
Thinking Outside the Clock:
Physical Design for Field-coupled Nanocomputing

with Deep Reinforcement Learning
Simon Hofmann∗, Marcel Walter∗, Lorenzo Servadei∗, and Robert Wille∗†

∗Chair for Design Automation, Technical University of Munich, Germany
†Software Competence Center Hagenberg GmbH, Austria

Email: {simon.t.hofmann, marcel.walter, lorenzo.servadei, robert.wille}@tum.de
https://www.cda.cit.tum.de/research/nanotech/

Abstract—Recent advances in atom-scale manufacturing are
paving the way toward the emergence of Field-coupled Nanocom-
puting (FCN) as a viable real-world post-CMOS technology.
Current FCN-specific solutions for placement and routing of
logic functions are at risk of falling behind manufacturing
capabilities. The problem lies in the fact that existing algorithms
are either optimal in their result quality but do not scale; or
are scalable, but produce results of sub-par quality limited to
select clocking schemes. Furthermore, most existing approaches
are tailored toward a concrete FCN implementation, limiting
their applicability across the domain. To address these challenges,
we propose a novel approach that utilizes deep reinforcement
learning to learn the placement of logic elements and incorporate
established routing strategies directly into the placement step. By
relying only on abstract signal flow directions, this solution is
technology-agnostic and therefore applicable to any FCN imple-
mentation, layout topology, or clocking scheme. The proposed
approach is experimentally evaluated on a set of established
benchmark functions common in the domain. While a state-
of-the-art exact approach is limited to designing layouts for
functions containing a maximum of around 40 gates, the proposed
approach is able to generate solutions for all functions included
in the considered benchmark sets, while reducing the layout area
by an average of 59% compared to the state-of-the-art heuristic.
Furthermore, the proposed algorithm is made available to the
scientific community as an open-source implementation.

I. INTRODUCTION

The latest technological advancements in Field-coupled
Nanocomputing (FCN, [1]), such as Silicon Dangling
Bonds (SiDBs, [2]) and the multimillion-dollar investments
made by enterprises such as Quantum Silicon Inc., underscore
the need for innovative approaches to FCN physical design in
order to keep up with the rapid pace of progress.

However, cutting-edge solutions for layout mapping of logic
functions are at risk of falling behind due to the rapid domain
shifts. Optimal solutions for the placement and routing of a
netlist onto a layout can only be obtained for small functions
using exact approaches with exponential runtime behavior [3],
[4]. To generate layouts for larger functions, scalable algo-
rithms [5] are used to determine solutions. However, these so-
lutions are typically of sub-par quality and are only applicable
to a specific clocking scheme. Furthermore, a shift from Carte-
sian layouts for Quantum-dot Cellular Automata (QCA, [6])
to hexagonal ones for SiDBs [7] further emphasizes the need

for novel scalable physical design automation approaches that
are domain-independent.

To address these issues, rather than developing a solution
that is specific to a particular clocking scheme and underlying
cell technology, we propose an approach that relies only on
abstract signal flow directions, which is, thereby, agnostic to
both clocking and cell technology.

Inspired by recent developments in the field of machine
learning-aided design automation [8], [9], we combined re-
inforcement learning with efficient path routing based on
established algorithms such as A∗ Search [10]. In this work,
Proximal Policy Optimization (PPO) [11] is used to learn the
placement of logic elements, which is further accelerated by
incorporating action masks computed based on netlist structure
and partial placements, ensuring valid and compact solutions.
To minimize the occurrence of unpromising partial place-
ments, several checks constantly ensure the early termination
of sub-par solutions.

The remainder of this paper is structured as follows:
Section II reviews technical background on selected FCN
technologies and reinforcement learning. Section III reviews
state-of-the-art design automation methods for QCA and
SiDB. The reinforcement learning-based hybrid physical de-
sign algorithm proposed in Section IV is then experimentally
evaluated based on common benchmark functions in Sec-
tion V. Finally, Section VI concludes the paper.

The implementation is available as an open-source Python
package1 as part of the Munich Nanotech Toolkit (MNT).

II. BACKGROUND

FCN is a class of technologies that show promise as
post-CMOS solutions to the growing need for computing
power while addressing environmental concerns. These tech-
nologies use circuits that operate at the nanoscale without
the need for electrical current flow [1]. Section II-A covers
their preliminaries that are required for the comprehension of
the remainder of this manuscript. Subsequently, Section II-B
describes the reinforcement learning method used in our
approach.

1https://www.pypi.org/project/mnt.nanoplacer/

mailto:simon.t.hofmann@tum.de
mailto:marcel.walter@tum.de
mailto:lorenzo.servadei@tum.de
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/nanotech/
https://www.pypi.org/project/mnt.nanoplacer/

(a) Polarization states of
individual cells.

(b) Wire segment.

(c) Majority gate.

Fig. 1: Elementary QCA cells and compound structures.

1 nm

(a) H-Si(100)-2×1
surface structure.

0

0

0 1

1

0 0

1

1 1

1

1

Input perturber

Output perturber

DB
pairs

(b) Recreation of a binary-dot OR gate [12],
adapted from [7].

Fig. 2: SiDBs on a H-Si(100)-2×1 lattice can implement logic
gates.

A. Field-coupled Nanocomputing

First, Section II-A1 is concerned with QCA, arguably the
most intensively researched FCN technology. Afterward, Sec-
tion II-A2 presents an overview of the more recent fabrica-
tion breakthroughs achieved with SiDBs and Section II-A3
discusses the technological constraints imposed by these two
technologies.

1) Quantum-dot Cellular Automata (QCA): The QCA tech-
nology operates by utilizing an elementary device called a
cell, playing a role analogous to the transistor in traditional
electronics. While a single cell can store a single bit of
information in the form of a charge state, combining multiple
cells allows for the creation of structures capable of computing
any Boolean function.

Each QCA cell comprises four quantum dots arranged in
a square frame on a substrate, as depicted in Fig. 1a. Binary
values of 0 and 1 can be encoded using polarization in the
form of electron configurations, based on the position of the
charges. The polarization of cells placed in proximity can
influence each other due to electrical fields, causing their
polarization to align accordingly, which enables computation
and propagation of information. The simplest configuration
is a line of adjacent QCA cells that forms a binary wire
segment, as shown in Fig. 1b. By placing a cell adjacent to
three input cells, the majority-of-three (MAJ3) function can
be implemented, as illustrated in Fig. 1c, of which AND and
OR implementations can be derived by setting one input to
constant 0 or 1, respectively. Furthermore, inverters can be
created to achieve boolean completeness.

2) Silicon Dangling Bonds (SiDBs): Through a fabrication
process that involves removing hydrogen atoms from a passi-
vated silicon (H-Si(100)-2×1) surface [13] using a scanning
tunneling microscope [2], SiDBs can be created that behave

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

(a) 2DDWave [20].

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

(b) USE [21].

1

2

2

1

1

2

4

3

3

43

4

1

2

4

1

(c) RES [22].

Fig. 3: Common clocking schemes for FCN technologies.

like atomically-sized, chemically identical quantum dots. An
SiDB on a H-Si(100)-2×1 surface is illustrated in Fig. 2a.
Recent breakthroughs in the domain allow for unparalleled
control over the placement of the dots [14]–[18].

Arrangements of pairs of SiDBs yield a concept known as
Binary-dot Logic (BDL) [12]; in contrast to elementary devices
with four quantum dots, as in the QCA domain. Using the BDL
concept, a fully functioning SiDB OR gate with a footprint
of less than 30 nm2 was successfully manufactured [12], and
standard gate libraries as well as initial design automation
methods have been proposed [7], [19]. A recreation of this
OR gate with varying inputs is depicted in Fig. 2b.

3) Technology Constraints: There are various limitations
imposed by the respective technology that restrict the FCN
circuit layouts that can be manufactured. The majority of FCN
technologies are planar and possess restricted crossing capa-
bilities, which poses a difficulty for wire routing. Additionally,
to ensure signal synchronization, it is necessary to balance the
lengths of wire segments throughout the layout [23]. A crucial
criterion for FCN circuits is that they must be divided into
uniform regions that are periodically activated and deactivated
by external fields, in order to maintain signal stability and
control the direction of information flow [24], [25].

This activation mechanism, referred to as clocking, plays
a critical role in all FCN implementations. This is because
both combinational and sequential circuits require clocking to
ensure signal stability and regulate the direction of information
flow [24], [25].

The default clocking system for FCN involves four consecu-
tive clock signals, numbered from 1 to 4. This system supports
a pipeline-like flow of information, transmitting signals from
tiles under the control of clock 1 to those under clock 2,
clock 3, and finally clock 4, before returning to clock 1 [24],
[25]. However, this can present challenges for signal propa-
gation and synchronization, requiring careful management to
ensure that adjacent tiles are clocked consecutively, and that
wire lengths are balanced throughout the circuit to prevent
delay differences and subsequent desynchronization [26].

The distribution of clock signals to each tile is a widely
discussed topic in the literature. There is a consensus that the
signals can be transmitted through buried electrodes within the
substrate of the circuit [25]. Several clocking schemes that tile
a layout floorplan have been proposed in the literature [20]–
[22], as illustrated in Fig. 3. Each of them offers a specific
arrangement of regular clock zones to aid the physical design
of FCN layouts.

Agent

Environment

reward action state

Fig. 4: The typical agent-environment interface.

B. Reinforcement Learning
Reinforcement learning [27] involves an agent exploring

a dynamic environment, where the agent interacts with its
surroundings and receives either positive or negative rewards
depending on its actions.

At each time step t, the agent either has a full or partial
observation of the state St ∈ S and the previously received
reward Rt ∈ R, which determines the following action
At ∈ A it will take in the environment. After taking the most
promising action, it receives the next reward Rt+1 and updated
state St+1, as shown in Fig. 4.

Therefore, the agent tries to learn a mapping between
actions and states, which is called the policy πt. In policy
gradient methods, the policy is modeled by a set of neural
network weights θ.

The reward function, which relies on the weights of the
neural network θ, indicates how good an action was in a certain
state:

J(θ) =
∑
s

dπ(s)
∑
a

qπ(s, a)∇θπ(a|s, θ), (1)

with the stationary distribution dπ(s) of the Markov chain
for πθ and the value function qπ .

Proximal Policy Optimization (PPO, [11]) builds upon the
foundation of Monte-Carlo policy gradient methods as in
REINFORCE [28] and controlling the difference between the
old and the new policy, as introduced in Trust Region Policy
Optimization (TRPO, [29]).

PPO keeps the old and new policy close to each other in
the loss function J by clipping the ratio rt(θ) =

πθ(a|s)
πθold

(a|s) to
the range [1− ϵ, 1 + ϵ] with the clipping parameter ϵ:

JCLIP(θ) = E[min(rt(θ)Â, clip(rt(θ), 1− ϵ, 1 + ϵ)Â)], (2)

where Â is the estimated advantage of the old policy.
An invalid action masking process [30] is used to prevent

sampling of invalid actions during reinforcement learning to
reduce the number of actions the agent has to explore. To com-
pute the probability of an action, the unnormalized output, also
called logit, is fed through a non-linear activation function,
e. g., softmax or tanh. The output of these activation functions
approach 0 by replacing the logits with a significantly large
negative value (e. g., −1 × 108), therefore masking out the
corresponding actions.

Given recent advancements in applying RL frameworks to
hard combinational problems [31], PPO was the preferred
choice for learning gate placements in FCN due to its ability to
mask out actions, as well as its performance in other machine
learning-aided chip design approaches [8], [9], [32].

III. RELATED WORK: DESIGN AUTOMATION FOR
FIELD-COUPLED NANOCOMPUTING

As previously discussed, FCN layouts possess distinct char-
acteristics that distinguish them from traditional CMOS-based
computing systems. Specifically, the physical design problems
associated with FCN technologies are particularly challenging
due to constraints such as planarity and signal balancing. As
expected, placement and routing for FCN circuits are known to
be NP-complete [33]. This renders finding optimal solutions
intractable, even for relatively small circuits.

More precisely, the following approaches have been pro-
posed so far:

A. Exact Approaches

Exact physical design algorithms, e. g., [3], [4], are capable
of obtaining optimal layouts from specifications with respect
to a given cost metric, typically layout area. However, these
algorithms suffer from performance issues stemming from the
NP-completeness of the task. This limits their applicability to
relatively small instances.

B. Heuristic Approaches

A heuristic algorithm, called ortho, was recently pro-
posed [5]. This algorithm is based on an approximation to
orthogonal graph drawing and is capable of automatically
designing layouts with hundreds of millions of tiles. To
achieve this scalability, the algorithm prunes the search space
aggressively.

Unlike previous FCN physical design algorithms that pri-
oritize expensive pre-processing measures like node balancing
and crossing reduction or substitution, ortho adopts a different
approach based on the topological computation of relative po-
sitions through direction assignment. This approach eliminates
the need for defining the layout area before placement, as
the required size is automatically determined. However, the
algorithm is restricted exclusively to the 2DDWave clocking
scheme. Utilizing a 45° turn [34], the generated layouts can
be transformed into a hexagonal configuration to accommodate
Y-shaped SiDB gates [7].

C. Semi-automated Approaches

To date, no fully automated and scalable design algorithms
for FCN circuits using clocking schemes other than 2DDWave
have been developed. Heuristics known in the literature [35],
[36] still require manual input from experts before and during
the design process, based on each function to realize. Fur-
thermore, the lack of open-sourced code for these heuristics
renders a reproduction and verification of their claimed re-
sults impossible, unlike the exact [3], [4] and scalable [5]
approaches, which are part of the openly accessible fiction [37]
framework.

IV. HYBRID APPROACH FOR PLACEMENT & ROUTING

The general idea of the proposed hybrid placement and
routing algorithm is as follows:2 It first creates a topological
ordering of the logic network and then places one of the gates

2Preliminary results of this method have been presented in [38].

1

2

2

1

1

2

4

3

3

43

4 3

2

1

4

1

2

2

1

1

2

4

3

3

43

4 3

2

1

4

1

2

2

1

1

2

4

3

3

43

4 3

2

1

4

gate id

netlist structure

partial
placement

C. Action Mask

E. Routing (A)

place
gate

F. Update
Partial

Placement

A. Netlist
Preparation

B. Action/Value
Networks

D. Masked
Policy

route placed
gate

1

2

2

1

1

2

4

3

3

43

4 3

2

1

4

Fig. 5: Steps of the proposed algorithm annotated with letters
that are matching the respective sub-section in Section IV.

at each step, including routing it with its predecessor on the
layout, regardless of the underlying clocking scheme. After the
successful placement and routing of all gates, the algorithm
outputs a representation of the physical design for the desired
logic network, which can be directly realized with QCA or
SiDB cells using gate libraries such as QCA ONE [39] or the
Bestagon library [7].

The proposed hybrid placement and routing algorithm is
described by means of Fig. 5 and is composed by the following
steps:

• Section IV-A: An initial netlist preprocessing step.
• Section IV-B: Training action and value networks to

output the most promising coordinates for gate placement.
• Section IV-C: Limiting the possible positions predicted

by the action network based on the current gate to be
placed with action masks, which can be obtained from
the netlist and the partial placement.

• Section IV-D: Reducing the search space to valid coordi-
nates only by combining the action mask with the output
of the neural network.

• Section IV-E: Connecting the placed gate to its predeces-
sors via A∗ path finding [10].

• Section IV-F: Receiving a reward and proceeding to place
the next gate, while terminating unpromising or invalid
partial placements early on based on further checks.

A. Netlist Preparation

At the beginning of a training cycle, a depth-first fanout sub-
stitution algorithm is applied to the input netlist to restrict the
output degree of each node to a maximum of 2. Furthermore,
a topological ordering of nodes is computed to guarantee a
sequential placement, wherein parent nodes (predecessors) are
allocated positions before placing their respective child node.
In Fig. 5, a current node is highlighted in green and has both
of its parent nodes already placed on the layout.

1

1

2

4

3

43

4

1 24

1 2 3

2 43

143

1

2

2

4

3

3

1 24

1 2 3

1

2

2

3

(a) For wstart = 2, the
first gates can only be
placed on a 2 × 2
square.

1 2

2 3

43

14

1

2

2

4

3

3

1 24

1 2 3

1

1

2

4

3

43

4

4

1

2

3

1

2

2

3

(b) During training, the
available area grows in
conjunction with the
number of placed gates.

2

3

4

1

2 43

2

1 2 3

1

1

2

4

3

43

4

14

1 2

2 3

43

1 2 3 14

1

2

2

3

(c) For the final gates,
almost the entire layout
area is permitted.

Fig. 6: Action masks during a placement episode.

B. Action/Value Networks
The input dimension of both the action and value networks

corresponds to the number of gates and comprises a one-hot
encoded vector of the upcoming gate identification. Each of
these networks is composed of two hidden layers, each layer
having a size of 64. The output dimension of each network
mirrors the number of coordinates present in the layout.

By employing a probability distribution, the network outputs
predict the most desirable layout coordinates for placement of
the current gate. The utilization of solely the gate identification
as the observation leads to a comparatively low quantity of
network weights. Consequently, swift updates can be made
during training. As illustrated in Fig. 5, the three most probable
positions are indicated by the color green.

For the smallest function in one of the considered bench-
marks [36], namely the 2:1 Multiplexer with 9 gates and a
layout size of 3 × 5 = 15 tiles, the number of weights is
9 · 64+ 64 · 64+ 64 · 15 = 5632. Even for the largest function
(called parity) in another benchmark set [35], with 150 gates
and a resulting layout size of 48×48 = 2304 tiles, the number
of weights is only 150 · 64 + 64 · 64 + 64 · 2304 = 161 152.

C. Action Masks
To limit the number of actions the agent has to explore,

as well as to prevent the placement of gates on tiles that
lead to invalid layouts, masks can be calculated based on the
netlist structure, the current partial placement, the position of
preceding and already placed gates, constraints imposed by
the layout topology, information flow directions, and validity
of the partial placement.

Depending on the type of gate to be placed, different action
masks are generated, as described in the following.

1) Expanding Layout Size: On 2DDWave-clocked layouts,
information only flows to the east and south. Therefore, it is
beneficial to start the placement in the top left corner and
gradually expand the layout area, as the position of a placed
gate determines the possible positions of all its dependent
successors.

At first, a predefined quadratic layout area wstart × wstart is
allowed, which expands linearly during training according to
the current gate to be placed. The width w of the allowed
square-sized area can be determined by

w =

⌊
wstart + g ·

wlayout − wstart

|G|

⌋
, (3)

1

2

2

1

1

2

4

3

3

43

4

1 24

1 2 3

2 43

143

1

2

2

4

3

3

1 24

1 2 3

(a) PIs are only allowed on the
left and top border.

1

2

2

1

1

2

4

3

3

43

4

1 24

1 2 3

2 43

143

1

2

2

4

3

3

1 24

1 2 3

(b) POs are only allowed on the
right and bottom border.

Fig. 7: Action masks for PIs and POs using 2DDWave.

1

2

2

1

4

3

3

43

4

1 24

1 2 3

43

143

1

2

2

4

3

3

1 24

1 2 3

1

2

2

(a) On a 2DDWave-clocked lay-
out, only 2 positions are pos-
sible for a gate with a single
predecessor.

1 2

4

43

1 24

1

4

1 2 1 24

4 3

2 1 2 1

24 3 1 4 3

3

4

2

3

3

1 2 3

3

(b) In case of a more complex
clocking scheme like USE, more
tiles are allowed.

Fig. 8: Action masks for gates with a single predecessor I .

with g being the current gate id, |G| the number of all gates
and wlayout the width of the complete layout that is available.
Setting wstart to 4 in our experiments led to the best results.

Fig. 6 illustrates the available area for placement at the
beginning (Fig. 6a), midway (Fig. 6b) and close to the end
(Fig. 6c) of a placement episode. In Fig. 6a, we used wstart = 2
to better show the growing available layout area.

2) Primary Inputs & Outputs: To enhance integrability of
circuit layouts, primary inputs and outputs should be placed at
the layout borders to make them accessible, which is achieved
by masking out all non-border tiles. In the special case of the
2DDWave-clocked layout, inputs are only placed at the left and
top border, as shown in Fig. 7a, while the outputs are placed
on the right and bottom border, as illustrated in Fig. 7b.

3) 1-Input Gates: Gates with only a single input, e. g.,
inverters or fanouts, can be placed one clock phase away from
their predecessor in a 2DDWave-clocked layout, as in Fig. 8a.
In clocking schemes where signal flow in all directions is
possible, such as RES or USE, gates can be placed up to two
clock phases away as depicted in Fig. 8b. This prevents the
occurrence of deadlocks, which can happen in RES or USE by
placing multiple single input gates in a row, therefore creating
a circle on the layout in some cases.

4) 2-Input Gates: Gates that have two inputs, such as AND,
OR, XOR, etc., necessitate placement at specific locations
that permit routing to adhere to the positioning of their
predecessors and any previously routed wire connections.

1

1

1

2

2

4

3

3

43

4

1 24

2 3

43

1

2

2

4

3

3

1

2

2

143

1 24

1 2 3

(a) Allowed positions for a gate
with two predecessors.

3

4

1

2

2

4

3

43

4

1 24

2 3

43

1

2

2

4

3

3

1

2

2

1431

1

1 2

1 2 3

(b) Here, the coordinates of I1
determine valid positions.

Fig. 9: Action masks for gates with two predecessors I1 and I2.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

(a) Partial netlist placement.

1 2 3

2

3

4

4

3

143

1 24

1 24

1 2 3

43

14

2 43

1 2

1 2 3

1

2

2

3

(b) Occupied tiles are masked.

Fig. 10: Action mask based on occupied tiles.

In a 2DDWave-clocked layout, the x coordinate of such
gates must be set to the maximum x coordinate of its two
predecessors at minimum, and the y coordinate must be set
to the maximum y coordinate of the same predecessors. The
positioning of the two predecessors, denoted by I1 and I2,
influences the action masks exhibited in Fig. 9.

5) Layout Occupation: In FCN, a tile can only be occupied
by a single gate or wire segments. Therefore, all occupied tiles
are masked out. For the partial placement in Fig. 10a, Fig. 10b
illustrates the resulting action mask.

6) Additive Mask Overlay: For each gate, multiple of the
aforementioned conditions can be met simultaneously, leading
to several action masks. A complete mask is determined by
an additive overlay of all the individual masks. In Fig. 11, a
gate with two inputs creates three masks:

1) expanding layout area mask as in Section IV-C1,
2) 2-input gate mask as in Section IV-C4, and
3) occupied tile mask as in Section IV-C5.

By combining these three masks, only one possible position
remains, reducing the action space from 6 × 6 = 36 to a
single tile. While this level of reduction is certainly a best-case
scenario, it demonstrates the effectiveness of the proposed
technique.

D. Masked Policy

In order to guarantee that the placement of gates is confined
to valid locations, the action mask assigns a substantially
negative value to the logits of coordinates deemed unsuitable
for placement, thereby diminishing the probability of such

3

4

1

2

2

4

3

43

4

1 24

2 3

43

1

2

2

4

3

3

1

2

2

1431

1

1 2

1 2 3

3

4

1

2

2

4

3

43

4

1 24

2 3

43

1

2

2

4

3

3

2

2

1431

1

1 2

1 2 3

1

1)
Exp

an
din

g L
ay

ou
t S

ize

4) 2-Input Gates

5) Layout Occupation

6) Additive Mask

Overlay

Fig. 11: For a gate with two inputs (I1 and I2), three different masks are calculated based on 1) Expanding Layout Size,
4) 2-Input Gates, and 5) Layout Occupation. By 6) Additive Mask Overlay, only a single position remains possible for placement,
providing the RL agent with the best possible action space pruning.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

(a) New gate is placed
on the layout.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

(b) Routing the first pre-
decessor.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

(c) Routing the second
predecessor.

Fig. 12: The A∗ search is used twice to connect a placed gate
with its two predecessors.

locations being selected by the agent. As demonstrated in
Fig. 5, solely one of the three most probable coordinates
satisfies the action mask restrictions, and this position is
selected as a consequence of its augmented likelihood.

E. Wire Routing

After each placement step, the gate, depending on its type,
must be connected to its predecessors without conflicting
with existing wiring and without violating the information
flow directions. A placed gate with a single predecessor can
be either a 1-input gate, which is already connected to its
predecessor during placement, or a primary output, which is
then connected to its predecessor with A∗. If a gate has two
inputs, the predecessors are routed one after the other, with
the second taking the first wiring into account.

In Fig. 12a, an AND gate was placed, which is colored
green. First, A∗ connects the placed gate with I4 in Fig. 12b
before connecting it with its second predecessor, the other
AND gate in Fig. 12c.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

(a) If a gate is trapped, the current
placement is terminated.

1

2

2

1

1

2

4

3

3

43

4

1

1

2

4

2 3

43

2

1

3

4

1

2

2

4

3

3 1

1

2

4 2

3

1

2

4

3

4

3

143 2 3 4 1

(b) A drain tile D has to be
reachable by every gate on the
2DDWave-clocked layout.

Fig. 13: Several checks decide if the agent keeps on placing
more gates onto the layout or if it restarts on an empty layout.

F. Update Partial Placement

At each time step t, the agent is exclusively granted a reward
of rt = 1 provided that the wire routing between the posi-
tioned gates and their predecessors is completed successfully,
meaning it is free of conflicts. Otherwise, the reward is 0, and
the agent may seek alternative positions as signified by the
action mask. Only in the event that all viable positions have
been evaluated without the possibility of a successful routing
will the current placement be terminated.

Additionally, for 2DDWave-clocked layouts, the reward is
scaled according to the position of placed gates on the layout to
favor placements closer to the top left corner, to maximize the
number of possible positions for succeeding gates. In detail,
the reward is scaled by the x and y-coordinate of the placed
gate and the width w of the permitted layout area at the time,
as described in Section IV-C1:

rt,scaled = rt · (1−
x+ y

w2
). (4)

In case of a successful routing, the agent utilizes the
updated partial placement to compute the next action mask for
subsequent gates. Furthermore, the action and value networks
are updated using PPO [11], depending on the batch size,
which indicates the number of gates placed with the current
policy π.

G. Premature Termination

The validity of partial placements is constantly monitored to
prematurely terminate unpromising runs, thus, facilitating the
initiation of a fresh layout. One trivial check is the action mask
itself, which masks out all coordinates if no valid position can
be determined. Two more sophisticated checks are illustrated
in Fig. 13. For every dangling gate, i. e., a gate whose direct
successors have not been placed yet, one algorithm checks if
at least one of its adjacent tiles with the matching clock phase
is still unoccupied. Additionally, if one of the tiles is occupied
by a wire, it is checked if the wire can be crossed. In Fig. 13a,
the check is successful, as every dangling gate has at least one
free tile to connect with its successors.

Only if the first check was successful, a second algorithm
temporarily adds another row and column to the layout and
uses A∗ to test if every dangling gate is able to find a way to a
virtual drain tile D. In Fig. 13b, every gate can be routed to D
successfully, therefore, not terminating the current placement
episode.

V. EXPERIMENTS

In this section, we showcase the outcomes of the proposed
hybrid physical design algorithm using a series of benchmark
circuits commonly employed in the field [35], [36] for three
different clocking schemes [20]–[22]. We also compare its ef-
ficacy to the state-of-the-art exact and heuristic approaches [3],
[5] and validate layout correctness using formal verifica-
tion [40]. Table I summarizes the obtained data, although
we only present the achieved results for QCA to facilitate
comparison with the ortho scalable approach for QCA, even
though our proposed approach is technology-independent and,
thus, also capable of producing SiDB layouts.

The exponential runtime behavior of the exact approach [3]
limits its feasibility due to the NP-completeness of the physi-
cal design problem [33]. Consequently, we applied a time-out
limit of 24 h, which was already exceeded by moderately-sized
functions on every clocking scheme.

For the 2DDWave clocking scheme, the state-of-the-art
heuristic yields layouts for all functions in negligible runtime,
but requires almost a factor of 6 more area, while for other
clocking schemes, no approaches that are completely auto-
matic and open-source are available. Impressively, across all
functions in the two benchmark sets presented in Table I, the
proposed hybrid approach yields a substantial area reduction
on the 2DDWave clocking scheme compared to the heuristic.

For other clocking schemes, our approach is able to find
a solution for all functions, while the exact approach already
receives a timeout for relatively small functions with ≈ 30
gates. The superiority of the 2DDWave clocking scheme was
anticipated, as previous research has shown that it imposes
the least amount of overhead for combinational functions [4].

Results outlined in Table I demonstrate the superiority of the
proposed approach over exact approaches when it comes to
scalability and over heuristic methods concerning the occupied
layout area, therefore, combing the best of both worlds.

VI. CONCLUSION

As Field-coupled Nanocomputing (FCN) becomes a reality,
efficient methods for the automatic physical design are needed
to match this promising emerging technology. In this work,
we presented an approach that uses reinforcement learning
for gate placement and established path finding algorithms
for routing. The resulting hybrid algorithm for FCN physical
design demonstrates remarkable proficiency in obtaining valid
circuit layouts for logic functions of up to 150 gates, indepen-
dent of the underlying clocking scheme or cell technology.
While exact approaches are limited to designing layouts for
functions containing a maximum of around 40 gates depending
on the clocking scheme, the proposed approach is able to
generate solutions for all functions included in the considered
established benchmark sets, while reducing the obtained layout
area by an average of 59% compared to the state-of-the-art
heuristic on 2DDWave-clocked layouts.

The proposed algorithm is openly available as a Python
package3 as part of the Munich Nanotech Toolkit (MNT). Fur-
thermore, the generated layouts have been included in the
benchmark suite MNT Bench [41].4

REFERENCES

[1] N. G. Anderson and S. Bhanja, Eds., Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer, 2014.

[2] R. Achal et al., “Lithography for robust and editable atomic-scale silicon
devices and memories,” Nat. Commun., vol. 9, no. 1, 2018.

[3] M. Walter et al., “An Exact Method for Design Exploration of Quantum-
dot Cellular Automata,” in DATE, 2018, pp. 503–508.

[4] ——, “One-pass Synthesis for Field-coupled Nanocomputing Technolo-
gies,” in ASP-DAC, 2021, pp. 574–580.

[5] ——, “Scalable Design for Field-Coupled Nanocomputing Circuits,” in
ASP-DAC, 2019, pp. 197–202.

[6] C. Lent et al., “Quantum Cellular Automata: The Physics of Computing
with Arrays of Quantum Dot Molecules,” in PhysComp, 1994, pp. 5–13.

[7] M. Walter et al., “Hexagons Are the Bestagons: Design Automation for
Silicon Dangling Bond Logic,” in DAC, 2022, pp. 739–744.

[8] A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[9] R. Cheng et al., “The Policy-gradient Placement and Generative Routing
Neural Networks for Chip Design,” NIPS, vol. 35, pp. 26 350–26 362,
2022.

[10] P. E. Hart et al., “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” Transactions on Systems Science and Cybernet-
ics, vol. 4, no. 2, pp. 100–107, 1968.

[11] J. Schulman et al., “Proximal Policy Optimization Algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[12] T. Huff et al., “Binary atomic silicon logic,” Nat. Electron., vol. 1, no. 12,
pp. 636–643, 2018.

[13] M. B. Haider et al., “Controlled Coupling and Occupation of Silicon
Atomic Quantum Dots at Room Temperature,” Phys. Rev. Lett., vol.
102, p. 046805, Jan. 2009.

[14] T. Huff et al., “Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon
Surface,” ACS nano, vol. 11 9, pp. 8636–8642, 2017.

[15] J. L. Pitters et al., “Charge Control of Surface Dangling Bonds Using
Nanoscale Schottky Contacts,” ACS nano, vol. 5, pp. 1984–9, Feb. 2011.

[16] R. A. Wolkow et al., “Silicon Atomic Quantum Dots Enable Beyond-
CMOS Electronics,” in Field-Coupled Nanocomputing, 2013.

3https://www.pypi.org/project/mnt.nanoplacer/
4https://www.cda.cit.tum.de/mntbench

https://www.pypi.org/project/mnt.nanoplacer/
https://www.cda.cit.tum.de/mntbench

Table I: Comparative experimental evaluation of the state of the art against the proposed hybrid algorithm.

BENCHMARK CIRCUIT [35], [36] EXACT APPROACH [3] HEURISTIC APPROACH [5] PROPOSED APPROACH

Clocking Scheme Name I / O |G| w × h = A t w × h = A t w × h = A t

2DDWave [20]

2:1 MUX 3 / 1 9 3 × 4 = 12 < 1 6 × 8 = 48 < 1 3 × 4 = 12 < 1
XOR 2 / 1 9 3 × 6 = 18 < 1 5 × 8 = 40 < 1 3 × 6 = 18 < 1
XNOR 2 / 1 11 3 × 6 = 18 < 1 6 × 9 = 54 < 1 3 × 6 = 18 < 1
Half Adder 2 / 2 14 4 × 6 = 24 < 1 9 × 10 = 90 < 1 4 × 6 = 24 4
Parity Gen. 3 / 1 18 4 × 8 = 32 < 1 9 × 14 = 126 < 1 8 × 8 = 64 2
Parity Check. 4 / 1 26 6 × 8 = 48 2 12 × 20 = 240 < 1 9 × 9 = 81 14
XOR5_R1 5 / 1 40 7 × 11 = 77 11 14 × 33 = 462 < 1 14 × 14 = 196 15
cm82a 5 / 3 68 timeout limit reached 26 × 51 = 1326 < 1 25 × 25 = 625 210
2bitAdderMaj 5 / 2 82 timeout limit reached 26 × 64 = 1664 < 1 29 × 29 = 841 180
xor5Maj 5 / 1 102 timeout limit reached 30 × 79 = 2370 < 1 37 × 37 = 1369 595
parity 16 / 1 150 timeout limit reached 48 × 120 = 5760 < 1 48 × 48 = 2304 951

USE [21]

2:1 MUX 3 / 1 9 3 × 5 = 15 < 1 not applicable 5 × 5 = 25 3
XOR 2 / 1 9 4 × 5 = 20 < 1 not applicable 5 × 5 = 25 < 1
XNOR 2 / 1 11 4 × 5 = 20 < 1 not applicable 6 × 6 = 36 < 1
Half Adder 2 / 2 14 4 × 7 = 28 4 not applicable 7 × 7 = 49 19
Parity Gen. 3 / 1 18 4 × 8 = 32 7 not applicable 9 × 9 = 81 26
Parity Check. 4 / 1 26 timeout limit reached not applicable 11 × 11 = 121 125
XOR5_R1 5 / 1 40 timeout limit reached not applicable 16 × 16 = 256 128
cm82a 5 / 3 68 timeout limit reached not applicable 35 × 35 = 1225 174
2bitAdderMaj 5 / 2 82 timeout limit reached not applicable 40 × 40 = 1600 966
xor5Maj 5 / 1 102 timeout limit reached not applicable 45 × 45 = 2025 2167
parity 16 / 1 150 timeout limit reached not applicable 70 × 70 = 4900 1157

RES [22]

2:1 MUX 3 / 1 9 3 × 5 = 15 < 1 not applicable 5 × 5 = 25 1
XOR 2 / 1 9 4 × 4 = 16 < 1 not applicable 5 × 5 = 25 1
XNOR 2 / 1 11 4 × 5 = 20 < 1 not applicable 6 × 6 = 36 6
Half Adder 2 / 2 14 6 × 5 = 30 3 not applicable 8 × 8 = 64 6
Parity Gen. 3 / 1 18 4 × 8 = 32 5 not applicable 11 × 11 = 121 27
Parity Check. 4 / 1 26 7 × 9 = 63 2365 not applicable 15 × 15 = 225 78
XOR5_R1 5 / 1 40 timeout limit reached not applicable 20 × 20 = 400 155
cm82a 5 / 3 68 timeout limit reached not applicable 50 × 50 = 2500 516
2bitAdderMaj 5 / 2 82 timeout limit reached not applicable 65 × 65 = 4225 3750
xor5Maj 5 / 1 102 timeout limit reached not applicable 75 × 75 = 5625 3912
parity 16 / 1 150 timeout limit reached not applicable 110 × 110 = 12100 7498

I , O and |G| are the number of inputs, outputs and total gates in the logic network, respectively; runtime values are in seconds; the timeout limit is 24h;
w, h and A are the width, height, and resulting area of the layout, respectively; numbers in bold indicate the approach with the least layout area for each
clocking scheme.

[17] N. Pavliček et al., “Tip-induced passivation of dangling bonds on
hydrogenated Si(100)-2×1,” APL, vol. 111, no. 5, p. 053104, 2017.

[18] M. Rashidi et al., “Initiating and Monitoring the Evolution of Single
Electrons Within Atom-Defined Structures,” PRL, vol. 121, p. 166801,
Oct. 2018.

[19] M. D. Vieira et al., “Three-Input NPN Class Gate Library for Atomic
Silicon Quantum Dots,” IEEE Design & Test, 2022.

[20] V. Vankamamidi et al., “Clocking and Cell Placement for QCA,” in
IEEE-NANO, vol. 1, 2006, pp. 343–346.

[21] C. Campos et al., “USE: A Universal, Scalable and Efficient clocking
scheme for QCA,” IEEE TCAD, vol. 35, pp. 513–517, Feb. 2016.

[22] M. Goswami et al., “An Efficient Clocking Scheme for Quantum-dot
Cellular Automata,” Int. J. Electron. Lett., vol. 8, no. 1, pp. 83–96,
2020.

[23] F. Sill Torres et al., “On the Impact of the Synchronization Constraint
and Interconnections in Quantum-dot Cellular Automata,” MICPRO,
vol. 76, pp. 103–109, 2020.

[24] C. Lent and P. Tougaw, “A Device Architecture for Computing with
Quantum Dots,” Proc. IEEE, vol. 85, no. 4, pp. 541–557, 1997.

[25] K. Hennessy and C. S. Lent, “Clocking of Molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[26] F. Sill Torres et al., “Synchronization of Clocked Field-Coupled Cir-
cuits,” in IEEE-NANO, 2018.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[28] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine learning, vol. 8, no.
3–4, pp. 229–256, May 1992.

[29] J. Schulman et al., “Trust Region Policy Optimization,” in ICML, ser.
JMLR Workshop and Conference Proceedings, vol. 37, 2015, pp. 1889–
1897.

[30] S. Huang and S. Ontañón, “A Closer Look at Invalid Action Masking
in Policy Gradient Algorithms,” FLAIRS, vol. 35, May 2022.

[31] N. Mazyavkina et al., “Reinforcement Learning for Combinatorial
Optimization: A Survey,” COR, vol. 134, p. 105400, 2021.

[32] R. Cheng and J. Yan, “On Joint Learning for Solving Placement and
Routing in Chip Design,” NIPS, vol. 34, pp. 16 508–16 519, 2021.

[33] M. Walter et al., “Placement and Routing for Tile-Based Field-Coupled
Nanocomputing Circuits Is NP-Complete (Research Note),” J. Emerg.
Technol. Comput. Syst., vol. 15, no. 3, Apr. 2019.

[34] S. Hofmann et al., “Scalable Physical Design for Silicon Dangling Bond
Logic: How a 45° Turn Prevents the Reinvention of the Wheel,” in IEEE-
NANO, 2023, pp. 872–877.

[35] G. Fontes et al., “Placement and Routing by Overlapping and Merging
QCA Gates,” in ISCAS, 2018, pp. 1–5.

[36] A. Trindade et al., “A Placement and Routing Algorithm for Quantum-
dot Cellular Automata,” in SBCCI, 2016, pp. 1–6.

[37] M. Walter et al., “fiction: An Open Source Framework for the Design
of Field-coupled Nanocomputing Circuits,” 2019.

[38] S. Hofmann et al., “Late Breaking Results From Hybrid Design Au-
tomation for Field-coupled Nanotechnologies,” in DAC, 2023, pp. 1–2.

[39] D. A. Reis et al., “A Methodology for Standard Cell Design for QCA,”
in ISCAS, 2016, pp. 2114–2117.

[40] M. Walter et al., “Verification for Field-coupled Nanocomputing Cir-
cuits,” in DAC, 2020, pp. 1–6.

[41] S. Hofmann et al., “MNT Bench: Benchmarking Software and Layout
Libraries for Field-coupled Nanocomputing,” in DATE, 2024.

	Introduction
	Background
	Field-coupled Nanocomputing
	Quantum-dot Cellular Automata (QCA)
	Silicon Dangling Bonds (SiDBs)
	Technology Constraints

	Reinforcement Learning

	Related Work: Design Automation for Field-coupled Nanocomputing
	Exact Approaches
	Heuristic Approaches
	Semi-automated Approaches

	Hybrid Approach for Placement & Routing
	Netlist Preparation
	Action/Value Networks
	Action Masks
	Expanding Layout Size
	Primary Inputs & Outputs
	1-Input Gates
	2-Input Gates
	Layout Occupation
	Additive Mask Overlay

	Masked Policy
	Wire Routing
	Update Partial Placement
	Premature Termination

	Experiments
	Conclusion
	References

