 4×5	= 15 = 6 = 15 = 27 = 12 = 20 = 20	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	exact exact exact exact exact exact exact exact	ROW ROW ROW ROW ROW ROW	$\begin{array}{r} -16.7\% \\ \pm 0\% \\ -28.6\% \end{array}$
Fontes18 [12]	t bl_r2 majority newtag clpl lbitAdderAOIG lbitAdderMaj 2bitAdderMaj xorSMaj cm82a_5 parity	$\begin{array}{c} 5 \ / \ 2 \\ 3 \ / \ 4 \\ 5 \ / \ 1 \\ 8 \ / \ 1 \\ 11 \ / \ 5 \\ 3 \ / \ 2 \\ 3 \ / \ 1 \\ 5 \ / \ 2 \\ 5 \ / \ 1 \\ 5 \ / \ 2 \\ 5 \ / \ 1 \\ 16 \ / \ 1 \end{array}$	$ \begin{array}{c} 11\\ 12\\ 17\\ 17\\ 10\\ 15\\ 29\\ 54\\ 70\\ 42\\ 103\\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	28 40 35 40 38 50 18 40 88 272 1088	$\begin{array}{c} < 1 \\ 2 \\ 1 \\ 70 \\ 6 \\ < 1 \\ 36 \\ 629 \\ 57 \\ < 1 \end{array}$	exact exact exact exact exact exact exact exact exact exact exact NPR, PLO ortho, InOrd (SDN), PLO	2DDWave 2DDWave 2DDWave 2DDWave RES USE 2DDWave USE 2DDWave 2DDWave 2DDWave	$\begin{array}{c} -6.7\%\\ \pm 0\%\\ -22.2\%\\ -9.1\%\\ \pm 0\%\\ \pm 0\%\\ -85.7\%\\ -93.8\%\\ -93.2\%\\ -24.7\%\\ -44.5\%\end{array}$	$\begin{array}{c} 5 \times 8 \\ 4 \times 7 \\ 5 \times 9 \\ 8 \times 9 \\ 11 \times 16 \\ 3 \times 9 \\ 3 \times 7 \\ 5 \times 12 \\ 5 \times 6 \\ 5 \times 14 \\ 9 \times 22 \end{array}$	= 44 $= 29$ $= 43$ $= 72$ $= 177$ $= 27$ $= 27$ $= 66$ $= 33$ $= 70$ $= 198$	<1 <1 <1 <1 <1 <1 <1 <1	exact exact exact exact exact exact exact exact exact exact exact ortho, InOrd (SDN), 45°, PLO	ROW ROW ROW ROW ROW ROW ROW ROW ROW	$\begin{array}{c} \pm 0\% \\ \pm 0\% \\ -18.2\% \\ \pm 0\% \\ -6.7\% \\ -68.3\% \end{array}$
ISCAS85 [13]	c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552	$\begin{array}{c} 5 \ / \ 2 \\ 37 \ / \ 7 \\ 41 \ / \ 32 \\ 33 \ / \ 25 \\ 233 \ / \ 64 \\ 50 \ / \ 22 \\ 178 \ / \ 123 \\ 32 \ / \ 32 \\ 207 \ / \ 107 \end{array}$	$\begin{array}{r} 8\\ 414\\ 816\\ 639\\ 1064\\ 813\\ 1463\\ 1987\\ 3628\\ 6467\\ 4501 \end{array}$	$\begin{array}{rrrrr} 4 \times 7 &=& \\ 120 \times 266 &=& \\ 371 \times 687 &=& \\ 266 \times 621 &=& \\ 365 \times 701 &=& \\ 322 \times 693 &=& \\ 473 \times 1166 &=& \\ 723 \times 1744 &=& \\ 1137 \times 2715 &=& \\ 1137 \times 2715 &=& \\ 1330 \times 5714 &=& \\ 1330 \times 3267 &=& \\ \end{array}$	$\begin{array}{r} 28\\ 31920\\ 254877\\ 165186\\ 255865\\ 223146\\ 551518\\ 1260912\\ 3086955\\ 7599620\\ 4345110 \end{array}$	$\begin{array}{c} < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \end{array}$	exact ortho, InOrd (SDN) ortho, InOrd (SDN)	2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave	$\begin{array}{c} \pm 0 \ \% \\ -62.4 \ \% \\ -12.1 \ \% \\ -10.8 \ \% \\ -43.7 \ \% \\ -22.4 \ \% \\ -47.0 \ \% \\ -47.0 \ \% \\ -47.7 \ \% \\ \pm 0 \ \% \\ -45.3 \ \% \end{array}$	$\begin{array}{cccc} 5 \times 8 \\ 119 \times 303 \\ 163 \times 435 \\ 267 \times 588 \\ 171 \times 417 \\ 225 \times 496 \\ 499 \times 1061 \\ 814 \times 1720 \\ 1230 \times 2535 \\ 1248 \times 2883 \\ 1271 \times 2618 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<1 <1 <1 <1 <1 <1 <1 <1	exact ortho, InOrd (SDN), 45° ortho, InOrd (SDN), 45°	ROW ROW ROW ROW ROW ROW ROW ROW ROW	$\begin{array}{r} \pm 0\% \\ -50.1\% \\ -15.5\% \\ -19.4\% \\ -15.0\% \\ -30.9\% \\ -31.1\% \\ -27.4\% \\ -39.0\% \\ -13.2\% \\ -21.7\% \end{array}$
EPFL [14]	ctrl router int2float cavlc priority dec i2c adder bar max sin	$\begin{array}{c} 7 \ / \ 25 \\ 60 \ / \ 3 \\ 11 \ / \ 7 \\ 10 \ / \ 11 \\ 128 \ / \ 8 \\ 8 \ / \ 256 \\ 136 \ / \ 127 \\ 256 \ / \ 129 \\ 135 \ / \ 128 \\ 512 \ / \ 130 \\ 24 \ / \ 25 \end{array}$	$\begin{array}{r} 409\\ 490\\ 545\\ 1600\\ 2349\\ 320\\ 2728\\ 2541\\ 6672\\ 6110\\ 11437\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13120 21836 56110 556116 327636 194788 1217502 1936917 14330602 16259827 35408100	$\begin{array}{c} < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ 1 \\$	ortho, InOrd (SDN) ortho, InOrd (SDN)	2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave 2DDWave	$\begin{array}{c} -78.7\ \% \\ -80.6\ \% \\ -55.9\ \% \\ -40.4\ \% \\ \pm0\ \% \\ -81.1\ \% \\ -64.4\ \% \\ -19.2\ \% \\ -12.4\ \% \\ -11.3\ \% \\ -19.5\ \% \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} = & 17052 \\ = & 27193 \\ = & 63364 \\ = & 329824 \\ = & 379100 \\ = & 1665688 \\ = & 849403 \\ = & 19177080 \\ = & 14177340 \\ = & 35568093 \end{array}$	<1 <1 <1 <1 <1 <1 <1 <1	erbo, InOd (SDN), 45° orbo, InOd (SDN), 45°	ROW ROW ROW ROW ROW ROW ROW ROW ROW	$\begin{array}{c} -69.5\%\\ -76.4\%\\ -45.4\%\\ -33.1\%\\ -84.6\%\\ -39.7\%\\ -64.9\%\\ -49.8\%\\ -2.9\%\\ -15.1\%\\ -10.5\%\end{array}$

Runtime values are in seconds; *I*, *O* and *N* are the number of inputs, outputs, and nodes in the unoptimized benchmark function, respectively; *w*, *h* and *A* are the width, height, and resulting area (in tiles) of the layouts, respectively. NPR, PLO, InOrd (SDN), 45°, exact, and ortho are abbreviations for the physical design tools NanoPlaceR [5], Post-Layout Optimization [9], Input Ordering Signal Distribution Network [8], Hexagonalization [7], and the SMT-based exact [4] and OGD-based heuristic [6] physical design methods, respectively; ΔA compares the layout area with the previous state of the art.

5) Integration of robust read and write utilities for the new file format into the open-source tool *fiction* [10] as part of the MNT.

In addition to generating layouts for all feasible combinations of gate libraries, clocking schemes, physical design algorithms, and optimizations, *MNT Bench* goes a step further by providing the most efficient gate-level layouts in terms of area discovered thus far for commonly encountered benchmarks in the domain [11]–[14]. The area of these layouts, along with the corresponding clocking scheme and physical design algorithm utilized in their creation, is detailed in Table I. Here, ΔA represents the achieved layout area reduction through optimal combinations of physical design tools.

In contrast to the previous state of the art, these layouts require significantly less area, e.g. for the *router* function using the *Bestagon* library, only 23.6% compared to [7].

III. CONCLUSION

To support the recent developments in FCN, *MNT Bench* offers public benchmarks to evaluate the performance of academic and commercial design tools. On top of a new file standard for FCN gate-level layouts and read/write utilities integrated into *fiction*, *MNT Bench* provides the most efficient layouts w.r.t. to area discovered thus far, setting a benchmark for the physical design of FCN layouts. To keep track of further developments, *MNT Bench* is constantly updated and maintained by the Chair for Design Automation at the Technical University of Munich. Improved layouts can be sent to nanotech.cda@xcit.tum.de for inclusion.

REFERENCES

- T. Huff *et al.*, "Binary atomic silicon logic," *Nat. Electron.*, vol. 1, no. 12, pp. 636–643, 2018.
- [2] R. Achal et al., "Lithography for robust and editable atomic-scale silicon devices and memories," Nat. Commun., vol. 9, no. 1, 2018.
- [3] M. Haider *et al.*, "Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature," *Phys. Rev. Lett.*, vol. 102, p. 046805, 2009.
- [4] M. Walter *et al.*, "An Exact Method for Design Exploration of Quantumdot Cellular Automata," in *DATE*, 2018, pp. 503–508.
- [5] S. Hofmann *et al.*, "Late Breaking Results From Hybrid Design Automation for Field-coupled Nanotechnologies," in DAC, 2023, pp. 1–6.
- [6] M. Walter *et al.*, "Scalable Design for Field-Coupled Nanocomputing Circuits," in ASP-DAC, 2019, pp. 197–202.
- [7] S. Hofmann *et al.*, "Scalable Physical Design for Silicon Dangling Bond Logic: How a 45° Turn Prevents the Reinvention of the Wheel," in *IEEE-NANO*, 2023, pp. 872–877.
- [8] M. Walter *et al.*, "Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies," in *ISVLSI*, 2023, pp. 1–6.
- [9] S. Hofmann *et al.*, "Post-Layout Optimization for Field-coupled Nanotechnologies," in *NANOARCH*, 2023.
- [10] M. Walter *et al.*, "fiction: An Open Source Framework for the Design of Field-coupled Nanocomputing Circuits," 2019.
- [11] A. Trindade *et al.*, "A Placement and Routing Algorithm for Quantumdot Cellular Automata," in *SBCCI*, 2016, pp. 1–6.
- [12] G. Fontes *et al.*, "Placement and Routing by Overlapping and Merging QCA Gates," in *ISCAS*, 2018, pp. 1–5.
- [13] F. Brglez et al., "A neutral netlist of 10 combinational benchmark circuits and a targeted translator in FORTRAN," in ISCAS, June 1985.
- [14] L. G. Amarù *et al.*, "The EPFL Combinational Benchmark Suite," in *IWLS*, 2015.
- [15] D. Reis *et al.*, "A Methodology for Standard Cell Design for QCA," in *ISCAS*, 2016, pp. 2114–2117.
- [16] M. Walter *et al.*, "Hexagons Are the Bestagons: Design Automation for Silicon Dangling Bond Logic," in *DAC*, 2022, pp. 739–744.