
Towards Cycle-based Shuttling for Trapped-Ion
Quantum Computers

(Extended Abstract)

Daniel Schoenberger1 Stefan Hillmich2 Matthias Brandl3 Robert Wille1,2

1 Chair for Design Automation, Technical University of Munich, Germany
2 Software Competence Center Hagenberg GmbH, Austria

3 Infineon Technologies AG, Germany
daniel.schoenberger@tum.de, stefan.hillmich@scch.at, matthias.brandl@infineon.com, robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum/

Abstract—The Quantum Charge Coupled Device (QCCD) ar-
chitecture offers a modular solution to enable the realization
of trapped-ion quantum computers with a large number of qubits.
Within these devices, ions can be shuttled (moved) throughout
the trap and through different dedicated zones. However, due
to decoherence of the ions’ quantum states, the qubits lose their
quantum information over time. Thus, the shuttling needed for
these shuttling operations should be minimized. In this extended
abstract, we propose a concept towards a cycle-based heuristic
approach to determining an efficient shuttling schedule for a
given quantum circuit.

I. INTRODUCTION

Quantum computing [1] as a new paradigm promises to
solve certain problems which are computationally intractable
on classical computers. Trapped-ion quantum computers are one
of the most promising candidates to show quantum advantage
in the foreseeable future [2]. However, the scaling of such
machines requires corresponding tooling support to exploit
their full potential. For ion traps in particular, efficiently
moving, i.e., shuttling, the ions is an important problem,
since unnecessary movement not only increases the required
time but also the likelihood of errors due to decoherence.
This makes determining efficient schedules of the movement
paramount for useful computations in trapped-ion quantum
computers. First solutions addressing this problem have been
proposed, e.g., in [3]–[7]. However, the considered architectures
are comparatively simple and do not cover a large part of
possible architectures. In this work, we propose a concept of a
cycle-based heuristic approach to generate an efficient shuttling
schedule for a given quantum circuit.

II. BACKGROUND

Trapped-ion quantum computers [5], [8]–[10] utilize ions
as qubits, where the quantum state of each ion is manipulated
using electromagnetic interactions. To this end, ions are isolated
and held in a controlled environment by a combination of
radio-frequency and quasi-static electric fields. Within the
confines of a trap, multiple ions can be arranged in a chain-like
configuration. However, while a single trap suffices for smaller
quantum computers, as the number of ions increases, longer
gate times give rise to different types of background errors.
This makes it challenging to scale to more practical quantum
algorithms that require more qubits. To improve the scalability
of trapped-ion quantum computers, the Quantum Charge
Coupled Device (QCCD) architecture [5], [11], [12] proposes
to build modular systems, by connecting multiple linear trap

sites that each may hold one chain of ions. Then, the main
idea of the QCCD paradigm revolves around designating
specific regions of the trap for specific functionalities. For
instance, all quantum operations are performed in a dedicated
processing zone that is specifically constructed for efficient
qubit operations. The acquired quantum information may then
be stored in a memory zone, which is shielded from potential
disturbances and sources of decoherence. In linear traps, ion
chains may block the way of each other, which would require
slow interactions like chain reordering and reconfiguration
to resolve this issue. To address this problem, junctions are
implemented into the systems, connecting linear regions and
form two-dimensional architectures. The extension to a second
dimension allows ions to avoid the path of other ions without
swapping or reconfiguration.

III. CONCEPT FOR CYCLE-BASED SHUTTLE SCHEDULING

Since all quantum operations are performed in the processing
zone of the device, ions have to be shuttled to the processing
zone to execute a quantum gate on the respective ions.
A quantum circuit therefore dictates, which ions have to be
moved between the memory zone and the processing zone. In
this section, we propose the concept for a solution to determine
an efficient shuttling schedule that moves the ion chains in a
QCCD device to execute and minimize the execution time of
a given circuit.

A. Graph Description
To determine an appropriate shuttling schedule, we represent

the architecture of a memory zone and the interface to the
processing zone in a QCCD device as an undirected graph. The
edges of the graph represent the individual sites of linear traps
(each site holding one ion chain). The nodes represent either
junctions (termed major nodes) or connections between sites
in one linear region (termed minor nodes). On this graph, the
physically continuous movement of ion chains is discretized
into time steps. At every time step, each chain is present at
exactly one edge of the graph.

Example 1. Consider the top part of Fig. 1. A QCCD
architecture is illustrated on the left-hand side. On the right, a
corresponding graph is given where the major nodes (green)
form a grid of size 3× 3. Minor nodes (black) mark the three
individual sites between two junctions and one inbound and
one outbound edge connect the memory zone to a processing
zone.

mailto:daniel.schoenberger@tum.de
mailto:stefan.hillmich@scch.at
mailto:matthias.brandl@infineon.com
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum/


1 1

2

2

Pr
oc

es
si

ng
 Z

on
e

inbound

outbound

0

3

4
5

6

7

8

00

1

1

Fig. 1: Cycles in a QCCD architecture

B. General Idea

The defining problem of shuttling arises if an ion chain
meets other chains on its path to the processing zone. In a
trap filled with multiple ion chains, the shortest path may be
blocked, since the chains can not directly swap places in a
memory zone. These conflicts have to be resolved by moving
the blocking chains away from the paths or change the path of
the moving chains. For an increasing number of ion chains in
the system this problem becomes increasingly more difficult to
solve exactly, i.e., with the minimal number of time steps. To
tackle this issue, the topology of the considered modular QCCD
architectures offers an intuitive solution: Exploiting cycles.
Cycles avoid conflicts and still move chains on their shortest
path within the memory zone. On the graph representation,
we refer to cycles as connected edges that form closed loops.
If we form cycles along the shortest paths of the chains and
move every chain one step on that cycle, we are able to shuttle
individual chains along their optimal path while, at the same
time, moving blocking chains away from that path. Additionally,
because all junctions can be shuttled through in parallel, one
turn of all edges on a cycle only takes one time step.

C. Cycle-based Shuttling

The concept of cycles works in all QCCD architectures, in
which closed loops can be formed. To sketch how to use cycles
to create a shuttling schedule, we formulate an approach for
grid-like architectures. These architectures are connected only
by “X”-junctions, i.e., the angles of all junctions are 90◦. This
means that each face of the graph is a rectangle. We start by
moving all chains within two junctions as far as possible on
their path. Afterwards, chains may traverse a junction to reach
a neighbor linear region. In case the next edge is blocked by
another chain, cycles are formed along the shortest path of the
shuttling chains and all chains on the cycle are moved in the
same direction. The architecture’s shape enables constructing
cycles in a straightforward way, since every rectangle of the
grid forms a closed loop. Depending on the direction of the
desired movement, two different cycles are being constructed.
All move operations within the memory zone are covered by
these two cycles since the memory zone is a symmetric grid.

Example 2. Since we consider a grid of “X”-junctions, a
movement through a junction can either be horizontal or
vertical. Both moves are exemplified in the bottom part of

Fig. 1. The smallest possible cycle for a vertical move requires
exactly one rectangle of the grid (left), while for the horizontal
move, the cycle has to be expanded to two rectangles (right).

As mentioned before, a quantum circuit dictates which ions
have to be in the processing zone to execute a quantum gate.
To ensure that chains arrive in the correct order at the inbound
edge, we implement a priority queue on top of the algorithm.
Chains only move along their shortest path and potentially form
cycles if all chains, which are needed before the considered
chain, are closer to the inbound edge. In other words, the chain
that is needed first always moves, while the next one only if
it is further away from the inbound edge than the first chain,
and so on. Further, cycles may overlap and attempt to move
chains in opposite directions. To avoid this, we allow only
non-overlapping cycles to move at the same time, prioritized
again by which ion is needed sooner.

IV. CONCLUSIONS

Trapped-ion quantum computers provide a modular design
that promises good scalability with QCCD architectures. Still,
efficient classical design tools are required to tap into this
potential. In this extended abstract, we proposed a concept
for generating efficient shuttling schedules and illustrated the
resulting movements within QCCD devices. To this end, we
use a graph-based abstraction of the underlying hardware to
discretize the problem of moving ion chains. Further, we exploit
the topology for conflict-free shuttling through cycles in the
graph. This approach provides a blueprint for a scalable solution
for determining efficient shuttling schedules of state-of-the-art
and future QCCD devices. Remaining edge cases, e.g., shuttling
through the processing zone, may be solved straightforwardly
by either creating cycles fitted to the processing zone or direct
paths to free edges. The full implementation of the proposed
approach and the evaluation of the resulting solution are left
for future work. These future results will be made available at
https://github.com/cda-tum/mqt-ion-shuttler.

ACKNOWLEDGMENTS
This work was funded under the European Union’s Horizon 2020 research

and innovation programme (DA QC, grant agreement No. 101001318 and
MILLENION, grant agreement No. 101114305), the State of Upper Austria in
the frame of the COMET program, the QuantumReady project (FFG 896217)
within Quantum Austria (managed by the FFG), and was part of the Munich
Quantum Valley, which is supported by the Bavarian state government with
funds from the Hightech Agenda Bayern Plus.

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.

2016.
[2] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion

quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6,
no. 2, p. 021 314, 2019.

[3] T. Schmale et al., “Backend compiler phases for trapped-ion quantum computers,”
in Int’l Conf. on Quantum Software, 2022.

[4] J. Durandau et al., “Automated Generation of Shuttling Sequences for a Linear
Segmented Ion Trap Quantum Computer,” Quantum, vol. 7, p. 1175, 2023.

[5] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architecting noisy
intermediate-scale trapped ion quantum computers,” in Int’l Symp. on Computer
Architecture, 2020, pp. 529–542.

[6] D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille, “Using Boolean
satisfiability for exact shuttling in trapped-ion quantum computers,” in Asia and
South-Pacific Design Automation Conf., 2024.

[7] L. Schmid et al., Computational capabilities and compiler development for neutral
atom quantum processors: Connecting tool developers and hardware experts, 2023.
arXiv: 2309.08656 [quant-ph].

[8] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys.
Rev. Lett., vol. 74, pp. 4091–4094, 20 1995.

[9] T. P. Harty et al., “High-fidelity preparation, gates, memory, and readout of a
trapped-ion quantum bit,” Phys. Rev. Lett., vol. 113, p. 220 501, 22 2014.

[10] S. Debnath et al., “Demonstration of a small programmable quantum computer
with atomic qubits,” Nature, vol. 536, no. 7614, pp. 63–66, 2016.

[11] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale
ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–711, 2002.

[12] J. M. Pino et al., “Demonstration of the trapped-ion quantum CCD computer
architecture,” Nature, vol. 592, no. 7853, pp. 209–213, 2021.

https://github.com/cda-tum/mqt-ion-shuttler
https://arxiv.org/abs/2309.08656

	Introduction
	Background
	Concept for Cycle-based Shuttle Scheduling
	Graph Description
	General Idea
	Cycle-based Shuttling

	Conclusions

