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Abstract—Microfluidics is an emerging technology for manipu-
lating small amounts of fluids for analytic purposes. Microfluidic
devices, so-called Labs-on-Chip (LoC), have found widespread
applications in medicine, biology, and chemistry. In contrast
to other fields, verification and design automation methods for
microfluidic chips are not yet as developed due to a lack of
common standards. However, recently, there have been new devel-
opments with the introduction of the ISO 22916:2022 standard,
which contains specifications for microfluidic components and
interfaces. In this work, we propose a methodology that, for
the first time, enables automatic validation of microfluidic chip
designs against place and route constraints in the context of
this ISO standard. To this end, we utilize solvers for Satis-
fiability Modulo Theories (SMT). The resulting approach does
not only validate the ISO-compliance of a given design but
also provides tool support for the completion of the design.
The applicability and feasibility of the proposed solution are
demonstrated in a case study inspired by real-world use cases.
An open-source implementation of the resulting tool is available
at https://github.com/cda-tum/mmft-iso-designer.

Index Terms—Microfluidics, ISO 22916:2022, Lab-on-a-Chip,
Validation, Chip Design

I. INTRODUCTION

The field of microfluidics explores fluid behavior and
manipulation at micro- to picoliter sizes [1]. The resulting
miniaturization enables us to minimize, combine, and auto-
mate fluidic processes such as mixing, heating, incubating,
observing, etc., which can replace bulky and costly lab equip-
ment as well as substantially reduce human labor in many
instances. The resulting Labs-on-a-Chip (LoCs) have found
applications in a wide variety of areas in medicine, biology,
and chemistry [2]–[5]. In particular for point-of-care tests
and other diagnostics (such as those recently seen in the
COVID-19 pandemic), microfluidic devices are the “go-to”
technology [6], [7].

Despite these successes, the methods to properly design
those devices are still not as sophisticated as we take for
granted, e.g., in the design of electrical circuits and systems.
Although in the past years, several methods for automating
design and validation steps such as microfluidic network
generation and dimensioning [8]–[10], optimizing flow-based
devices [11]–[13], routing microfluidic channels [14]–[18], de-
sign automation for electrowetting [19]–[23], and frameworks
such as Columba S [24], OpenDrop [25], and for the design
of digital microfluidic biochips [26], etc. have been proposed,
most of them have not found their way into the microfluidic
community and practice yet. In fact, the established way of
designing a new microfluidic device still mostly relies on
manual work [27].

This rather unsatisfactory situation may have different rea-
sons; however, a rather weak link between the design au-
tomation community and the microfluidics community, as well
as a lack of standards that connect both domains, certainly
rank among the top. For channel-based devices [28], this
situation changed recently. Here, the lack of interoperability
when combining microfluidic components has become a press-
ing issue due to the diversity of possible applications, tech-
nologies, and materials. Motivated by that, an ISO standard
(namely ISO 22916:2022 [29]) was introduced to address this
issue.

For the first time, this standard provides a common under-
standing and specifications of how microfluidic components
are put together, constituting the basis for more complex
and powerful designs. At the same time, it also leads to
substantially more complex design tasks and, hence, makes
design automation methods inevitable. However, this standard
encapsulates many concepts, entities, and constraints that need
to be considered when designing such devices, for example,
with regard to the dimensions of components [30]. Moreover,
the placement of modules and routing of microfluidic channels
impose further geometrical constraints, such as minimal dis-
tances. It is not trivial and cumbersome to manually validate
that all of these requirements are met, and, due to the novelty
of the standard, tooling support is still lacking.

In this work, we introduce an approach that automatically
validates whether a given chip design not only adheres to
relevant aspects of the ISO standard but also whether the
placement and routing of modules and channels are valid with
respect to their geometric properties. To this end, we employ
an approach using Satisfiability Modulo Theories (SMT, [31]),
where all relevant geometric properties are modeled as SMT
constraints. Consequently, an SMT solver is able to automat-
ically validate that a given design is indeed compliant with
this standard or, if this is not the case, pinpoint the designer
to the violating components. Moreover, the resulting approach
can easily be extended to a tool that assists the designer in
the completion of a chip design from a partial specification,
automating parts of the placement and routing tasks. To assess
and demonstrate the feasibility of the suggested methodology,
we tested the resulting tool in scenarios that were inspired
from real-world use cases.

The remainder of this paper is structured as follows: In
Sec. II, we review the ISO 22916 standard as well as the
resulting design task and outline the general idea of the pro-
posed approach. Then, Sec. III provides detailed descriptions
of the necessary encodings, while Sec. IV summarizes the
implementation of the resulting tool. In Sec. V, we showcase
the application of the resulting approach and discuss how this
improves the design flow. Finally, we summarize our work in
Sec. VI.

II. MOTIVATION AND GENERAL IDEA
This section first reviews the ISO 22916 standard and briefly

discusses the consequences and tasks that result from that for
the design of microfluidic devices. Afterwards, motivated by
that, we propose the general idea of a validation and design
automation solution that aids the designer in these tasks.
A. The ISO 22916 Standard and Resulting Design Task

The ISO 22916:2022 standard has been defined by the In-
ternational Organization for Standardization and is supposed
to provide a standardized description for microfludic devices
consisting of a main chip board and multiple modules that
are placed on top of the board, as illustrated in Fig. 1. More
precisely:

a) Main Chip Board: The board is the main chip, where
modules are placed and channels are routed inside. Its dimen-
sions, i.e., its board width and board height (cf. Fig. 1b), are
predetermined according to the ISO 22916 standard in order to
ensure compatibility with certain laboratory equipment, such
as microscopes.
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(a) Overview

(b) Module and channel geometry

Fig. 1: Microfluidic chip with modules

b) Modules: Modules have a predetermined width and
height (again, restricted by the ISO standard), as indicated
in Fig. 1b, and are placed on top of the main chip board.
Furthermore, each module can be oriented along the axes in
four possible directions. Additionally, each module must obey
minimal spacing with respect to the board’s boundaries and
other modules (illustrated in Fig. 1b).

c) Ports: Each module may have several ports, which
need to have a cleared perimeter without obstacles in order
to be cleanly connected to the main board. Generally, this
requires that a square with a predefined area be set around
the port opening where no other ports or modules occur. The
positions of these ports are spread across the module on a
uniform grid (depicted in Fig. 1b). The distance between two
ports on the grid is called the port pitch.

d) Channels: Obviously, the ports of modules are sup-
posed to be connected with microfluidic channels that are
located in the channel layer inside the main chip board
(cf. Fig. 1a). More precisely, each channel connects a prede-
termined pair of ports. Although the shape and dimensions of
channels are not covered by the ISO standard, some practical
constraints are imposed by them as well: Channels have a
certain width and required minimum spacing (illustrated in
Fig. 1b), i.e., the area around each channel where no other
channels may be routed and the minimum distance to the chip
boundaries is restricted. The path of a channel has a rectilinear
shape, i.e., only horizontal and vertical segments are allowed.
Each channel consists of multiple waypoints, i.e., intermediate
points of channel segments (cf. Fig. 1b). Since there is only
one routing layer, channels cannot cross each other. Finally,
each channel may have an upper bound for its length.

Following this standard and the resulting practical con-
straints, the objective of the designer is now to fit all modules
as well as all channels onto the chip while, at the same time,
abiding by all of the specifications and restrictions reviewed
above. This is typically done in an iterative fashion. For
example, the designer first places the modules and, afterwards,
tries to connect them with the corresponding channels. While
doing that, they frequently work with partial designs, need

to move components around, and try to “wiggle” everything
together until a complete design results. While that alone is
a tedious task, constantly checking for compliance with the
ISO standard adds an additional burden. Tool support that
automatically covers these checks, i.e., validates whether the
current (partial) design still is ISO-compliant (and maybe even
assists in completing partial designs, e.g., by automatically
realizing missing channel connections), would constitute a
substantial improvement of this process. In this work, we
propose an approach that provides such tool support.
B. General Idea

The main idea behind the proposed approach is based on
solvers for Satisfiability Modulo Theories (SMT, [31]). More
precisely, all entities, specifications, and constraints introduced
in the previous section are encoded as SMT constraints. To
that end, geometrical quantities such as coordinates, dimen-
sions, and distances are represented as integers on a µm
scale, whereas variants of entities such as module orientation
or channel direction are encoded as enums, i.e., bitvectors.
Consequently, the aforementioned constraints result in a large
equation system, factoring in module placements, channel
routings, etc.

The most important advantage of using an SMT solver is
that the encoded variables can be assigned to an arbitrary
degree. This can be used to provide tool support for the
following scenarios:

1) Design validation (complete assignment): All modules
are already placed and the channels are explicitly routed
with fixed waypoints, i.e., all variables are assigned a
definitive value. Then, the solver determines whether the
imposed design introduces any violations of the design
constraints. In other words, it validates that indeed all
design specifications are satisfied and the resulting chip
is compliant to the ISO standard.

2) Design completion (partial assignment): Only a subset
of variables is assigned, while others are left unassigned
(e.g., channel waypoints, and thus the channels’ paths
are not predetermined). Then, the solver attempts to find
a model that satisfies all constraints. If this succeeds,
it effectively completes the design according to the
partial specification while, at the same time, ensures that
the resulting solution satisfies all specifications and is
compliant to the ISO standard.

In both cases, if such a design exists, one ends up with a
fully specified microfluidic chip design, with the certainty that
indeed all relevant placement, routing, and ISO constraints are
satisfied. If not, it is shown that a violation exists (to which
the designer is explicitly pinpointed to). Overall, this provide
great assistance during the design process.

III. SMT ENCODING
Obviously, the core of the proposed idea is the encoding of

all ISO- and design-constraints in terms of an SMT formu-
lation. In this section, we introduce the necessary constraints
and computations for the main chip board, the modules, and
the channels. This eventually results in an implementation that
can be used for validation and design completion as proposed
above.
A. Chip Board Constraints

The basic dimensions, i.e., the width bw and the height bh
(depicted in Fig. 2), of the main chip board are imposed by
ISO 22916, leading to a series of constraints in the form of∨

bw = v1 ∧ bh = v2, (1)

where v1 and v2 are placeholders for possible values allowed
within the standard, which can be found in [29].
B. Module Constraints

On the chip board, there are modules mi with 0 ≤ i < mn
where mn is the total number of modules. Their characteriza-
tion and the resulting constraints are explored in the following,
all of which are also illustrated in Fig. 2.



Fig. 2: Module constraints

a) Position: Every module mi’s position is defined by
its left-lower corner point (mi

x,m
i
y) (denoted by the purple

point in Fig. 2).
b) Orientation: Every module mi has a certain orien-

tation mi
o, i.e., either up (mi

o = U, the default), right (R),
down (D), or left (L). As an example, mj

o = U and mj
o = R

orientations are depicted for mj in red and blue in Fig. 2.
c) Dimensions: A module has a fixed width mi

w and
height mi

h, both of which must be a multiple of 15mm, i.e.,

∃n > 0,m > 0 : mi
w = 15000n ∧mi

h = 15000m. (2)

Without changing orientation, this defined the module’s span
(mi

spanx and mi
spany , as indicated in orange for mi in Fig. 2)

on the board. However, if the module is rotated to the side,
its width and height swap (as previously illustrated by the
orientation example)1, i.e.,

mi
spanx =

{
mi

w, if mi
o = U | D

mi
h, if mi

o = R | L

mi
spany =

{
mi

h, if mi
o = U | D

mi
w, if mi

o = R | L

. (3)

d) Spacing Constraints: Modules must keep a certain
minimum distance mi

sp to the board edges and to other
modules, i.e.,

• all of the depicted boundary constraints (brown in Fig. 2)
must be satisfied and

• at least one of the mutual separation constraints (teal in
Fig. 2) must be satisfied
e) Port Pitch: As introduced in Sec. II, each module

has a set of ports distributed on a uniform grid. The distance
between ports, the port pitch mi

p (illustrated in gray in Fig. 2),
must be a multiple of 1.5mm, i.e.,

∃n > 0 : mi
p = 1500n. (4)

f) Port Position: In order to define the positions of the
ports, the total number of ports in both directions (mi

px and
mi

py) with respect to the grid can be precomputed in advance
by

mi
px =

⌊
mi

w

mi
p

⌋
− 1, mi

py =

⌊
mi

h

mi
p

⌋
− 1. (5)

1As a shorthand notation, we write x = U |D for x = U ∨ x = D.

Then, the offsets in both directions (mi
offx and mi

offy as
depicted in olive in Fig. 2) between the module edges and
the first port are also precomputed by

mi
offx =

⌊
mi

w−mi
p(m

i
px−1)

2

⌋
, mi

offy =

⌊
mi

h−mi
p(m

i
py−1)

2

⌋
. (6)

Finally, the port position coordinates (pijkx , pijky ) depend on
the position and orientation of the module, where j, k with
0 ≤ j < mi

px and 0 ≤ k < mi
py are the indices of the port on

the grid (as an example, pi,1,1 is depicted in cyan in Fig. 2),
i.e.,

pijkx =


mi

x +mi
offx + j ·mi

p, if mi
o = U

mi
x +mi

offy + k ·mi
p, if mi

o = R
mi

x +mi
w −mi

offx − j ·mi
p, if mi

o = D
mi

x +mi
h −mi

offy − k ·mi
p, if mi

o = L

pijky =


mi

y +mi
offy + k ·mi

p, if mi
o = U

mi
y +mi

w −mi
offx − j ·mi

p, if mi
o = R

mi
y +mi

h −mi
offy − k ·mi

p, if mi
o = D

mi
y +mi

offx + j ·mi
p, if mi

o = L

. (7)

C. Channel Constraints
In this section, the characterization of channels and the

resulting constraints are explained, and also illustrated in
Fig. 3. Each channel ci consists of a sequence of segments sij
with 0 ≤ j < sin (where sin is the total number of seg-
ments of ci) and waypoints wik with 0 ≤ k ≤ sin. More
precisely, each waypoint consists of its two coordinates, i.e.,
wik = (wik

x , wik
y ). Each two consecutive waypoints denote the

endpoints of a segment, e.g., in Fig. 3 waypoints wi,1 and wi,2

(in red) are the endpoints of si,1 (in blue).
a) Inactive Segments: In many cases it is not desireable

that a channel uses all of its sin segments, as it could be shorter
with fewer waypoints. The following mechanism ensures that
each channel may be composed of any number of segments
between 0 and sin: Each segment can be active (sika = true)
or inactive (sika = false). If a segment is inactive, both of its
endpoints collapse into one, i.e.,

¬sika ⇔ wi,k
x = wi,k+1

x ∧ wi,k
y = wi,k+1

y . (8)

For example, in Fig. 3, wi,3 and wi,4 (in orange) collapse into
the same point since si,3 (in teal) is inactive. Finally, inactive
segments should only occur consecutively towards the end of
the channel, i.e.,

∀k > 0 : ¬si,k−1
a ⇒ ¬si,ka . (9)

b) Segment Types: Additionally, each channel segment
has a type sijt defining its orientation. Not only are they
characterized into horizontal and vertical segments, but also
by whether they run in positive or negative direction, resulting
in four different types: right (R, positive x direction), up (U,
positive y direction), left (L, negative x direction), and down
(D, negative y direction). As an example, Fig. 3 contains
right-oriented segment si,1 (in blue) and upward segment
si,2 (in brown). This distinction is in effect only for active
segments, i.e.,

sika ⇒
(
sikt = U ⇔ wi,k

x = wi,k+1
x ∧ wi,k

y < wi,k+1
y

)
∧(

sikt = R ⇔ wi,k
x < wi,k+1

x ∧ wi,k
y = wi,k+1

y

)
∧(

sikt = D ⇔ wi,k
x = wi,k+1

x ∧ wi,k
y > wi,k+1

y

)
∧(

sikt = L ⇔ wi,k
x > wi,k+1

x ∧ wi,k
y = wi,k+1

y

)
.

(10)



Fig. 3: Channel constraints

Finally, consecutive segments of the same channel should
alternate between horizontal and vertical types1, i.e.,

∀k > 0 : sika ⇒
(
si,kt = U | D ⇒ ¬

(
si,k−1
t = U |D

))
∧(

si,kt = R | L ⇒ ¬
(
si,k−1
t = R |L

))
.

(11)

c) Waypoint Distance to Boundaries: Each waypoint
must be sufficiently far away from the edges of the chip in
order to guarantee that the channel’s spacing constraint is not
violated (illustrated in Fig. 3 by the purple arrows), i.e.,

ciw
2

+ cisp ≤ wik
x ,

ciw
2

+ cisp ≤ wik
y ,

wik
x +

ciw
2

+ cisp ≤ bw, wik
y +

ciw
2

+ cisp ≤ bh,

(12)

where ciw is the channel width and cisp is the channel spacing
(as depicted in Fig. 3 as cjw in red and cjsp in blue).

d) Segment Crossing: Any two segments of arbitrary
channels must never cross each other. To avoid that, we first
define a no crossing predicate ¬cr that yields true only if
the interiors of two orthogonal segments do not intersect (cf.
Fig. 3), i.e.,

¬cr (ax1, ax2, ay, bx, by1, by2) :=
ax2 ≤ bx ∨ ax1 ≥ bx ∨ by2 ≤ ay ∨ by1 ≥ ay, (13)

where a is a horizontal segment with ax1 < ax2 and b is a
vertical segment with by1 < by2

2. By employing this predicate
to all pairs of segments that actually can collide, i.e, active
segments in orthogonal position, it is ensured that no segment
crossings occur3, i.e.,

sika ∧ sjla ⇒
(
sikt = U ∧ sjlt = R ⇒ ¬cr

(
wik

y , wi,k+1
y , wik

x , wjl
y , w

jl
x , w

j,l+1
x

))
∧(

sikt = U ∧ sjlt = L ⇒ ¬cr
(
wik

y , wi,k+1
y , wik

x , wjl
y , w

j,l+1
x , wjl

x

))
∧

. . .

∧
(
sikt = L ∧ sjlt = D ⇒ ¬cr

(
wi,k+1

x , wik
x , wik

y , wjl
x , w

j,l+1
y , wjl

y

))
.

(14)

e) Waypoint Spacing Constraints Towards Segments:
Waypoints must have a certain distance to any channel segment
in order to ensure that channel spacing constraints are not
violated. To this end, we define the point-segment distance

2Note that the axes can be swapped here.
3Some analogous terms are omitted due to lack of space.

predicate psd that yields true only if a point p has a minimum
axis-aligned distance d from a segment s, i.e.,

psd(px, py, sx1, sx2, sy, d) :=

px ≤ sx1 ∨ px ≤ sx2 ∨ py + d ≤ sy ∨ sy + d ≤ py (15)

where s is a horizontal segment with sx1 < sx2 (a graphic
example is illustrated in Fig. 3)2. Again, this predicate is
applied to all pairings of active segments and waypoints, and
the minimum required distance dij (illustrated by the olive
arrows in Fig. 3) is computed from both involved channels’
width ciw, cjw and spacing cisp, cjsp, i.e.,

sika ⇒
(
sikt = U ⇒ psd

(
wjl

y , w
jl
x , w

ik
y , wi,k+1

y , wik
x , dij

))
∧(

sikt = D ⇒ psd
(
wjl

y , w
jl
x , w

i,k+1
y , wik

y , wik
x , dij

))
∧(

sikt = R ⇒ psd
(
wjl

x , w
jl
y , w

ik
x , wi,k+1

x , wik
y , dij

))
∧(

sikt = L ⇒ psd
(
wjl

x , w
jl
y , w

i,k+1
x , wik

x , wik
y , dij

)) (16)

with

dij :=

⌈
ciw + cjw

2

⌉
+max{cisp, cjsp}. (17)

f) Waypoint Spacing Constraints Towards Waypoints:
Similarly, waypoints must have a certain minimum distance
to other waypoints. The point-point distance predicate ppd
(illustrated in Fig. 3)2 guarantees that points a and b have a
minimum axis-aligned distance of d, i.e.,

ppd(ax, ay, bx, by, d) :=

ax + d ≤ bx ∨ ay + d ≤ by ∨ bx + d ≤ ax ∨ by + d ≤ ay.
(18)

Once again, is applied to all pairs of waypoints. However, for
pairs belonging to the same channel, one must exclude cases
where waypoints collapse due to inactive segments, i.e., where
a waypoint is the second endpoint of an inactive segment. This
results in

ppd(wik
x , wik

y , wjl
x , w

jl
y , dij) if i ̸= j (19)

si,k−1
a ⇒ ppd(wik

x , wik
y , wil

x , w
il
y , dij) if i = j ∧ k > l (20)

with dij identical to the previously defined Eq. 17.
g) Port Connections: The first waypoint wi,0 and last

waypoint wi,sin of a channel are each assigned to their corre-
sponding port position (cf. Eq. 7), i.e.,

wi,0
x = pam,ax,ay

x , wi,0
y = pam,ax,ay

y ,

w
i,sin
x = pbm,bx,by

x , w
i,sin
y = pbm,bx,by

y

(21)

where am and bm denote the indices of the start and end
modules of this channel, respectively. Correspondingly, ax, ay ,
bx and by denote indices of the start and end ports on each
module. As an example, endpoints wi,0 (in cyan) and wi,4 (in
orange) are illustrated in Fig. 3.

h) Upper Bound for Channel Length: Finally, the chan-
nel length, i.e., the sum of all of its segment lengths, must
satisfy an upper bound cil , i.e.,∑

j>0

(
|wij

x − wi,j−1
x |+ |wij

y − wi,j−1
y |

)
≤ cil. (22)



IV. RESULTING TOOL
Following the general idea and the encodings proposed

above, we implemented a tool that aids microfluidic designers
in the validation and design completion of ISO-compliant
chips. To this end, we utilized the Z3 Theorem Prover [31] as
an SMT solver. Using the corresponding interfaces, almost all
the constraints and equations provided above can be directly
supplied to this solver. Exceptions are some variables that need
to be computed in advance since their terms are non-linear
(e.g., Eq. 6). In these cases, only the resulting value is supplied
to the solver.

Using this implementation, a tool results that can be used
for the two scenarios discussed in Sec. II-B, namely:

1) For validating whether a design is ISO-compliant, all
variables introduced in Sec. III (with the exception of
channel segment parameters that can be derived in a
straightforward fashion, e.g., sija and sijt ) are assigned
a precise value based on the respectively considered
design. Then, the solver will determine whether the
resulting equation system is indeed satisfiable. If this
is the case, the design has been proven to satisfy all
ISO constraints; otherwise, the solver determines what
constraint(s) have been violated, which can be directly
“translated” back to the design and, hence, be used to
pinpoint the designer to the design components that are
not compliant.

2) For completing a design, one can also leave variables
(representing components that have not been completed
yet) unassigned. Then, the solver tries to determine an
assignment for those remaining ones (of course, while
keeping all constraints satisfied). If this succeeds, an
ISO-compliant completion of the design can be obtained
from the resulting assignments. If not, the partial or
incomplete design already includes some components
that render the generation of an ISO-compliant design
impossible.

An open-source implementation of the resulting tool is
available at https://github.com/cda-tum/mmft-iso-designer.

V. APPLICATION
In order to evaluate (and eventually demonstrate) that the

proposed method indeed provides assistance that improves the
design process, we applied the tool described above to several
use cases inspired by real-world settings, which confirmed
the benefits of the endeavor described in the paper. In this
section, we provide a summary of a representative subset of
the conducted case studies. To this end, we first summarize the
characteristics of the considered designs. Afterwards, we cover
the application for ISO validation and design completion.

A. Considered Microfluidic Designs
In the following, we present results obtained from our case

study of three chip designs that were inspired by corresponding
real-world use cases [5], [30]—eventually resulting in designs
including 3 to 9 modules and 10 to 24 channels, as well
as different complexities with respect to channel length, port
positions, etc. Those designs are denoted Design 1-3 in the
following.

Using these designs, validation tasks and design completion
tasks have been considered. For the former, violations of the
constraints have been introduced into the designs to evaluate
whether they are detected and how the designer is supported
in this case. For the latter, some module positions, module
orientations, and/or channels (i.e., their waypoints) have been
removed to evaluate how the designer is supported in the
“completion” of the resulting designs.

B. Validation
Table I summarizes the (representative subset of) results

obtained when considering the validation of ISO-compliance.
The first three columns provide the name and characteristics
of the considered design. Then, it is denoted whether the
corresponding design has been validated as ISO-compliant or

TABLE I: Validation cases

Design Modules Channels Valid Violations Time
V1 V2 V3 V4 [s]

1 3 10 ✓ 0.38
✗ 0.11

✗ 0.31
✗ 0.35

✗ 0.38
2 3 15 ✓ 1.78

✗ 0.19
✗ 1.45

✗ 1.69
✗ 1.56

3 9 24 ✓ 6.98
✗ 0.68

✗ 3.81
✗ 5.12

✗ ✗ 5.43

Fig. 4: Violation of constraints for chip 3

whether a violation has been detected. Finally, the last column
provides the runtime (in seconds) of the validation process.

As can easily be seen, the validation of the original
ISO-compliant designs can be conducted in moderate runtime
(i.e., a few seconds). Obviously, the runtime increases with
the size of the designs. But for current settings and the
complexities of real-word use cases, this does not constitute
a limitation. That alone provides a substantial benefit since
designers do not have to manually check for ISO-compliance
anymore.

Moreover, in the case of ISO violations, substantial support
is provided. This has been evaluated by introducing violations
of the constraints into the design. More precisely, we consid-
ered

• violations of module spacing (denoted V1),
• violations of channel spacing (denoted V2),
• intersections of channels (denoted V3), and
• violations of channel lengths (denoted V4).

Table I again confirms that those violations can be detected
within a few seconds as well.

In addition to that, designers are also explicitly pinpointed to
the corresponding violations. This is exemplarily showcased in
Fig. 4 for Design 3. Here, a channel length violation as well
as a channel spacing violation exist. Thus far (i.e., without
the proposed tool), the designer needed to consider the entire
board, including all modules, ports, as well as channels, and
manually check for any violations. With the proposed tool,
they are directly pinpointed to the violations (highlighted red
in Fig. 4)—a substantial improvement of the current design
process.

C. Design Completion
Table II summarizes the (representative subset of) results

obtained when considering the completion of ISO-compliant
designs. To “emulate” intermediate but incomplete designs,
which may have resulted during the design phase, we removed
some module positions, module orientations, and/or channels
(i.e., their waypoints). The first columns of Table II indicate
the resulting cases (providing the number of given as well
as generated module placements, module orientations, and

https://github.com/cda-tum/mmft-iso-designer


TABLE II: Design generation cases
Design Modules Channels Timeplacement

given
orientation

given
∑

given generated
∑

[s]

1 3 3 3 0 10 10 3.29
0 3 3 0 10 10 4.93
0 0 3 0 10 10 19.06

2 3 3 3 5 10 15 7.22
3 3 3 0 15 15 17.82
0 3 3 0 15 15 40.17
0 0 3 0 15 15 767.95

3 9 9 9 12 12 24 35.10
9 9 9 0 24 24 613.96
7 9 9 0 24 24 417.46
4 9 9 0 24 24 627.51

channel placements). Finally, the last column again provides
the runtime (in seconds) of the design completion process.

The results clearly show that design completion is a compu-
tationally significantly more complex task. This is no surprise;
after all, the overall design task is an NP-hard endeavor [32].
But despite that, the proposed tool offers substantial value
(at least for the design sizes currently considered in the
microfluidic community). For smaller designs (such as De-
sign 1), the entire design can be automatically generated in
less than a minute (cf. the case in Table II, where no module
placements, module orientations, or channels are given). For
larger designs, this might not be feasible at some point. But
here, too, the designer still gets substantial assistance. More
precisely, following the currently established iterative design
process as reviewed in Section II-B, they can make first or
obvious design decisions by themselves and, then, let the
tool complete the design. In particular, for the final steps in
which the designers need to “wiggle” everything together,
this provides important support. Of course, all this design
completion assistance always guarantees compliance with the
ISO standard and, if violations occur, pinpoints the designer
to the corresponding problem.

VI. CONCLUSION
In this work, we presented a method for the validation

of microfluidic chip designs that conform to the ISO 22916
standard. In order to achieve this objective, we converted
the criteria mandated by the standard and further geometric
constraints imposed by them into SMT constraints. Subse-
quently, an SMT solver was employed to prove that a specific
chip design effectively satisfies the given criteria. Additionally,
the resulting implementation can be used to complete a chip
design from a partial specification. Through a case study
covering microfluidic chip designs inspired by real-world use
cases (such as [5], [30]), we demonstrated how the resulting
tool substantially improves the design process for microfluidic
chips.
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