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Quantum error correction is crucial for scalable quantum information processing applications. Traditional
discrete-variable quantum codes that use multiple two-level systems to encode logical information can be
hardware-intensive. An alternative approach is provided by bosonic codes, which use the infinite-dimensional
Hilbert space of harmonic oscillators to encode quantum information. Two promising features of bosonic codes
are that syndrome measurements are natively analog and that they can be concatenated with discrete-variable
codes. In this work, we propose novel decoding methods that explicitly exploit the analog syndrome information
obtained from the bosonic qubit readout in a concatenated architecture. Our methods are versatile and can be
generally applied to any bosonic code concatenated with a quantum low-density parity-check (QLDPC) code.
Furthermore, we introduce the concept of quasi-single-shot protocols as a novel approach that significantly re-
duces the number of repeated syndrome measurements required when decoding under phenomenological noise.
To realize the protocol, we present a first implementation of time-domain decoding with the overlapping win-
dow method for general QLDPC codes, and a novel analog single-shot decoding method. Our results lay the
foundation for general decoding algorithms using analog information and demonstrate promising results in the
direction of fault-tolerant quantum computation with concatenated bosonic-QLDPC codes.

I. INTRODUCTION

For quantum computing, an important design consideration
is the choice of technology employed to physically realize
qubits. A standard approach is to engineer discrete variable
(DV) qubits, where the basis states are defined by two dis-
tinct energy levels of the quantum system. Examples include
ion-trap qubits [1, 2], superconducting qubits [3], and spin
qubits [4, 5]. However, discrete variable qubits pose chal-
lenges, primarily in the intricate task of effectively isolating
the two-level encoding from external influences that introduce
errors. There is substantial evidence that, in the absence of er-
ror suppression methods, the coherence of quantum circuits
is limited to at most a logarithmic depth [6, 7], which repre-
sents a challenge for near-term quantum computing. To sup-
press qubit errors, we can resort to notions of quantum error
correction (QEC). The goal of QEC is to harness entangle-
ment to redundantly encode quantum information in the log-
ical qubit state of a larger physical Hilbert space, albeit to
the extent of substantial overhead. The QEC encoding pro-
vides the system with additional degrees of freedom that can
be used to detect and correct errors in real-time. Beyond the
initial encoding, full QEC protocols must incorporate logical
gates that allow the encoded quantum information to be ma-
nipulated in a fault-tolerant way. This provides the ability to
compute fault-tolerantly, whilst keeping the system protected
against local noise. Moreover, given a (potentially corrupted)
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encoded state, a central task is to check whether errors oc-
curred on the encoded information, and if so to decode, i.e.,
to computationally derive a suitable recovery operation to re-
store an error-free state. Identifying and realizing feasible and
practical schemes for fault-tolerant operation remains one of
the core challenges of quantum computing – both in experi-
ment and in theory.

On the highest level, both discrete variable and continuous
variable (CV) codes for quantum error correction have been
considered in the literature and are seen as candidates for fea-
sible quantum codes. The latter offer some compelling ad-
vantages for a number of platforms, notably for cat codes [8]
and Gottesman-Kitaev-Preskill (GKP) codes [9]. That said,
there are also some challenges that are unique to the contin-
uous variable setting. In particular, it is not obvious how to
do decoding in light of continuous syndrome information, as
it is not clear how to make use of continuous information in
this task. For example, the development of good decoders
for GKP codes constitutes a well-known technical challenge.
The lack of good methods of decoding for quantum error-
correcting codes with a continuous component can be seen
as a roadblock in the field.

In this work, we report substantial progress on the partial
use of continuous syndrome information in the notions of
quantum error correction. In this way, we aim to bring the
advantages of DV and CV quantum error correction closer
together. To this end, we explore the combination of two
promising classes of codes, instances of bosonic codes and
quantum low-density parity-check (LDPC) codes, and inves-
tigate suitable decoding protocols for general bosonic-LDPC
constructions that make such partial use of analog informa-
tion. To further motivate this combination and to show how
continuous syndrome information comes into play, we give a
brief overview in the following.
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a. Bosonic qubits. Bosonic encodings offer an alterna-
tive to DV qubits [10, 11]. In this approach, the logical qubit
state is non-locally embedded within the phase space of an
infinite-dimensional quantum harmonic oscillator. The prin-
cipal advantage of using bosonic qubits is that the infinite-
dimensional Hilbert space provides the redundancy needed to
correct physical oscillator errors. Consequently, bosonic en-
codings can be interpreted as intrinsic QEC protocols at the
individual qubit level. In principle, this provides an efficient
route to fault tolerance, and bosonic codes have been exten-
sively explored using protocols such as GKP codes [9] and
cat codes [8].

Similarly to discrete variable qubits, multiple bosonic
qubits can be combined via a QEC code to create a logical
state. This strategy is usually referred to as a concatenated
bosonic code: at the inner level, the individual qubits are
protected by their bosonic encoding, and at the outer level,
the bosonic qubits are wired together to form a logical state.
Concatenated codes therefore combine the benefits of both
bosonic and discrete variable QEC codes.

Another appealing feature of various bosonic codes is that
they can be precisely tuned to exhibit noise asymmetry in their
qubit-level error model. For example, recent experiments have
shown that cat code qubits can be engineered to have phase-
flip rates that dominate over bit-flips by almost three orders of
magnitude [12, 13]. In a concatenated bosonic code, highly
biased inner-level qubits can reduce the overhead required by
the outer code. For example, in recent work by Darmawan et
al. [14], it is proposed that cat code qubits can be concatenated
with the XZZX code [15], an instance of a surface code mod-
ified by Clifford conjugations that has extremely high thresh-
olds in the limit of large bias [16].

b. Concatenated bosonic codes. To date, most stud-
ies of bosonic codes have focused on their concatenation
with repetition codes [17–21] or two-dimensional topologi-
cal codes [14, 22–24]. Such codes are favored for near-term
experiments because they require only nearest-neighbor in-
teractions. This facilitates their implementation on a two-
dimensional array of qubits, making them particularly suitable
for architectures such as superconducting qubits. However,
from an information theoretical standpoint, two-dimensional
topological codes may be seen as being far from optimal. The
main drawback lies in their poor rate: the surface code, for
instance, encodes only a single logical qubit per patch. This
means that increasing the surface code distance comes at the
expense of the encoding density. This is in stark contrast to
the efficiency of contemporary classical error correction pro-
tocols. In particular, numerous classical communication tech-
nologies employ LDPC codes. Such codes have the advan-
tage of preserving a constant encoding density even as the
code distance is scaled. Moreover, it has been shown that in
the asymptotic limit, LDPC codes can approach the Shannon
bound, which represents the theoretical limit on the rate of
information transfer through a noisy channel.

c. Low-density parity-check quantum codes. Until re-
cently, it was an open question as to whether quantum LDPC
(QLDPC) codes with good parameter scaling comparable to
their classical counterparts exist. This question has recently

been answered in the affirmative via a series of theoretical
breakthroughs [25–29]. Central to these innovations has been
the use of sophisticated product constructions that provide
procedures for transforming classical LDPC codes into quan-
tum codes. The resulting QLDPC codes exhibit constant en-
coding rates and distances that scale proportionally with the
length of the code.

Implementing QLDPC codes poses greater challenges than
their planar counterparts. Several no-go theorems indicate
that implementing (good) QLDPC codes will not be possi-
ble in two-dimensional geometrically local architectures [30–
34]: they must necessarily involve geometrically non-local
connections. Nonetheless, various qubit technologies are be-
ing developed that enable long-range interactions needed to
implement QLDPC codes [35–39]. In this setting, QLDPC
codes promise quantum computation with considerably re-
duced overhead compared to the surface code [35, 40].

In Ref. [24], Raveendran et al. explored the concatenation
of GKP bosonic qubits with QLDPC codes based on the lifted
product construction [41]. Their results show that there are
distinct advantages to using a concatenated bosonic code over
directly implementing a QLDPC code with discrete variable
qubits. Specifically, it is possible to feed forward analog in-
formation from the GKP qubit readout to improve the perfor-
mance of the outer code’s decoder. This leads to improved er-
ror suppression beyond what is achievable with discrete vari-
able qubits alone.

In light of this promising line of research on concatenated
bosonic codes, we focus on QEC protocols constructed from
bosonic-LDPC codes in a general fashion, assuming only that
the inner code provides analog syndrome readout and possi-
bly a noise bias and that the outer code is an arbitrary quan-
tum LDPC code. We focus on the decoding of such codes
and demonstrate that, by combining their properties, we ob-
tain high-performance QEC protocols.

A. Overview of contributions

In this work, we develop methods for the decoding and
analysis of concatenated bosonic-LDPC codes. To this end,
our primary test bed is a protocol in which cat code qubits
(inner code) are concatenated with the three-dimensional sur-
face code (outer code). We choose to focus on the three-
dimensional surface code as it is perhaps the simplest exam-
ple of a QLDPC code that extends upon the capabilities of the
standard two-dimensional surface code. From an implemen-
tation perspective, three-dimensional surface codes can be re-
alized with relatively few long-range connections in two and
completely locally in three dimensions [42]. Suitable exper-
imental platforms for implementing three-dimensional codes
include architectures with photonic links or neutral atom ar-
rays [37, 38]. For comparison, the concatenated lifted prod-
uct schemes of Ref. [24] require arbitrary qubit connectiv-
ity in general. Another distinguishing feature of the three-
dimensional surface code is the fact that it has a transversal
CCZ gate [42]. This leaves it fully equipped for universal
quantum computation without the need for resource-intensive
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FIG. 1. Overview of our main techniques. (a) We investigate QLDPC codes concatenated with cat qubits encoded in coherent states of a
harmonic oscillator. (b) An important property of cat qubits, in addition to their biased noise model, is that the syndrome information obtained
from qubit readout is intrinsically analog-valued, as the wavefunction of a coherent state is a Gaussian centered at α. (c) Depending on the
measured value xm during (quadrature) readout, we can assign an outcome-dependent error probability p(xm) that is a function of the size of
the cat qubit α2. (d) We incorporate the analog information obtained during the syndrome measurements into a Tanner graph construction that
we refer to as an analog Tanner graph (ATG). The ATG stores the analog syndrome information directly in the factor graph used for decoding.
We show that the ATG construction can be adapted to work with decoding strategies such as (e) single-shot shot decoding and (f) overlapping
window time-domain decoding.

magic state injection.

We introduce a novel decoding method, analog Tanner
graph decoding (ATD), which makes use of the analog read-
out information from the bosonic qubits. Our numerical sim-
ulations show that this leads to improved thresholds for de-
coding with the three-dimensional surface codes. Further-
more, we demonstrate that using ATD, the number of repeti-
tions required by the non-single-shot component of the three-
dimensional surface codes can be reduced to a small number.
In this setting, we refer to three-dimensional surface codes as
being quasi-single shot. Finally, this paper is accompanied
by open-source software tools that facilitate the reproduction
and extension of our analysis of concatenated bosonic-LDPC
codes and provide means to automatically conduct respective
numerical simulations. Our results are summarized in more
detail below:

a. Analog Tanner graph decoding. Fundamentally, in
discrete-variable QEC, the syndromes obtained from stabi-
lizer measurements are discrete, although readout techniques
can yield an analog value. This stands in contrast to bosonic
qubits, where measurements yield analog outcomes due to the
infinite-dimensional Hilbert space. The strength of the analog
readout can be used to assign an uncertainty associated with
the measurement. Syndromes derived from analog bosonic
readout are termed analog syndromes. The analog Tanner

graph decoder (ATD) we introduce in this work provides a
method for mapping analog syndromes to a belief propaga-
tion decoder, sketched in Fig. 1d. Our approach is extremely
versatile: ATD can be applied to any stabilizer code with ana-
log syndrome information. Furthermore, it is possible to in-
corporate ATD as part of both single-shot and time-domain
decoding strategies, as illustrated in Fig. 1e and Fig. 1f.

b. Single-shot decoding with analog information. A
problem in QEC is that syndromes must be extracted using
auxiliary qubits that are also susceptible to errors. As such,
there is uncertainty associated with any syndrome we mea-
sure. To counteract this problem, we can adapt the time-
domain approach in which syndrome measurements are re-
peated ∝ d times, where d is the code distance. Measurement
errors can then be accounted for by considering the entire syn-
drome history in the decoding. An alternative strategy is to use
a code that has the so-called single-shot property. Single-shot
codes have an additional structure that allows measurement
errors to be directly corrected, removing the need to decode
over time [43]. The three-dimensional surface code is single-
shot for phase noise but requires time-domain decoding for
bit-flip noise [42, 44]. Our numerical results show that un-
der ATD decoding, the single-shot component of the concate-
nated three-dimensional surface code has a sustained thresh-
old of 9.9% under phenomenological noise. This improves
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over the previous best-observed threshold for the discrete vari-
able three-dimensional surface codes of 7.1% [45].

c. Quasi-single-shot protocol. Time-domain decoding
can lead to large overheads for quantum codes, since the num-
ber of repeated syndrome measurements required is propor-
tional to the code distance d [46–48]. This increases the length
of the decoding cycle and reduces the frequency with which
logical operations can be applied [49]. To address this over-
head, we propose a novel protocol called (w)-quasi-single-
shot decoding. The key idea is to use the analog information
obtained during the syndrome readout of the inner bosonic
code to enhance the decoding performance and reduce the
need to repeat the measurement multiple times in the noisy
readout setting. On an intuitive level, this idea is somewhat
analogous to the fact that to learn m bits during the quan-
tum phase estimation algorithm, one needs O(m) measure-
ments [50], whereas, using bosonic qubits, one can learn the
phase (in principle) using a single measurement [9].

Quasi-single-shot decoding leverages our strategies for de-
coding with analog information, and we obtain a scheme
that reduces the required number of repeated syndrome mea-
surement rounds to a small number w ≪ d. In combina-
tion with the tunable noise bias of the inner cat qubit code,
the quasi-single-shot three-dimensional surface code yields a
three-dimensional topological code with significantly higher
thresholds and reduced time-overhead when compared to two-
dimensional topological codes.

d. Open-source software tools. We have implemented a
set of software tools as part of the Munich Quantum Toolkit
(MQT) to foster further research in the direction and to pro-
vide the community with numerical tools to conduct simula-
tions and reproduce our results.

The remainder of this work is structured as follows. In Sec-
tion II, we review the main concepts of bosonic quantum
codes and quantum error correction that are needed through-
out this work. In Section III, we discuss iterative decoding ap-
proaches that are fundamental for state-of-the-art algorithms
and the proposed techniques. Then, in Section IV our de-
coding strategies for decoding quantum codes using analog
information and the respective numerical simulation results
are presented. In Section V, we elaborate on the proposed
quasi-single-shot protocol and present numerical results. Sec-
tion VI focuses on more practical aspects around the consid-
ered bosonic-LDPC code architectures and reviews important
open challenges with respect to potential implementations in
superconducting architectures. We conclude and give a brief
overview of future work in Section VII.

II. PRELIMINARIES

Here, we introduce basic notions of quantum coding that
are needed throughout the rest of this work. We assume the
reader is familiar with fundamental notions of quantum infor-
mation theory and quantum error correction.

A. Bosonic quantum codes

The use of bosonic codes toward achieving fault-tolerant
quantum computing has become a promising alternative to the
approach based on so-called discrete-variable qubits such as
spin qubits, trapped ions, neutral atoms, or superconducting
qubits [1–5]. It is often quoted, see, for instance, Refs. [51,
52] that the advantage of bosonic codes over discrete-variable
codes is the fact that a single bosonic mode, realized, e.g., in a
superconducting cavity or the motional states of trapped ions,
lives in an infinite-dimensional Hilbert space. Bosonic codes
therefore offer a hardware-efficient route toward fault-tolerant
quantum computing, since the principle of quantum error cor-
rection relies on encoding logical information redundantly in a
subspace of a much larger Hilbert space, as opposed to using
multiple two-level systems. The main idea of how bosonic
codes can be realized in practice is that a particular bosonic
code constitutes the first layer in a concatenated quantum er-
ror correction code, consisting of (at least) one continuous-
variable and one discrete-variable code, which is called outer
code in this context. As there are various realizations and
families of discrete-variable codes, there are similarly mul-
tiple families of bosonic codes. As the choice of the discrete-
variable code determines properties, such as the availability of
transversal gates, the choice of a particular bosonic code can
be tailored to the physical platform on which the code is re-
alized, but also determines the (effective) noise model that is
relevant for the outer code as well.

As such, in addition to their large surrounding Hilbert
space, bosonic codes offer further advantages over two-level
systems relevant to the design of quantum error-correcting
codes and decoders. One of these features is that many fami-
lies of bosonic codes have a biased-noise error model, where
some types of errors occur more frequently than others. While
discrete-variable qubits can have a biased noise channel, this
noise bias cannot be preserved by gate operations needed
throughout the QEC protocol, i.e., there does not exist a bias-
preserving CNOT implementation [17]. While a Pauli Z er-
ror occurring before the gate is not converted to other types
of Pauli errors, a Z error during the execution of the gate will
be converted to other types of Paulis. Thus, intuitively, for
the CNOT = CX(π) one must require that Z errors commute
with the gate at all times, i.e., [Z, CX(α)] = 0, ∀α ∈ [0, π].
However, implementation of the CNOT in such a way is not
possible without leaving the code space [53]. Hence, the bias
is annihilated during the computation and bias-tailored QEC
codes such as the ones proposed in Refs. [54–57] are not ben-
eficial for discrete-variable systems. However, the additional
degrees of freedom of continuous-variable states natively al-
low for bias-preserving operations [17, 58].

While the additional degrees of freedom of bosonic codes
yield a clear advantage over two-level systems, the continu-
ous support of states in quantum phase space has the conse-
quence that any measurement, e.g., the measurement of a sta-
bilizer check, of such a state is inherently imprecise. Instead
of dismissing this characteristic of bosonic quantum codes as
a drawback, it can equivalently be seen as a feature that yields
additional analog information during the qubit readout, called
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analog information that can be used for decoding. We note
that in practice the readout of a two-level system in finite time
also yields a continuous outcome. However, with technologi-
cal progress in recent years, the readout uncertainty due to the
finite measurement time has become almost negligible [59].
For the interested reader, we describe the properties of stabi-
lized cat codes more explicitly in Section VI.

B. Low-density parity-check quantum codes

In the following, all vector spaces are over F2 unless stated
otherwise. We use [ℓ] to denote the set { 1, 2, . . . , ℓ }. A (dis-
crete variable, DV) [[n, k, d]]-quantum stabilizer code is de-
fined by an Abelian subgroup S of the n-qubit Pauli group Pn

that does not contain −I . The generators of S are commonly
called stabilizer checks of the code.

An important class of quantum stabilizer codes are
Calderbank-Shor-Steane (CSS) codes. The defining feature
of CSS codes is that their stabilizer generators can be split into
two decoupled sets SX and SZ , which contain only products
of the Pauli X and Pauli Z operators, respectively. By using
the (isomorphic) mapping between the n-qubit Pauli group
(modulo global phases) and binary vector spaces [60]

Pn/ {±I,±iI } ∼= F
2n
2 , (1)

it is possible to represent the SX and SZ stabilizers of a CSS
code as two matrices: HX ∈ F

rX×n
2 and HZ ∈ F

rZ×n
2 .

These matrices can be interpreted as the parity-check matri-
ces of two classical linear codes, the first designed to correct
bit-flips and the second to correct phase-flips. For any CSS
code, the HX and HZ matrices must satisfy the following or-
thogonality condition.

H⊤
Z ·HX = 0 ≡ H⊤

X ·HZ = 0, (2)

which ensures that the X and Z stabilizer generators commute,
i.e., their supports have even overlap. A CSS code can then be
defined as a code over F2n

2 with check matrix

H =

(
0 HZ

HX 0

)
. (3)

The CSS syndrome s of a qubit error e = (eX , eZ) is defined
as

s = (sX , sZ) = (HZ · eX , HX · eZ). (4)

From the syndrome equations above, it is clear that the de-
coding of CSS codes amounts to two independent classical
decoding problems for phase-flips and bit-flips, respectively.
In the following, we will drop the subscripts, but it should be
assumed that we are referring to a single error type (X or Z)
unless otherwise stated.

In the language of vector spaces, the goal of decoding is,
given a syndrome, to infer an estimate ε s.t. s = H ·ε that can
be used to apply a recovery operation to restore an error-free
logical state. The decoding is successful if the residual error
r = e+ ε is a stabilizer, and it fails if r is a logical operator.

The Tanner graph T (H) = (VD∪VC , E) of a code defined
by the parity-check matrix H is a bipartite graph with data
nodes VD and check nodes VC whose incidence matrix is H .
That is, given H , T (H) can be constructed by creating a data
node d ∈ VD for each column and a check node c ∈ VC for
each row of H , and inserting an edge e = (vc, vd) ∈ E if
H(c,d) = 1.

Example II.1 (Tanner graph of the Hamming code). Consider
the Hamming code, defined as the kernel of the parity-check
matrix

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 .

The corresponding Tanner graph T (H) is illustrated in Fig. 2.

In the context of decoding algorithms based on factoriza-
tion of probability distributions, the Tanner graph is frequently
referred to as factor graph.

A family of quantum low-density parity-check (QLDPC)
codes refers to a stabilizer code family with the additional
property that the stabilizer generators are sparse. More specif-
ically, it is required that the degree of the data and check nodes
in the Tanner graph is upper bounded by a constant (indepen-
dent of the code size). Intuitively, each check has a constant
weight and each qubit participates in a constant number of
checks.

1. Three-dimensional surface codes

For the remainder of this work, we focus on topological
quantum codes [61–63] as the “outer code” of a concatenated
code. Such codes are derived from a geometric D dimensional
lattice and have local connectivity in D-dimensional space.
In particular, we focus on the three-dimensional surface code
(3DSC) [42, 48, 57, 64, 65] as a representative QLDPC code.
Each constituent is identified with a qubit with Hilbert space
C2. Consider a three-dimensional lattice in Euclidean space
captured by a graph Λ = (V,E) consisting of vertices V ,
edges E, faces F , and volumes W . For two objects in the
lattice v, f , we write, v ∼ f (f ∼ v) to indicate that v is
adjacent to f .

To define a quantum code on the lattice Λ, we associate
qubits with edges and checks with vertices and faces, i.e., we

FIG. 2. Tanner graph of the Hamming code. The square nodes rep-
resent checks VC (rows of the check matrix H) and the circles rep-
resent data nodes VD (columns of H).
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(a)

(b)

(c)

(d) (e)

X
Z

FIG. 3. three-dimensional surface codes with periodic boundaries indicated by additional edges on the sides of the lattice. (a) A vertex
check (of weight six). (b) A face check (of weight four). (c) A volume check (of weight 12). (d) three-dimensional lattice Λ with open
boundaries. Rough boundaries are indicated with open edges. A single qubit X error gives a pair-like syndrome at the endpoints of the error
string (indicated by red vertices). A single qubit Z error produces a loop-like syndrome at adjacent faces (indicated by blue faces). The loop
can be readily seen in the dual lattice pictures whose dual edges are indicated with dashed lines. (e) Logical operators of the three-dimensional
surface codes. A loop-like string corresponds to a logical X operator. A logical Z operator corresponds to a loop of faces in the dual lattice,
i.e., forming a dual sheet wrapping across the lattice along two axes.

define vertex checks Av, v ∈ V , acting on edges adjacent to
vertices

Av :=
∏

e∈E,e∼v

Ze (5)

depicted in Fig. 3(a), and face checks Bf , f ∈ F acting on
edges adjacent to faces

Bf :=
∏

e∈E,e∼f

Xe (6)

shown in cf. Fig. 3(b). To reason about the logical operators of
the code, let us introduce some informal notation. For a more
formal discussion in the language of homology, we refer the
reader to Appendix A.

Let ζ be an edge path in Λ. A string operator is defined as a
Pauli X/Z operator whose support corresponds to the qubits
that are associated to edges in ζ as

SP
ζ :=

∏
i∈ζ

Pi, P ∈ {X,Z } . (7)

The weight of a string is the size of its support, i.e., the num-
ber of non-trivial Paulis. In addition to the lattice Λ, consider
also the dual lattice Λ∗, which is obtained from Λ by associat-
ing dual vertices to volumes, dual edges to faces, dual faces to
edges and dual volumes to vertices, and define co-string oper-
ators as string operators on Λ∗. Hence, qubits are associated
with dual faces, Z-checks to dual volumes, and X-checks to
dual edges.

Errors correspond to X/Z-strings on the lattice that cause
the anti-commuting (Z/X) adjacent checks to be “flagged”, in-
dicating an error occurred (all other, non-adjacent checks are
not violated and thus not flagged). The syndromes caused by

violated vertex checks are created in pairs at the vertices that
are the endpoints of X-error strings, as depicted in Fig. 3(d)
for a single-qubit error (i.e., a length-1 error string in Λ). The
syndrome of a Z-error string corresponds to the adjacent vi-
olated face-checks as shown in Fig. 3(d) for a single qubit
error. Syndromes caused by violated face checks are better
illustrated in the dual lattice Λ∗ (recall that edges correspond
to dual faces, so a string operator in Λ corresponds to the re-
spective collection of faces in Λ∗). Considering Λ∗ it can be
seen that Z-syndromes have a loop-like geometry in the lat-
tice. In fact, the loop-like syndromes induced by face checks
lead to an additional structure that has been shown to imply
the single-shot property, see also Section II B 2.

Given a three-dimensional lattice, we distinguish two types
of boundary conditions. When Λ has periodic boundaries
(depicted by additional edges in Fig. 3), i.e., a tessellation
of a three-dimensional torus (therefore also called the three-
dimensional toric code, 3DTC), the logical X operators cor-
respond to strings that form loops on the lattice along one
axis, as depicted in Fig. 3e. The logical Z operators corre-
spond to loop-like sets of faces, called sheets in Λ∗, i.e., sets
of faces that go across the dual lattice along two axes as il-
lustrated in Fig. 3e. Topologically, logical operators corre-
spond to non-trivial loops, i.e., loops (of edges and faces, re-
spectively) that are non-contractible and the contractible loops
(those that enclose a region on the lattice) correspond to sta-
bilizers of the code. It is straightforward to see that there are
three pairs of logical operators X̄, Z̄, corresponding to three
(non-equivalent) minimum-weight loops, one along each of
the three different axes, and the three corresponding orthogo-
nal sheets. Therefore, the code encodes k = 3 logical qubits.
The weight of a logical operator is the number of qubits in its
support, i.e., the length of ζ.

If we instead consider a code on a three-dimensional lattice
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Λ with open boundaries, we define two opposite sides of the
lattice as X-type boundaries, called smooth boundaries and
the four remaining sides as Z-type boundaries, called rough
boundaries—in analogy to the two-dimensional surface code.
A string operator SX

ζ (of minimal length) that connects the
smooth boundaries is a logical X operator on the code, and a
dual string operator SZ

ζ connecting the four rough boundaries
corresponds to a logical Z operator. Since in the presence of
open boundaries, there is only a single pair of such strings s.t.
they are orthogonal and connect the respective boundaries, the
code encodes a single logical qubit.

The distance dX/Z of the code is defined as the minimum
weight of a logical X/Z operator, i.e., the minimum number
of edges in a loop going across Λ, and the minimum number
of faces in a sheet across the torus in the presence of peri-
odic boundaries. For a lattice with open boundaries, dX/Z is
defined as the minimum number of edges in a string connect-
ing smooth boundaries and the minimum number of faces in
a sheet connecting rough boundaries. For instance, the code
depicted in Fig. 3 has distances dX = 3, dZ = 9. In summary,
the three-dimensional surface code (3DSC) parameters (with
open and periodic boundaries) are given by

3DSC:
[[
2L(L− 1)2 + L3, 1, dX = L, dZ = L2

]]
,

3DTC:
[[
3L3, 3, dX = L, dZ = L2

]]
.

Note that by associating X checks with vertices and Z checks
with faces, we obtain an equivalent code, where the corre-
sponding notions of logicals and distances are simply ex-
changed.

2. Single-shot codes

In general, the syndrome extraction circuit used to mea-
sure the stabilizer of the code is subject to noise. As such,
syndrome errors need to be accounted for in fault-tolerant
QEC protocols. Designing fault-tolerant syndrome extrac-
tion circuits can add considerable overhead. For instance,
the Shor fault tolerant scheme requires at least ∝ d3 check
measurements [46, 47]. Dennis et al. [48] argue that for a
two-dimensional surface code with distance d, O(d) rounds
of noisy syndrome measurements need to be conducted to
achieve fault-tolerance.

As an alternative to time-domain decoding, Bombin [43]
showed that there exist single-shot codes for which a single
round of noisy syndrome measurements suffices. One of the
main advantages of single-shot codes is that the complexity of
decoding is reduced since the structure of the decoding prob-
lem does not have an additional time dimension—as is the
case for non-single-shot codes. Moreover, the time needed
to conduct a QEC cycle is reduced, since only a single set
of stabilizer measurements needs to be done, which results
in the fact that more logical operations can be conducted in
a time interval compared to time-domain decoding. The ex-
plicit construction of single-shot codes has been explored re-
cently [44, 66], where the central idea is to use redundancy in
the checks to ensure the single-shot property. In Ref. [44], it is

shown that single-shot codes with necessary redundancy can
be constructed using tensor products of chain complexes (i.e.,
three-dimensional hypergraph product constructions). Intu-
itively, in this construction, the extra dimension yields an ad-
ditional (classical) code that can be used to detect syndrome
errors. In this case, we can define an additional set of classical
checks called metachecks with check matrix M that defines
the corresponding classical linear metacode M. The meta-
code satisfies the condition M ·HX/Z = 0, which means that
every syndrome that can originate from HX/Z is a codeword
of the metacode M. The metacode M is used to determine
whether a syndrome is valid, i.e., we can use the metachecks
to compute a meta-syndrome sm := M ·sX/Z , which can then
be decoded to fix syndrome failures.

Geometrically, in the 3DSC, we can associate metachecks
with the volumes of the lattice, as depicted in Fig. 3(c).
This gives a Z metacode MZ whose checks act on the syn-
dromes induced by the Z-face checks. Intuitively, the volume
metachecks help to close noisy loop-like syndromes.

C. Noise model

In this section, we describe the noise model that is used for
the investigation of the various decoding methods (cf. Sec-
tion III) as well as the quasi-single-shot protocol (cf. Sec-
tion V). More details about our simulation procedures can
be found in Appendix G.

We consider a biased phenomenological noise model with
analog syndrome measurements inspired by stabilized cat
qubits. We assume a three-dimensional architecture in which
bosonic cat qubits are used as the inner code and a [[n =
3L3, k = 3, dX = L, dZ = L2]] three-dimensional sur-
face codes with periodic boundaries is used as the outer code.
i.e., the n physical qubits are cat qubits, so qubits encoded
in continuous-variable quantum systems with Hilbert space
L(R2), which are used to protect k logical qubits with X (Z)
distance dX = L (dZ = L2). That is to say, this noise model
affects the description on two levels: On the level of qubits in
the outer code, and on the level of continuous variable bosonic
modes in the inner code.

In each QEC cycle, the stabilizers are measured, yielding
an analog syndrome as a real number for bosonic codes. Intu-
itively, the magnitude of the analog measurement can be inter-
preted as information on the reliability of the syndrome read-
out and thus can be used in the overall decoding routine. Note
that in this work we use a phenomenological noise model and
hence do not consider a specific implementation of the syn-
drome extraction circuit. For example, the standard Steane
scheme [67] could be used.

1. Qubit error noise model

Here, we outline specifics concerning the error model on
the level of qubits in the outer code. We consider a model
defined as a quantum channel that takes the form of a diagonal
Pauli channel, reflecting stochastic Pauli noise. Such a noise
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model and can be obtained from a non-diagonal error model
via a group twirl. Let ρ denote the density matrix of a single
qubit state that undergoes the quantum noise. Then, the Pauli
error-channel E has the Kraus representation

E(ρ) := (1− p)ρ+ pXXρX + pY Y ρY + pZZρZ. (8)

The single qubit physical error rate perr ∈ [0, 1] is the total
probability of X,Y, and Z-type errors. The individual Pauli
error rates pΩ, Ω ∈ {X,Y, Z} are specified by the physical
error rate perr and a bias vector r⃗ = (rX , rY , rZ). This bias
ηΩ for a certain error species Ω ∈ {X,Y, Z} is given by

ηΩ :=
rΩ∑

Ω′ ̸=Ω rΩ′
perr. (9)

We call, for example, a noise channel Z-biased, if

ηZ =
rZ

rX + rY
> 0.5. (10)

2. Syndrome error noise model

Inspired by the physical realization of bosonic cat qubits,
we model the syndrome (or check) errors as Gaussian random
noise that is added to the continuous syndrome x ∈ R obtained
in the measurement. This affects the readout of the noiseless
stabilizer values si = ±1. Therefore, the noisy stabilizer val-
ues s̃i have a continuous outcome given by s̃i = si+xi where
xi ∼ N (0, σ2

i ) is a Gaussian random variable with mean 0
and variance σ2. By thresholding the noisy syndrome s̃, i.e.,
taking signs, sgn(s̃i), we obtain the hard syndrome. As de-
tailed in Appendix C 2, the thresholding procedure allows us
to relate syndrome error rates psynd

err and the variance σ2 of the
Gaussian noise process. i.e., given psynd

err , the associated stan-
dard deviation σ is given by

σ =
1

√
2Erfc−1(2psynd

err )
, (11)

where x 7→ Erfc−1(x) is the inverse of the complementary
error function.

When considering biased-noise error models, we also bias
the syndrome error channel in the same way as we bias the
qubit error channel discussed in the previous section. From
the individual syndrome error rates for X and Z checks, we
obtain through Eq. (11) the corresponding variance of the
Gaussian random noise model. For example, a large X bias
means that there will be more bit-flip errors, as well as more
X-syndrome errors compared to phase-flip errors and asso-
ciated syndrome errors. In other words, we model the error
affecting the bosonic modes of the inner code and in conse-
quence the qubits of the outer code in a phenomenological
fashion.

When incorporating the analog information into the decod-
ing process, we replace the log-likelihood ratios (LLRs) of a
discrete error model γsynd = log[(1 − q)/q], where q is the
measurement error probability, with

γi = log

[
Pr(s̃i|si = +1)

Pr(s̃i|si = −1)

]
=

2s̃i
σ2

, (12)

where Pr(s̃i|si = ±1) is the probability of observing the
noisy syndrome s̃i under the condition that the noiseless syn-
drome value is si = ±1.

III. MIN-SUM BELIEF PROPAGATION ALGORITHMS

In this section, we discuss the decoding of quantum codes
using iterative decoding procedures based on minimum-sum
belief propagation (BP) decoding. First in Section III A, we
review standard min-sum BP decoding for hard syndromes
(i.e., for discrete variable codes), which forms the basis for
the discussed decoding procedures. In Section III B, we re-
view recent work on the use of analog syndrome information
to decode quantum codes [68], propose improvements to these
techniques, and discuss caveats of the original method. The
results of the numerical simulation are presented in the fol-
lowing section, Section IV, together with a comparison to the
proposed decoding technique, analog Tanner graph decoding.

A. Hard syndrome MSA decoding

Belief propagation (BP) is an iterative algorithm that is
known to be efficient in decoding classical LDPC codes and
has been adapted to quantum codes successfully in recent
years. BP is a message-passing algorithm operating on the
Tanner graph of the code (also called the factor graph in this
context). The graph is considered a model that describes the
factorization of the joint probability distribution of the error.
Given the measured syndrome, the goal of BP is to (approx-
imately) compute the marginal probabilities for each bit. For
an error e and syndrome s = H · e, BP finds an estimate ε
of the error e that yields the same syndrome s = H · ε. The
estimate vector ε is formed as ε = (ε1, . . . , εn) where

εi := argmaxei [P (ei|s)]. (13)

There are several variations of the standard BP algorithm
that differ in the way marginal probabilities are computed. In
the following, we focus on min-sum BP, which has been ar-
gued to be easier to implement on hardware-near devices than
other variants [68]. For more details on min-sum BP, we refer
the reader to Appendix C 3.

When applied to factor graphs that are trees (i.e., that do
not contain loops), BP is known to be exact and will converge
to a solution within a number of iterations less than the diam-
eter of the graph. However, in general, LDPC codes contain
loops. In this setting, BP computes approximate marginals
and is not guaranteed to converge to a solution that satisfies
the syndrome equation. In cases where BP does not termi-
nate, the decoding can be deferred to a post-processing rou-
tine. Such post-processing routines are typically more com-
putationally expensive but will ensure the decoder returns
a solution satisfying the syndrome equation. A commonly
used post-processing method to improve the overall decoding
performance of BP algorithms is ordered statistics decoding
(OSD). This was first introduced in Ref. [69] and has recently
been adapted to QLDPC codes [41, 70].
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(a) (b)

FIG. 4. (a) Illustration of the tanner graph for SSMSA decoding. The
analog information taken into account by SSMSA can be illustrated
similarly to ATD (although in SSMSA the analog information is not
directly incorporated in the factor graph), however, because of the
cutoff parameter, it may happen that SSMSA discards the analog in-
formation, which corresponds to ignoring the virtual nodes, indicated
by dashed edges. (b) Sketch of the analog Tanner graph (ATG). The
subgraph colored in black corresponds to the Tanner graph of the
code. The subgraph highlighted in yellow corresponds to the vir-
tual nodes that are used to incorporate the analog information. Their
union is the ATG.

Let us briefly summarize the main aspects of OSD. We con-
sider a single check side in the following syndrome equation:

H · e = s. (14)

In general, H may not be a square matrix and may not have
full rank, and therefore we cannot directly invert H to solve
Eq. (14). The strategy applied is to choose a subset of columns
that are linearly independent, and hence form a basis. Let
S := {Si } be the set of column indices of linearly inde-
pendent columns we chose and HS be the matrix of column
vectors obtained. Clearly, HS has full rank and can thus be
inverted to give a solution

H−1
S · s = eS . (15)

Different choices of S correspond to (unique) solutions eS .
The main idea of BP+OSD is to use the marginal probabili-
ties computed by the BP decoding algorithm to select a set C
that contains columns corresponding to bits with a high error
probability.

B. Soft-syndrome MSA decoder

Recently, Ravendraan et al. [68] introduced a variant of
iterative min-sum decoding called soft-syndrome min-sum al-
gorithm (SSMSA) to decode QLDPC codes using analog in-
formation. We briefly review the main aspects of the algo-
rithm, for which we present the first open-source implemen-
tation. We show that the results of our implementation match
the original results presented in Ref. [68]. Furthermore, we
explore the combination of SSMSA with ordered statistics
decoding (OSD), which improves the decoding performance
compared to the original work.

SSMSA is an iterative message-passing decoding proce-
dure, i.e., a variant of (min-sum) belief propagation (BP) that
uses soft information, i.e., real syndrome values instead of
hard (binary) ones in its update rules.

Initially, the corresponding binary syndrome is obtained by
“thresholding” the analog syndrome, i.e., determined by the
signs of the analog values. The update rules that are used to
compute the messages are equivalent to those used in min-
sum BP decoding with the addition of a “cutoff” parameter
Γ, which is used to determine if the analog syndrome infor-
mation should be considered in the update rules or not. If the
absolute value of the analog syndrome is below the cutoff, it
is taken into account when computing the min-sum updates
(in addition to the standard messages). Conversely, if the ab-
solute value of the analog syndrome is above the cutoff, the
standard min-sum rules are applied. The SSMSA decoding
process is visualized in Fig. 4(a) and the detailed pseudocode
is presented in Algorithm 2 in Appendix C 4.

Analogously to BP, it is not guaranteed that SSMSA con-
verges. The algorithm tries to infer a decoding estimate based
on marginal probabilities, i.e., it tries to find the most prob-
able error given a syndrome in a given number of maximum
steps. Hence, in case the algorithm terminates due to reaching
the maximum number of steps, one can in principle use the
marginal probabilities the algorithm computed up to termina-
tion in a post-processing step to infer a decoding estimate.
However, post-processing techniques were not considered in
Ref. [68].

Note that in SSMSA, soft syndromes are not directly in-
cluded in the parity-check matrix H (i.e., the factor graph
used for decoding is not altered), but are only used as an addi-
tional parameter to compute the marginal probabilities during
the iterative decoding procedure. This means that measure-
ment errors will not be considered for possible fault locations
that satisfy the syndrome in OSD post-processing, i.e., there
are situations in which we are trying to solve for a syndrome
that is not in the image of H . In that case, it can happen
that the “solution” with the highest error probability is not a
solution of Eq. (15). This leads to cases where OSD post-
processing does not give a significant improvement over stan-
dard SSMSA decoding. In the following section, we propose
techniques that amend this problem by ensuring that the factor
graph is always invertible, i.e., has full row rank.

IV. ANALOG TANNER GRAPH DECODING

In this section, we propose a novel decoding technique for
quantum stabilizer codes using analog syndrome information
that is based on min-sum BP+OSD decoding. We call this
technique analog Tanner graph decoding (ATD) as it is based
on the construction of a variant of the standard Tanner graph
that incorporates analog syndrome information.

In Section IV C, we briefly review single-shot decoding of
quantum codes. Then, in Section IV C, we show how the ana-
log Tanner graph decoding can be adapted to be used to de-
code single-shot quantum codes. The numerical results in this
section are obtained by standard Monte Carlo decoding simu-
lations, which are discussed in more detail in Section G. Ad-
ditionally, in Appendix D we discuss how the proposed tech-
niques can be adjusted to also include analog information of
the data qubits and not only of the syndrome readout in similar
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FIG. 5. Comparison of the SSMSA decoder with ATD for increasing syndrome noise σ on a family of LP codes with distances d ∈
{ 12, 16, 20 }. The data error rate of the unbiased depolarizing noise model is fixed at p = 0.05. (a) Comparison of the original SSMSA
implementation and ATD using BP (without OSD). (b) Comparison of SSMSA+OSD and ATD using BP+OSD. The legend is shared between
both panels and Γ indicates the cutoff value of the soft information (SI) SSMSA decoder. Note that the case Γ = 0 corresponds to ignoring
the analog information and, therefore, is equivalent to ordinary hard syndrome decoding.

architectures as the one we focus on in the rest of this article.
Given the Tanner graph of a code T = (VC ∪ VD, E), we

can directly incorporate analog information by adding |VC |
additional data nodes, called virtual (data) nodes, VV . Each
check node VC , is connected to a single virtual data node
through a single edge, as visualized in Fig. 4(b). The virtual
data node stores the probability that the check is in error. In
our protocol, this probability is derived from the magnitude of
the analog syndrome readout. We refer to the modified Tanner
graph as an analog Tanner graph (ATG).

In terms of parity check matrices, building the ATG
amounts to appending an m × m identity matrix 1m to the
original parity-check matrix of the code:

Definition IV.1 (Analog check matrix). Given a parity-check
matrix H ∈ Fm×n

2 corresponding to the incidence matrix of
a Tanner graph T (H), the analog check matrix HA has the
following form

HA := [H | 1m]. (16)

Clearly, T A constitutes a valid Tanner graph whose inci-
dence matrix is HA. Moreover, HA always has full rank.
Consequently, there always exists a solution to the syndrome
equation, cf. Eq. (14). For decoding, the virtual data nodes are
initialized with the analog syndrome LLRs given in Eq. (12).
Note that this construction can be seen as a generalization
of data syndrome codes for standard, hard (binary) syn-
dromes [71–75], tailored to error models inspired by bosonic
codes and their associated analog syndrome information.

To decode using the ATG, we can now apply standard de-
coding approaches such as BP+OSD, making the approach
flexible to different decoding strategies and variations of the
algorithm. If not stated otherwise, we refer to decoding us-
ing the ATG with BP+OSD as analog Tanner graph decoding
(ATD). Note that the explicit inclusion of virtual nodes that
correspond to fault locations for measurement errors elimi-
nates the issues encountered with SSMSA and the OSD post-
processing techniques mentioned at the end of Section III B.
Moreover, even though SSMSA with a cutoff of Γ = ∞ is

conceptually similar to ATD, the syndrome update rules in
SSMSA (as discussed in the previous section) and the fact
that the information is not directly incorporated into the fac-
tor graph used for decoding, leads to significant performance
discrepancies.

To investigate the decoding performance and compare ATD
to SSMSA(+OSD), we perform standard Monte Carlo simu-
lations to estimate the logical error rate for increasing syn-
drome noise σ (and fixed data error rate p = 0.05) on a fam-
ily of lifted product (LP) codes. The codes are taken from a
code family defined in Ref. [24]. For more detail on the con-
struction of codes via the lifted product, we refer the reader
to Section C 1 in the appendix.

In Fig. 5(a), we compare the performance of SSMSA and
ATD in the absence of OSD post-processing, i.e., only BP is
used for ATD (ATD+BP) and the original SSMSA algorithm
is used. Following the methodology of Ref. [68], we fix the
data error rate of the unbiased depolarizing noise model to
be p = 0.05 and vary the syndrome noise. The strength of
the syndrome noise is characterized by the standard deviation
σ of the Gaussian noise channel as defined in Section II C 2.
From Fig. 5(a), it can be seen that ATD+BP always outper-
forms SSMSA if the logical error rate is limited by the data
noise. We examined different cutoff values for the SSMSA
implementation and found that a large value of Γ yields the
best performance for the code and noise parameter settings
considered, but that there is no significant performance differ-
ence between Γ = 100 and values Γ > 100. Additional dis-
cussions on different decoder parameterizations are presented
in Appendix F. In particular, setting the cutoff for SSMSA to
Γ = 0 (meaning that the decoder does not take the analog syn-
drome information into account) clearly leads to higher logi-
cal sub-threshold error rates.

In Fig. 5(b), the results of the same simulation setup as in
Fig. 5(a) but using OSD post-processing for SSMSA and ATD
are shown. We observe that OSD always improves the per-
formance of ATD. However, OSD leads to a reduced thresh-
old when combined with SSMSA. Furthermore, we observe
higher logical error rates for SSMSA-OSD when σ > 0.35,
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as well as the value of the cutoff Γ becoming less relevant to
the decoder performance. This illustrates the possible issues
that can occur when combining SSMSA and post-processing
without further modifications as discussed in the previous sub-
section.

A. Comparison with SSMSA

We would like to highlight the following observations: first,
we focus on the cutoff parameter Γ of SSMSA, which is an
input parameter and the decoding performance explicitly de-
pends on Γ (as also noted by the authors [68]). The two ex-
treme cases for the choice of Γ correspond to Γ = 0 and
Γ = ∞. For the former case of Γ = 0, analog information
is never taken into account and the algorithm is equivalent to
min-sum BP. In the latter, the analog information is always
taken into account. Intuitively, Γ allows one to define a limit
on the amount of “trust” that can be put into the analog infor-
mation. For small Γ, the analog information is hardly trusted
(thus only taken into account for small absolute syndrome val-
ues), while for large Γ the analog information is always trusted
and thus more likely to be taken into account. This indicates
that given a particular error model, one should be able to de-
rive (or find empirically) a functional dependence Γ(σ), as the
amount of “trust“ is directly related to the analog syndrome
value, see also Fig. 1(c). However, this question is left open
in Ref. [68].

Secondly, it is nontrivial to generalize SSMSA to more
general Tanner graph constructions. These appear, for exam-
ple, if stabilizer measurements are repeated over time to mit-
igate measurement errors further or if the code construction
explicitly yields a so-called metacode that is used to detect
(and correct) syndrome errors [44, 45] in single-shot QEC.
We clarify the relevance of this aspect and why these issues
arise when we describe the construction of the corresponding
Tanner graphs for ATD in Section V A and Section IV C, re-
spectively. Indeed, the proposed ATD method can readily be
adapted to these scenarios.

Finally, when the magnitude of the analog information is
below the cutoff Γ, the update rules of SSMSA overwrite the
analog syndrome information (cf. Line 22 in Algorithm 2),
which is then lost. This does not happen in ATD, where the
analog information is stored explicitly in the nodes of the fac-
tor graph, and the initial values are kept throughout the algo-
rithm.

B. Single-shot decoding with metachecks

The three-dimensional surface code is defined by three
parity-check matrices: HX , HZ , and MZ . The first two are
the standard CSS code matrices that define the X- and Z- sta-
bilizers. The matrix MX defines a so-called metacodeMX ,
which is designed to provide protection against noise in the
Z-syndromes. More precisely, the metacode is defined so that
all valid (non-errored) Z-syndromes are in its code space. i.e.,
MX · sZ = 0, when sZ = HX · eZ for all eZ ∈ Fn

2 .

In Ref. [44], Quintavalle et al. defined the two-stage single-
shot decoder for the three-dimensional surface codes and re-
lated homological product codes. The steps of the two-stage
single-shot decoding protocol are as follows:

• Stage 1, syndrome repair: Measure the noisy syn-
drome s̃X = sX+se, where sX is the perfect syndrome
and se is the syndrome error. Solve the metacode de-
coding problem sM = MX · εs, where sM is the meta-
syndrome and εs is an estimate of the syndrome noise.
If the metadecoding is successful, we obtain a corrected
syndrome sC = s̃X + εs satisfying MX · sC = 0.

• Stage 2, main code decoding: Use sC to obtain the
decoding estimate εZ by solving sC = HX · εZ .

Quintavalle et al. demonstrated that the three-dimensional sur-
face codes can be decoded using an implementation of the
two-stage protocol where the first stage uses a minimum-
weight perfecting matching (MWPM) decoder and the second
stage a BP+OSD decoder.

A problem with the two-stage single-shot decoder is that
the syndrome repair stage is independent of the main decod-
ing stage. As a result, syndrome repair is always prioritized
over applying corrections to the data qubits, even in situa-
tions where it would be more efficient to apply a combined
correction. Furthermore, in certain circumstances, the two-
stage decoder is subject to a failure mode whereby the syn-
drome repair step results in an invalid “corrected” syndrome
sC that is not in the image of the parity-check matrix HX, s.t.
sC /∈ Im{HX}. Quintavalle et al. proposed a subroutine to
handle such failure modes, but this adds to the computational
run-time of the protocol [44].

Recently, Higgott and Breuckmann [45] proposed a single-
stage decoding protocol for single-shot QLDPC codes that re-
solves the aforementioned problems with the two-stage de-
coder. The single-stage approach considers the decoding
problem as finding a minimum-weight estimate ε := (eZ , se),
in the null space of a modified parity-check matrix

HMX :=

(
HX 1m

0 MX

)
, (17)

called the single-stage parity-check matrix. The single-stage
parity matrix combines both the decoding of the data errors eZ
and the syndrome errors se. This ensures that the decoder uses
the full information available to it, in contrast to the two-stage
decoder that processes the meta-syndrome and syndrome sep-
arately. Furthermore, note that the first block-row of Eq. (17)
is full rank. This property guarantees that all solutions are
valid, meaning that the single-stage decoder does not suffer
from the failure mode that arises in the two-stage decoding
approach.

C. Analog single-shot decoding

We now discuss how ATD can be applied to improve single-
stage single-shot decoding and explore connections between
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FIG. 6. Sketch of the analog single-stage Tanner graph based on
HM . The black checks, bits, and edges correspond to the Tanner
graph of the linear code H . The orange nodes are due to the identity
1m in Eq. (17) and are initialized with the analog information of the
syndrome readout. The red nodes are due to the metacode, i.e., the
metacheck matrix M .

single-stage parity-check matrices and the ATG construction.
To begin, we first note that the single-stage parity-check ma-
trix of Eq. (17) is conceptually similar to the analog parity-
check matrix of Eq. (16): the single-stage parity-check matrix
simply introduces an additional set of constraints described by
the metacode MX . An example of a single-stage Tanner graph
is depicted in Fig. 6. From this sketch, it is evident that this
construction corresponds exactly to the structure of the ATG
together with additional (meta) check nodes as defined by the
metacodeMX . If we incorporate the metacode directly in the
construction of the ATG, (similar to Ref. [45]), we construct
the single-stage ATG, which can be used to decode single-shot
codes using analog information.

Let us briefly review some details of the overall decoding
procedure. Consider an analog single-stage data syndrome
s ∈ Rrz . To initialize the ATD, we threshold s to a binary
syndrome sb ∈ { 0, 1 }rz , which we use to decode. Addition-
ally, we use the analog syndrome values of s to initialize the
virtual nodes of the ATG, as in standard ATD. Standard de-
coding algorithms such as BP+OSD can then be applied to
the resulting factor graph to obtain a decoding estimate.

In order to investigate the decoding performance of single-
stage single-shot ATD decoding, we conduct sustainable
threshold simulations for a concatenated bosonic 3D toric
code using a phenomenological noise model. Single-shot er-
ror correction will generally leave some residual error after
the correction. The goal is to suppress the accumulation of this
residual error to the point at which it can be corrected in subse-
quent rounds. To this end, we define the sustainable threshold
for a single-shot code as the physical error rate, psus−th, below
which the residual error remains constant and the quantum in-
formation can be stored indefinitely by increasing the distance
of the code. More precisely, the sustainable threshold is de-
fined as

psus−th := lim
R→∞

pth(R), (18)

where pth(R) is the threshold for R rounds of noisy stabilizer
measurements.

To estimate psus−th numerically for the 3D toric code,
we estimate pth(R) for increasing values of R ∈
{ 0, 1, 2, 4, 8, . . . , 128 } until the value pth(R) is constant, i.e.,

until the threshold does not decrease when increasing the
number of rounds R. Our simulation results are shown in
Fig. 7(a). We see that under single-stage ATD decoding, the
3D toric code has a sustained threshold of 9.9%. This im-
proves by 2.8% on the sustained threshold of 7.1% obtained
by Higgott and Breuckmann for the same family of 3D toric
codes, but using DV qubits and hard syndromes [45]. The im-
proved sustainable threshold we observe highlights the bene-
fits of considering analog information in decoding. Fig. 7(b)
shows the threshold of the 9.9% for concatated bosonic 3D
toric codes of size L = {5, 7, 9, 11} after 128 noisy rounds of
decoding.

We note that the sustainable thresholds we have found could
be further optimized by fine-tuning the parameters of the
BP+OSD decoder. However, rather than showing optimal im-
provements, the goal of this experiment is to indicate the im-
provements that become possible by considering analog read-
out information. A more complete study would additionally
compare below-threshold error rates, which are on this scale
more relevant than the improvement of the threshold. We will
leave this question open for future work including a more de-
tailed simulation including circuit-level noise models.

Finally, we note that the check matrix defined in Eq. (17)
can not be used in the SSMSA algorithm without significant
modifications. The reason for this is that syndrome errors are
already included explicitly in Eq. (17), which can a priori not
be handled by SSMSA, since for SSMSA the analog infor-
mation is an input parameter and the algorithm operates on
the standard parity-check matrix of the code. Moreover, the
metachecks do not correspond to physical measurements, i.e.,
they do not have analog syndrome information.

V. QUASI-SINGLE SHOT CODES

Even in the presence of strong noise bias, as in the case
of cat-LDPC architectures, both error species, X and Z
noise, need to be corrected to achieve good overall logical fi-
delity [19]. When implementing one-sided single-shot codes,
such as the three-dimensional surface code, we cannot rely
solely on the single-shot side of the code to correct errors.

To decode a quantum code that does not have the single-
shot property, multiple rounds of (noisy) syndrome measure-
ments must be performed so that the decoder infers the pres-
ence of measurement noise [46–48, 76]. Usually, this process
is referred to as repeated measurements or time-domain de-
coding, since repeating stabilizer measurements adds an ad-
ditional time dimension when considering the decoding in-
stance. In this section, we investigate the decoding of quan-
tum codes under phenomenological noise with repeated mea-
surements in the presence of analog information. To this end,
in Section V A, we discuss overlapping window decoding [48]
that we generalize to decode QLDPC codes over time in the
presence of analog information. Moreover, we elaborate on
the relation between the overlapping window method and the
ATG construction proposed in Section IV.

Motivated by the structure of 3D bosonic-LDPC code ar-
chitectures, we further propose a novel decoding protocol that
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FIG. 7. Performance of single-shot analog Tanner graph decoding (ATD) for 3D toric codes. (a) Sustainable threshold of the single-shot side
of 3D toric codes using ATD. The analog information increases the sustainable threshold of current state-of-the-art methods [45] by almost
3%. The results labeled “hard syndrome” are due to Higgott and Breuckmann [45], while the “analog syndrome” results are obtained with our
ATD method. (b) Example of threshold determination after 128 rounds of decoding using toric codes with lattice size L ∈ {5, 7, 9, 11}.

we call w-quasi single-shot codes (w-QSS codes). The main
idea is to leverage noise bias and analog syndrome informa-
tion (provided by bosonic-LDPC codes) to demonstrate that
only a small number w ≪ d of repeated syndrome measure-
ment cycles suffices for the non-single-shot check side to give
an overall decoding protocol with high logical fidelity for er-
ror rates sufficiently below threshold.

The central result of this section is that we demonstrate nu-
merically that for the cat-3DSC with reasonable code sizes
(L = 11), the w-QSS protocol achieves a threshold of≈ 1.5%
for the non-single-shot side under phenomenological noise
and that in the sub-threshold regime, w = 3 suffices to match
the decoding performance of time-domain decoding with ∝ d
repeated measurements.

A. Analog overlapping window decoding for QLDPC codes

To decode an [[n, k, d]]-quantum code under phenomeno-
logical noise, i.e., when the syndrome measurements are
noisy, we need to repeat the measurements several times
(usually at least d times) in order to handle the noisy syn-
dromes [47, 48]. Generally, this leads to the dimension of the
decoding instance being increased by one, as the time dimen-
sion is now also being considered. Hence, we refer to this
decoding problem as time-domain decoding. For example,
the decoding problem of a repetition code under phenomeno-
logical noise leads to a two-dimensional decoding problem,
analogous to the two-dimensional surface code under bit-flip
noise. Similarly, the decoding of the two-dimensional surface
code over time leads to a three-dimensional problem, analo-
gous to decoding the three-dimensional surface codes under
bit-flip noise. We make the connection between the proposed
construction of ATG, the decoding of quantum codes over
time, and the tensor product chain complexes explicitly and
formally argue that they are equivalent (cf. Proposition V.2).

Overlapping window decoding (OWD) was originally in-
troduced by Dennis et al. in Ref. [48] to decode quantum sur-
face codes over (finite) time. In OWD we divide the collected
syndrome history into w-sized regions, the first two of which

are sketched in Fig. 8. At any instance, the decoder computes
the correction for two regions, whereas the older one is called
“commit” and the newer one “tentative”, Rc, Rτ , respectively.
A window encompasses a total of w noisy syndrome measure-
ments. For each decoding round, the syndrome data of 2w
rounds, i.e., two regions, is used to find a recovery operation
by applying a decoder. However, only the correction for the
first w rounds, i.e., for region Rc is applied (by projecting
onto the final time step of Rc and applying the recovery ac-
cordingly). After applying the recovery, the region Rc can be
discarded, and only Rτ is kept. Then, in the next decoding
round, the same procedure is repeated using the previous Rτ
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Region(a)
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FIG. 8. Sketch of the overlapping window decoding method of a
repetition code as proposed in Ref. [48]. (a) A space-like single data
qubit error, (b) A time-like error, (c) A space-time error, (d) A space-
time error that extends across the region boundary, (e) A time-like
error that extends into the next decoding round. Note that the error
(d) will only be partially corrected as it extends over the boundary of
the commit region. The inferred correction will imply that all defects
in the commit region are removed, but will introduce a new defect in
the tentative region shown as a gray dot. Defects created in this way
are referred to as virtual defects [49] in the literature. An error purely
residing in the tentative region will be considered during decoding to
infer a decoding estimate matching the syndrome, but will not be
corrected in the same round.
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FIG. 9. Overlapping window decoding for QLDPC codes (arbitrary
Tanner graphs). The individual Tanner graphs of a code described by
the parity-check matrix H are “glued” together by the orange syn-
drome nodes that correspond to time-like (measurement) errors. A
single decoding round with window size w involves 2w measure-
ments, but only corrections in the first w are committed, see also
Fig. 8.

as the new commit region and the next w rounds as the new
temporary region, which is conceptually equivalent to “sliding
up” the 2w-sized decoding window one step.

Dennis et al. argue for the two-dimensional surface code
that the number of time steps w should be chosen propor-
tionally to the distance of the code, w ≫ d, to ensure that
the probability of introducing a logical operator is kept small.
This method is needed to simulate memory experiments over
(a finite amount of) time, since the last, perfect round of mea-
surements (corresponding to data qubit readout) may artifi-
cially increase the observed threshold leading to the fact that
doing fewer repetitions always performs better. This aspect
has also been observed in Ref. [77]. Additionally, overlapping
window decoding also corresponds to how a fault-tolerant
quantum computer will likely be decoded in practice [49].

Let us at this point fix some terminology: the window size
w is the number of syndrome measurement records in a sin-
gle window, i.e., the total size of the two regions is given by
|Rc| + |Rτ | = 2w. A single round of decoding takes 2w
noisy syndrome measurements into account, however, due to
the sliding nature of the decoding window, n rounds of decod-
ing correspond to (n+1)w syndrome measurements. We refer
to time-domain decoding, where the number of repetitions is
proportional to the distance of the code as standard decoding.
To apply this method to arbitrary QLDPC codes, we first pro-
pose the construction of the 3D analog Tanner graph, i.e., the
decoding graph over time for time-domain decoding.

Given the Tanner graph of a QLDPC code T (C), we first
create copies of T and introduce an additional set of bit nodes
between pairs of checks and for the last copy of T . These cor-
respond exactly to time-like errors on syndrome nodes. The
construction is sketched in Fig. 9. Algebraically, the multi-
round parity-check matrix H̃ , i.e., the incidence matrix of the
multi-round Tanner graph can be defined as follows.

Definition V.1 (Multi-round parity-check matrix and Tanner
graph). Given an m×n parity-check matrix H , the r−multi-

round parity-check matrix is defined as

H̃ :=
(
Hdiag | 1sdiag

)
(19)

=


H 0 0 . . . 1m

H 0 . . . 1m 1m

H 0 . . . 1m 1m

. . .
. . .

H 0 0 1m 1m

 , (20)

where Hdiag is a block-diagonal matrix with r diagonal block
entries, and 1sdiag has a step-diagonal form, consisting of m×
m identity matrices.

Hence, H̃ is an LDPC code whose parity-check matrix con-
sists of copies of H with additional bit nodes between pairs of
checks. It is easy to see that this code is LDPC (w.r.t. the
number of repetitions) since the vertex degree for each check
is increased by (at most) 2, independent of the number of rep-
etitions.

As an example, consider the multi-round (analog) Tanner
graph and the corresponding multi-round check matrix de-
picted in Fig. 1f, which corresponds to an instance of a multi-
round parity-check matrix (and Tanner graph) for a repetition
code over two rounds.

We show that the construction of the multi-round Tanner
graph for r rounds of syndrome measurement can be de-
scribed as the tensor product chain complex of the chain com-
plex corresponding to the QLDPC code C and the chain com-
plex of (a slight variant of) the r-repetition codeR:

Proposition V.2 (Informal statement). The r-multi-round
parity-check matrix H̃ of C is equivalent to the check matrix
of the tensor product codeR⊗ C.

The proof is elementary and follows from the chain com-
plex tensor product; we refer the reader to Appendix B for
more details. Note that this highlights that the construction
is equivalent to “stacking” the ATG constructed from H and
connecting the virtual nodes between pairs of checks. This
gives a straightforward correspondence between ATGs and
phenomenological check-matrices and allows us to directly
apply ATD to H̃ .

The overall procedure for multi-round decoding with ana-
log information can be summarized as follows. First, from the
parity-check matrix H build the r-multi-round check matrix
H̃ (corresponding to the multi-round analog Tanner graph).
Second, use the virtual nodes (corresponding to time-like data
nodes in standard models) to incorporate analog syndrome in-
formation. And finally, apply the ATD decoder on H̃ .

Note that recently and independently, BP+OSD has been
used to decode (single-shot) LDPC codes under a circuit-level
noise model [35, 40]. The proposed overlapping window ap-
proach we outline in this work differs in that it also considers
analog information in the decoding. Additionally, our meth-
ods apply to QLDPC codes in general and do not rely upon
codes with a special code structure. Furthermore, recently and
independently in Ref. [78], the authors considered decoding of
LDPC codes under discrete phenomenological noise using a
check-matrix construction equivalent to our definition of the
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multi-round parity-check matrix. However, they do not em-
ploy overlapping window decoding.

B. Quasi single-shot decoding

In the previous section, we discussed how ATD can be used
together with multi-round (analog) parity-check matrices to
decode under phenomenological noise with analog informa-
tion. In this section, we propose a novel protocol based on
these techniques that lowers the overhead induced by repeated
measurements.

In the w-QSS protocol, we assume a QLDPC code where
one side is single-shot and the other side is not—inducing the
need for at least d repeated measurements (or a number of re-
peated measurements proportional to the distance of the code)
in the presence of noisy syndromes, where d is the distance of
the non-single-shot side. This applies, for instance, to three-
dimensional surface codes, which we use as representatives in
the following. The single-shot side of the code can be decoded
using analog single-stage decoding discussed in Section IV C.
Complementarily, a slight generalization of the analog over-
lapping window decoding (OWD) as described in Section V A
is used to decode the non-single-shot side of the code. The
overall protocol is straightforward:

1. Choose a w ≪ d. Intuitively, w controls the number of
noisy syndrome measurements to conduct for the non-
single-shot side. i.e., w is the window size for overlap-
ping window decoding.

2. On the single-shot side of the code, we apply the usual
analog single-shot decoding procedure, where in each
time step we do a syndrome measurement and infer a
recovery operation.

3. For the non-single-shot side, we do w time steps of
repeated measurements and then decode (using analog
OWD).

Without analog information, by restricting the number of
syndrome measurements to w the effective distance of the
code is lowered to w. For instance, consider a code that has
dX = 4, dZ = 16 where the X-side is single-shot. Then, set-
ting c = 4 effectively reduces dZ to 4 because, in the time di-
mension, logical errors can be of weight 4 only. This is appar-
ent when considering the multi-round Tanner graph used for
decoding over time as a tensor product with a repetition code.
If we have dZ = 16 and do 16 rounds of noisy syndrome
measurements, the repetition code protecting the system from
“timelike” errors has distance 16, but when restricting to w
repetitions, we essentially cut the repetition code in time to a
shorter version, thereby lowering the distance along the time
dimension.

To investigate the performance of the proposed protocol nu-
merically, we simulate three-dimensional surface codes un-
der phenomenological (cat) noise for lattice sizes L = 5 to
L = 11 and compare different choices of w versus the stan-
dard approach of taking a number of repeated measurements

proportional to the distance. Note that, to conduct numerical
simulations for repeated measurements we need to conduct
multiple rounds of decoding to avoid overestimation of the
threshold [77] (cf. Section V A). Since the non-single-shot
side of this code can be decoded with matching-based algo-
rithms, we use PyMatching [79, 80] for decoding. The thresh-
old behavior and the sub-threshold scaling for 32 decoding
rounds are shown in Fig. 10. We discuss the decay of logical
fidelity later on in Fig. 11. The main findings are as follows.

• For w = 2 we observe an increase in logical error rate
for L = 11 for error rates around the threshold, how-
ever, the sub-threshold suppression for lower error rates
performs as for the standard time-domain decoding as
shown in Fig. 10(b).

• w = 3 is enough to match the results of standard time-
domain decoding (for the investigated code sizes and
error rates).

• For w = 1 the protocol does not work.

As a by-product, we obtain a threshold of the non-single
shot side of the 3DSC under phenomenological noise of
≈ 1.66%. In Appendix F we also present 3DSC threshold
estimates for the case where only the hard syndrome informa-
tion is available. We find the threshold to be ≈ 1.26%. To the
best of our knowledge, these are the first numeric threshold
estimates for the non-single shot side of the 3DSC.

Let us make some more detailed remarks on the results.
First, the results indicate that w = 2 for the L = 11 code leads
to a worse threshold, indicating a limitation of the protocol in
this aspect. However, the sub-threshold scaling (which is ac-
tually relevant in practice) still shows that the 2-QSS protocol
provides sufficient error suppression while lowering the num-
ber of syndrome measurement rounds from 11 to 2, inducing
a fraction of the time overhead to implement the overall QEC
protocol. Secondly, increasing the QSS window size w by 1
already significantly improves the achieved logical error rate.
With w = 5 we do not find statistically significant differences
to w = L for the code sizes considered. Lastly, we note that
even for much smaller error rates, we did not find a threshold
for w = 1.

C. Discussion

For a QLDPC code that requires time-domain decoding, the
effective distance is proportional to the number of repeated
syndrome measurements. Thus, taking only a small number
w ≪ d of syndrome measurements is equivalent to lowering
the effective code distance (along the time dimension) to w.
However, we show numerically that for reasonable code sizes
and choices of the QSS window size w, the logical error rate of
the overall protocol is equivalent to the standard approach of
doing (at least) d repeated measurements due to the additional
information acquired from the analog syndrome.

Although our numerical results suggest that w can be cho-
sen as a constant independent of the code size for sufficiently
small physical error rates, it is reasonable to assume that for
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FIG. 10. Performance of the w-quasi-single-shot protocol using the three-dimensional surface codes under phenomenological bit-flip noise
with analog syndrome readout. The non-single-shot side is decoded using minimum-weight perfect matching. (a) Word error rate after 32
decoding rounds as a function of the phenomenological error rate for various window size values w. (b) Below threshold scaling of the
word error rate after 32 decoding rounds for various window size values w. The results suggest that it is sufficient to repeat the stabilizer
measurement a finite number of times independent of the code distance L when incorporating analog information into the decoder.

larger code sizes (i.e., in the limit n → ∞), the logical error
rate for the QSS protocol diverges from the logical error rate
obtainable from standard time-domain decoding (i.e., with a
number of rounds proportionally to the code size) and will
possibly result in an error floor set by time-like errors. How-
ever, this gap in error suppression between the QSS protocol
and the standard protocol quickly diminishes if the physical
error rate is sufficiently below the threshold, as can be seen by
inspecting Fig. 10b. For example, for perr = 0.009, w = 2
gives a significantly higher word error rate than the larger
choices of w, but for smaller error rates, e.g., perr = 0.005, the
discrepancy with standard time domain decoding is reduced.
Thus, overall the main learning is that we observe that for suf-
ficiently small physical error rates, i.e., error rates sufficiently
below threshold, the w-QSS protocol can give logical error
rates that are equivalent to standard time-domain decoding.

It would be interesting to investigate this aspect analytically
for an LDPC code family. For instance, it is reasonable to as-
sume that depending on the LLRs (weights) used for decoding
one can argue that if the weights are w = O(1) using hard in-
formation decoding and are increased to ℓw by using analog
information, on can reduce the number of repetitions by a fac-
tor of ℓ without affecting the logical error rate significantly,
i.e., obtain an L/ℓ-QSS protocol. We leave further analytic
investigation of this manner open for future work. Note that
the investigated codes are already well beyond the capabili-
ties of near- to mid-term hardware, and thus we argue that our
numerical results are valid for “practical sizes”.

It is crucial to note that for the QSS protocol, the noise-
biased error model is vital. The main reason is that in this
setting, the bulk of the decoding is offloaded onto the single-
shot component of the 3DSC, while the QSS protocol carries a
much lighter load. This is also important due to the asymmet-
ric thresholds of the 3STC for pure bit- and phase-flip noise,
of approximately 1.5% and 10%, respectively, which leads to
the fact that the overall threshold of the code ptherr is limited
by bit-flip errors. However, according to Eq. (9), already a

small bias of ηZ ≈ 10 will distribute the error correction load
equally, and any bias ηZ ≫ 10 will result in an effective bit-
flip error rate pX that is well below the threshold of the QSS
protocol if the overall error rate is perr < 10%.

Although we are currently limited to simulations with codes
of size L ≤ 11 and physical error rates perr around the thresh-
old (due to the impracticality of conducting numerical experi-
ments with larger codes), we argue that codes of such size are
already reasonable for practical relevance due to good error
suppression on the single-shot side of the code [44]. However,
for a more quantitative analysis, circuit-level noise model sim-
ulations are required. We expect circuit-level simulations will
decrease observed thresholds by a factor of 4 − 8×. This es-
timate is consistent with the numerical results of Pattison et
al., where two-dimensional surface codes were decoded under
analog circuit-level noise [77]. Pattison et al. also proposed a
generalization of the standard circuit-level noise model to in-
clude analog measurements to simulate surface code decoding
under realistic noise assumptions. Since the generalization to
circuit-level noise encompasses several non-trivial questions
such as the design of syndrome extraction circuits and the
derivation of exact cat qubit noise models, we leave this task
open for future work. Nonetheless, we discuss several chal-
lenges in more detail in Section VI.

To verify that the QSS protocol does not lead to a decrease
of the logical error rate (and the threshold) for an increasing
number of decoding rounds, we conducted sustained threshold
simulations, i.e., threshold simulations for an increasing num-
ber of decoding rounds. However, due to the saturation of the
logical error rates in the numerical results, we are only able to
obtain a lower bound on the threshold, which decreases with
the number of decoding rounds. Therefore, we provide ad-
ditional results, shown in Fig. 11, which demonstrate that the
decay of the decoding success (logical success rate) for a num-
ber of decoding rounds scales equivalently for the QSS proto-
col compared to the standard time-domain decoding, where
the number of syndrome extraction rounds is w = L (i.e.,
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FIG. 11. Comparison of the decrease of decoding success of the 3-
QSS decoding (w = 3) versus the standard time-domain decoding
(w = L) for an increasing number of decoding rounds and sub-
threshold physical error rates using the L = 13 three-dimensional
surface codes under phenomenological noise.

proportional to the distance) for physical error rates below the
obtained threshold lower bounds. Despite the fact that this re-
sult constitutes a weaker statement than a sustained threshold
estimate, it indicates that the performance of the QSS proto-
col is equivalent to standard time-domain decoding even for
an increasing number of decoding rounds.

Moreover, we emphasize that while our simulations indi-
cate that the QSS protocol works in a memory experiment, it
is an open question whether this is also the case for a setting in
which fault-tolerant logical gates are implemented. Another
feature that could potentially affect decoding performance is
the presence of so-called fragile boundaries, as discussed in
Ref. [81].

VI. TOWARDS THREE-DIMENSIONAL CONCATENATED
CAT CODES

In this section, we discuss roads towards building a fault-
tolerant quantum computer based upon stabilized cat qubits
concatenated with the three-dimensional surface code. To this
end, we will elaborate on several open questions and chal-
lenges along that road. We begin by recalling some properties
of stabilized cat qubits.

A. Stabilized cat codes

The cat code encodes logical (qubit) information within a
two-dimensional subspace of the infinite-dimensional Hilbert
space of a harmonic oscillator with Hilbert space L(R2). This
qubit subspace is represented by the span {|α⟩ , |−α⟩} of two
quasi-orthogonal coherent state vectors |±α⟩ , α ∈ C [82] (in
the sense that for large values of |α|, they approximate an
orthogonal pair of state vectors arbitrarily well). The non-
orthogonality of this basis does not pose a problem for the
definition of the orthogonal qubit space, and one defines the

Hadamard-dual basis codewords |±⟩cat as two-component
Schrödinger cat state vectors, i.e.,

|±⟩cat = N±(|α⟩ ± |−α⟩), (21)

which are orthogonal state vectors, and

N 2
± := 1/(2(1± e−2|α|2)) (22)

is the normalization factor1. Then, the logical, computational
state vectors are obtained as

|0⟩cat =
1√
2
(|+⟩cat + |−⟩cat) = |+α⟩+O(e−2|α|2),

(23)

|1⟩cat =
1√
2
(|+⟩cat + |−⟩cat) = |−α⟩+O(e−2|α|2),

(24)

and the approximations |0⟩cat ≈ |α⟩ and |1⟩cat ≈ |−α⟩ be-
come arbitrarily accurate for |α|2 →∞.

The cat code space is not stable under noise channels
that typically affect the physical realizations of harmonic
oscillators—dominated by energy relaxation reflected by
losses and dephasing. Thus, any logical information will
eventually leak outside of the code space and will be un-
recoverable. However, through engineered interactions, it
is possible to stabilize the code space through appropriate
confinement schemes. While various different confinement
schemes, such as Kerr stabilization [83], dissipative stabiliza-
tion [84], and combined methods [85], exist, they share sim-
ilar principles. First, to overcome energy relaxation, one ac-
tively pumps energy into the system through engineered (two-
photon) drives. Then, an actual “confinement” term is added
that separates the cat qubit manifold from the rest of the en-
ergy spectrum. To ensure a two-fold degenerate ground state
of the system, these engineered interactions must be symmet-
ric with respect to the substitution â 7→ −â, where â is the
bosonic annihilation operator satisfying the canonical com-
mutation relation [â, â†] = 1 [86].

Stabilization through some confinement interaction ensures
that if leakage occurs, the state will relax back to the code
space. As a result, stabilized cat codes allow for arbitrary
suppression of bit-flip noise under realistic oscillator noise
models2 [17, 58], as we will illustrate in the case of single-
photon losses below. However, the confinement does not pro-
tect against logical cat qubit Z errors on the code space, which
may occur directly through oscillator decoherence, such as

1 Intuitively, one can recognize that these states are orthogonal by noting that
|+⟩cat is invariant under the exchange α ↔ −α while |−⟩cat obtains
a global phase. This makes them ±1 eigenstates of the parity operator
Π̂ = exp

(
iπâ†â

)
, respectively, and thus orthogonal.

2 It should be emphasized that state-of-the-art experiments with dissipatively
stabilized cat qubits cannot arbitrarily suppress bit-flip errors, however.
The current understanding is that this is due to additional noise channels
caused by auxiliary (few level) qubits, e.g., transmon qubits, used for con-
trol and readout [87].
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phase-flips caused by energy relaxation, or indirectly if a noise
channel leads to temporary leakage out of the code space, e.g.,
caused by thermal noise.

The time evolution of a single-mode quantum system un-
dergoing single-photon loss is well described by the Lindblad
master equation [88, 89],

∂

∂t
ρ̂ = κD[â]ρ̂ =

κ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (25)

where κ > 0 is the single-photon loss rate and ρ̂ is the density
operator describing the state of the system. Here, the first term
leads to quantum jumps, whereas the latter two terms gener-
ate a non-Hermitian evolution that leads to energy relaxation.
One can calculate the leading-order estimates for the cat qubit
phase- and bit-flip error rates through the Knill-Laflamme
conditions [90, 91] for the oscillator error Ê1 ∝

√
κâ. The

task reduces to the following transition matrix elements

κ| ⟨+α|â|−α⟩ |2 = κ|α|2e−4|α|2 , (26)

κ| ⟨+|â|−⟩cat |
2 = κ|α|2 tanh

(
|α|2

)
≈ κ|α|2, (27)

which shows that the ratio of bit- to phase-flip errors is ex-
ponentially suppressed, i.e., px/pz ∼ e−4|α|2 , yielding an ef-
fective biased-noise error channel for the outer code. We note
that exponential suppression (in |α|2) of bit-flip errors comes
at the cost of linearly increasing the phase-flip rate. Although
this will limit the extent to which one can increase α before
pz exceeds the threshold of the concatenated code, we empha-
size that the recently introduced stabilized squeezed-cat qubit
allows one to suppress bit-flip errors without increasing the
phase-flip errors [92].

To benefit from a biased-noise error channel, it is impor-
tant that the noise bias can be sustained even during gate
operations. It has been shown that this is possible for sta-
bilized cat qubits due to the complex-valued displacement
amplitude α, which contributes additional degrees of free-
dom and in this way allows the realization of the two-qubit
CNOT gate in a bias-preserving way by performing (condi-
tioned) rotations that exchange |α⟩ and |−α⟩. During this
rotation, the bias is preserved, and a topological phase is
added to the dual-basis codewords, i.e., |+⟩cat 7→ |+⟩cat and
|−⟩cat 7→ |−⟩cat [17, 58].

Finally, performing a logical Z measurement can be done,
for example, by performing a non-demolition cat quadrature
readout [12], which distinguishes the two coherent state vec-
tors |+α⟩ and |−α⟩, see also Fig. 1(b). Due to the finite vari-
ance of coherent states, such a measurement will be inherently
imprecise because of their continuous distribution in quantum
phase space. However, one can incorporate this analog infor-
mation into the decoding stages of the outer code, for exam-
ple, by assigning higher error likelihoods to states that have
measurement outcome xm ≈ 0. Importantly, the resolvability
of the cat qubit computational state vectors |0/1⟩cat is given
by the overlap of the two states that scales as ∼ e−2|α|2 and
thus assignment errors become exponentially suppressed with
the size of the stabilized cat qubit.

B. Open questions

We highlight that an immediate open question, independent
from any experimental realization, is the verification of our
decoding protocols in a more realistic noise model, i.e., in
the presence of circuit-level noise and the determination of
thresholds in these cases. One might expect a reduction in
threshold (roughly) proportional to the stabilizer weight, due
to additional fault locations that occur in the syndrome ex-
traction circuit, impacting the non-single shot side of the code
more strongly than the single shot side, which have stabilizers
of weights 6 and 4, respectively. However, this will not cause
a fundamental issue, as the bias of the stabilized cat qubits can
be tuned such that the code performance is effectively limited
by the threshold of the single-shot code. Regarding syndrome
extraction, very recent work suggests that the ordering of op-
erations in the syndrome extraction circuit does not affect the
effective distance of the code, see Ref. [93].

Syndrome extraction based on cat qubits requires bias-
preserving CNOT gates, which have not been demonstrated
in experiments for stabilized cat qubits so far. Therefore,
currently, our estimates for achievable error rates with such
gates rely upon theoretical models as proposed, for instance,
in Ref. [14] for Kerr-cats and Ref. [19] for dissipative cats.
These references also detail the implementation of all other
required Clifford operations and Pauli measurements required
for the two-dimensional surface code. As there is no funda-
mental difference in the type of gates required for syndrome
extraction in the three-dimensional case, we refer the inter-
ested reader to the aforementioned articles.

C. Conceptional architecture

One could imagine a possible hardware implementation in
superconducting circuits as an extension of the proposals in
Refs. [14, 19], stacking the proposed two-dimensional layouts
in a vertical direction in an alternating ABAB pattern as illus-
trated in Fig. 12. Vertical coupling between chips can be
achieved through small form factor superconducting through-
silicon-vias (TSVs) [94–96]. Although state-of-the-art fabri-
cation techniques currently do not achieve stacking of more
than a few layers, the use of TSVs in superconducting circuits
is a recent development that will likely mature rapidly in the
future [97]. Conceptually, even only a few layers can yield
a useful three-dimensional surface code when the noise bias
is large enough. The reason is that for the rectangular cubic
lattice of spatial extend Lx, Ly, and Lz , the effective code dis-
tances dX and dZ are given by [44]

dX = min{Lx, Ly, Lz}, (28)
dZ = min{LxLy, LyLz, LzLx}. (29)
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B

B

Data Ancilla Interconnect TSV

FIG. 12. Sketch of the possible three-dimensional surface codes ar-
chitecture. The grid on the left shows a single two-dimensional layer
of data and auxiliary cat qubits arranged with nearest-neighbor con-
nectivity achieved through in-plane interconnects that activate the in-
teraction between the data and auxiliary qubits. Through-silicon-vias
(TSVs) connect multiple such layers together, one connecting to the
layer above, the other to the layer below. The layers are stacked in an
ABAB pattern (right), where the difference between A and B is that
the placement of data and auxiliary qubits is interchanged.

VII. CONCLUSION

Recently, there has been progress in the realization of
bosonic codes that increase the lifetime of encoded quantum
information. Additionally, the discovery of good QLDPC
codes [25–29] motivates the development of decoding proto-
cols for concatenated bosonic-LDPC codes. These protocols
should consider the analog information inherent to the mea-
surement of continuous-variable quantum states.

In this article, we contribute to this task by presenting meth-
ods that feed the analog information obtained during bosonic
syndrome measurements into belief propagation and matching
decoders. In particular, we show how to decode analog syn-
dromes for single-shot codes that are obtained from higher-
dimensional hypergraph product constructions. We also con-
sider codes that are not single-shot and thus require repeated
stabilizer measurements over time in general. We introduce
analog Tanner graph decoding as a way of naturally incorpo-
rating analog syndrome information directly into the decoding
graph.

To support and numerically assess our decoding methods,
we consider the three-dimensional surface code as a test case.
Our simulations are performed using a phenomenological
noise model inspired by bosonic cat code qubits. We find
that our analog Tanner graph decoding methods lead to a sig-
nificantly enhanced sustainable single-shot threshold for the
three-dimensional surface code. Furthermore, we show that
accounting for analog information from bosonic syndrome
measurements can reduce the number of repetitions required
for time-domain decoding. We demonstrate this explicitly
by incorporating analog Tanner graph methods into an over-
lapping window decoder for the non-single-shot component
of the three-dimensional surface code. For the case of the
L = 13 three-dimensional surface code, we show that it suf-

fices to decode with a window size of w = 3. This is a
considerable reduction in the time overhead compared to the
case of discrete syndrome decoding where the window size
must be equal to the code distance, i.e., w = 13. We argue
that this renders the three-dimensional surface code w-quasi-
single-shot.

To further boost the development of concatenated bosonic-
LDPC codes, we provide open-source software tools for all
proposed techniques. With these tools, we hope to emphasize
the importance of open-source software and to inspire further
research interest into concatenated bosonic codes.

We note that our numerical experiments are performed us-
ing a phenomenological noise model. A natural follow-up to
this work will be to further verify the potential of analog Tan-
ner graph decoding under a more realistic circuit-level noise
model. Moreover, it is an interesting question as to whether
other decoders for (3D) QLDPC codes, such as the recently in-
troduced “p-flip decoder” [98] or the three-dimensional tensor
network decoder [99], can be modified to incorporate analog
information into the decoding process. Finally, it would also
be interesting to investigate the performance of analog Tan-
ner graph decoding for other codes, such as three-dimensional
subsystem codes [65, 100].

This paper has focused on quantum memories. A remaining
open problem concerns the questions as to whether analog in-
formation can be used to improve decoding performance dur-
ing the implementation of fault tolerance logical gates, e.g.,
during lattice surgery. Such investigations will require a de-
tailed analysis of the physical architecture used to realize the
bosonic qubits. For instance, a necessary requirement will be
that the qubits support bias-preserving two-qubit gates [58].
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Appendix A: F2-homology

CSS codes are equivalent to 3-term chain complexes of bi-
nary vector spaces. A chain complex of vector spaces (C•, ∂•)
is a sequence of vector spaces and linear maps

(C•, ∂•) = . . . Ci+1
∂i+1−−−→ Ci

∂i−→ Ci−1
∂i−1−−−→ . . . , (A1)

with the property

∂i+1∂i = 0,∀i. (A2)

The linear maps ∂i are called boundary maps or boundary
operators. It is standard to define the spaces of cycles Zi and
boundaries Bi as

Zi := ker ∂i ⊆ Ci, (A3)
Bi := im ∂i+1 ⊆ Ci. (A4)

Since Eq. (A2) implies that Zi ⊆ Bi, we can define the quo-
tient

Hi(C•) := Zi/Bi, (A5)

which is called the i-th homology group of the chain complex.
By inverting the arrows in Eq. (A1), i.e., transposing the

corresponding linear maps, we obtain the dual notion called
co-chain complex

C• := . . . Ci+1
∂⊤
i←−− Ci

∂⊤
i−1←−−− Ci−1 . . . , (A6)

and completely analogous definitions for co-boundaries
Bi := im ∂⊤

i−1, co-cycles Zi := ker ∂⊤
i , and the co-homology

groupHi(C•) = Zi/Bi.
By using a three-term subcomplex of a chain complex

Ci+1
∂i+1−−−→ Ci

∂i−→ Ci−1, (A7)

a CSS code can be obtained by setting

HT
Z = ∂i+1, (A8)

HX = ∂i, (A9)

whereby the CSS condition from Eq. (2) is fulfilled by defini-
tion. We can now reason about a code in the language of chain
complexes and their homology.

The Z-type stabilizers SZ correspond to the boundaries Bi

and the Z-type Pauli operators that commute with all X-type
operators correspond to the cycles Zi. Analogously, SX =
Bi and the X-type Paulis commuting with the Z-type Paulis
correspond to the co-cycles Zi. The Z-type logical operators
correspond to elements of the homology groupHi and the X-
type logical operators to the cohomology groupHi.

Note that a linear classical code is a two-term chain com-
plex where the boundary operators map between the space of
checks and the code space.

Using the language of homology, codes can be constructed
by taking the product of two chain complexes [25–27, 101].

The tensor product3 of two 2-term chain complexes C1
∂C
1−−→

C0 and D1
∂D
1−−→ C0, each corresponding to a classical code,

gives a three-term chain complex C ⊗D defined as

C1 ⊕D1
∂2−→ C1 ⊕D0 ⊗ C0 ⊕D1

∂1−→ C0 ⊗D0, (A10)

where the boundary maps are defined as

∂2 =

(
∂C
1 ⊗ 1
1⊗ ∂D

1

)
, (A11)

∂1 =
(
∂C
1 ⊗ 1 | 1⊗ ∂D

1

)
. (A12)

Applying the tensor product to higher-dimensional chain com-
plexes gives a quantum code with higher-dimensional ele-
ments.

For example, the repetition (ring) code can be seen as a
collection of vertices connected by edges in pairs. The ten-
sor product of two repetition codes then describes a two-
dimensional object with faces, edges, and vertices that cor-
respond to the two-dimensional surface code, as illustrated
in Fig. 13. Analogously, the three-dimensional surface
codes [42] can be obtained as a tensor product of a two-
dimensional surface code with a repetition code correspond-
ing to a 4-term chain complex (cf. Ref. [39]) as

C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (A13)

Example A.1 (Three dimensional surface code from repeti-
tion codes). Consider the 3-repetition code R : C1 → C0

with check matrix

Hrep =

1 1 0
0 1 1
1 0 1

 . (A14)

A two-dimensional surface code can be obtained by taking
S = R ⊗ R. By taking the tensor product with R again,
we obtain a three-dimensional surface code, i.e., a three-
dimensional lattice S3D = S ⊗R, as sketched in Fig. 3.

FIG. 13. The two-dimensional surface code obtained from the tensor
product complex of two repetition codes.

3 Formally this is denoted as the total complex of the tensor product double
complex [26].
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Depending on whether we choose period boundary
conditions—i.e., a ring code or a repetition code as “seed
code”—or not, we obtain the following code parameters of
the three-dimensional surface codes (3DSC). Note that the
three-dimensional surface codes with periodic boundaries is
also called three-dimensional toric code (3DTC),

• 3DSC: [[2L(L− 1)2 + L3, 1, dX = L2, dZ = L]],

• 3DTC: [[3L3, 3, dX = L2, dZ = L]].

Note that, instead of placing X-checks on faces and Z-checks
on vertices, some works consider an assignment with swapped
checks.

Appendix B: Proof of Proposition V.2

Here, we argue that the construction of the multi-round
parity-check matrix H̃ (cf. Definition V.1) for r rounds of syn-
drome measurement can be described as the tensor product of
the chain complex of the code C and the chain complex of a
(slight variant of the) r-repetition codeR.

The statement is quite straightforward given existing results
on product code constructions and hence the result follows
from basic notions from graph theory and homological al-
gebra. However, technically, it is a priori not clear that this
matches our multi-round Tanner graph construction, thus to
make these correspondences concrete, we present the result
formally in the following.

Let us introduce some additional notation. We consider a
two-dimensional space X as the generalization of a graph (a
one-dimensional space) with the i-cells, Xi, denoting sets of
the i-dimensional elements, i.e., 0-cells are vertices, 1-cells
are edges, 2-cells are faces, and 3-cells are volumes. Analo-
gously to graphs, the incidence matrices ∂i of X are defined
as

∂X
i ∈ F

Xi
2 , (∂X

i )v,w = 1 ⇐⇒ v ∼ w, (B1)

where v ∼ w denotes that v is incident to w.
Given a two-dimensional space X , the cellular chain com-

plex C•(X) is defined as the chain complex whose vector
spaces Ci have the i-cells, Xi, as basis and boundary maps
∂i that map an i-cell to the formal sum of (i − 1)-cells at its
boundary, e.g., an (edge) to the vertices at its boundary

C• = C2(X)→ C1(X)→ C0(X) (B2)

where we may identify Ci(X) = F
Xi
2 , i.e., Ci(X) is the vec-

tor space spanned by i-cells in X , and the boundary operators
correspond exactly to the incidence matrices of the i-space.
Given two graphs (one-dimensional spaces) X,Y , their Carte-
sian product X × Y is a 2-dimensional space Z whose ele-
ments are

Z0 = X0 × Y0, (B3)

Z1 = X0 × Y1

∐
X1 × Y0, (B4)

Z2 = X1 × Z1, (B5)

where the coproduct
∐

is the disjoint sum of sets. The inci-
dence matrices of Z are then given as

∂Z
1 = (1X0 ⊗ ∂Y

1 | ∂X
1 ⊗ 1Y0) ∈ F

Z1
2 , (B6)

∂Z
2 =

(
∂X
1 ⊗ 1Y1

1X1
⊗ ∂Y

1

)
∈ FZ2

2 . (B7)

Note that this is equivalent to considering the cellular chain
complexes C•(X) and D•(Y ) and constructing the tensor
product complex

C•(X)⊗D•(Y ). (B8)

Since C•(X), D•(Y ) come with bases X0, X1 and Y0, Y1, the
bases of C•(X)⊗D•(Y ) correspond exactly to the spaces ob-
tained by the Cartesian product X × Y and by ordering the
Cartesian products, the matrices of the boundary operators ∂Z

i

are exactly the Kronecker products of the corresponding ma-
trices ∂X

i , ∂Y
i , hence the boundary map of the tensor product

complex are exactly the incidence matrices of the Cartesian
product and we can identify C•(X) ⊗D•(Y ) = C•(X × Y ).
Having the notation in place we can formulate the statement:

Proposition B.1 (Formal version of Proposition V.2). Let
C• be a three-term chain complex corresponding to a CSS
QLDPC code C and let R• = R1

R−→ R0, be a chain com-
plex whose boundary map R corresponds to the r × r matrix

R =

(
1 0 . . . 0

R′

)
,

where R′ is the (r−1)×r check matrix of the r-repetition code
with the first row removed. Then, the r-multi-round parity
check matrix H̃ of C is equivalent to the boundary map of the
tensor product complex R• ⊗ C•.

Proof. Since the code is CSS we focus on a single check side
(i.e., the underlying graph of the space) in the following. Let
H ∈ Fm×n

2 be the parity check matrix of one side of the code
C, i.e.,

C1
H−→ C0.

The tensor product chain complex is

R1 ⊗ C1
∂2−→ R0 ⊗ C1 ⊕R1 ⊗ C0

∂1−→ R0 ⊗ C0, (B9)

where the boundary maps are given by

∂2 =

(
1R ⊗H
R⊗ 1H

)
, (B10)

∂1 = (1R ⊗H | R⊗ 1H) . (B11)

Since qubits are placed on 1-cells, the check matrix given
by ∂1 is the one that is relevant.

Viewing C•, R• as cellular chain complexes, it is clear that
the basis elements of the 1-cells correspond exactly to Y0 ×
X1

∐
Y0 ×X1, where Yi, Xi are the bases of the i-cells of R

and C, respectively, and ∂1 is exactly the incidence matrix of
the underlying 1-complex.
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Hence, by the definition of the Kronecker product, the re-
sulting check matrix has the form

∂1 =


H 1H

H 1H 1H

. . .
. . .

H 1H 1H

 . (B12)

Thus, ∂1 = H̃(C). Since the edge-vertex incidences are given
by ∂1 in the corresponding graph whose edges can be identi-
fied with the bases R0 × C1

∐
R1 × C0, and whose vertices

can be identified with R0 ×C0, the product graph obtained is
equivalent to the multi-round Tanner graph T̃ .

Note that to match Definition V.1 exactly, we consider a
slightly altered check matrix R compared to the standard rep-
etition code. For example, the check matrix of the 4-repetition
code is

R4−rep =

1 1 0 0
0 1 1 0
0 0 1 1

 , (B13)

the version we consider is

R =

1 0 0 0
0 1 1 0
0 0 1 1

 , (B14)

as this accounts for the fact that the first layer of checks is only
connected to a single layer of time-like bit nodes. Note that the
code spaces of the matrices defined above are not equivalent,
since for the repetition code from Eq. (B13) the all-ones vector
is the only non-trivial codeword (1, 1, 1, 1) ∈ ker(R4−rep),
but for the considered variant defined in Eq. (B14) we have
(0, 1, 1, 1) ∈ ker(R). One could equivalently consider
the standard repetition code matrix and then project the fi-
nal boundary map s.t. the respective identity block entry is
mapped to 0.

Appendix C: Implementation details

In this section, we present details concerning the code
used to conduct the numerical experiments presented in this
manuscript. In Appendix C 1 we review the QLDPC code
family used in Section IV. Appendix C 2 reviews the conver-
sion between analog syndrome noise and bit-wise syndrome
noise channels used in Section IV. In Appendix C 3 to Ap-
pendix C 5 we review details on belief-propagation decoding
and the proposed implementations of ATD and SSMSA.

1. Non-topological code constructions

In this section, we give details on the construction of the
codes used for numerical evaluations.

a. Lifted product codes

For the simulations presented in Section III, we use a fam-
ily of lifted product (LP) codes [27, 41]. The construction
of lifted product codes is described below. Algebraically, an
[[n, k, d]] LP code can be obtained from the tensor product of
a base matrix B that corresponds to a classical quasi-cyclic
LDPC code [102] with its conjugate transpose B∗. The con-
crete instances of the family used are constructed from the
base matrices Bd for distance d from Appendix A in Ref. [24]
and are given as

B12 =

0 0 0 0 0
0 2 4 7 11
0 3 10 14 15

 , (C1)

B16 =

0 0 0 0 0
0 4 5 7 17
0 14 18 12 11

 , (C2)

B20 =

0 0 0 0 0
0 2 14 24 25
0 16 11 14 13

 , (C3)

to obtain the code instances with parameters

• [[544, 80, d ≤ 12]],

• [[714, 100, d ≤ 16]],

• [[1020, 136, d ≤ 20]].

To construct the code instances in software, we use the LDPC
library by Roffe [103]. The parity-check matrices are pro-
vided in the GitHub repository github.com/cda-tum/
mqt-qecc.

2. Syndrome noise model conversion

To compare decoding approaches that consider analog or
hard syndrome errors, the syndrome noise model under con-
sideration needs to be compatible. This means we need to
be able to compare (and convert) the strength of the ana-
log syndrome noise to the hard syndrome noise and vice
versa. The analog information decoder considers Gaussian
syndrome noise ei ∼ N (0, σ2). When dealing with syndrome
bits si ∈ {−1,+1 }, we want to convert this into an error
channel for hard syndrome noise that is equivalent, i.e.,

ei flips the syndrome ⇐⇒

{
ei > 1 if si = −1,
ei < 1 if si = +1.

(C4)

To satisfy the conditions in Eq. (C4) define the syndrome error
rate psyndr as

psyndr =


1√

2πσ2

∫ −1

−∞ e−x2/2σ2

dx if si = +1,

1√
2πσ2

∫∞
1

e−x2/2σ2

dx if si = −1.
(C5)

github.com/cda-tum/mqt-qecc
github.com/cda-tum/mqt-qecc
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By symmetry of the Gaussian distribution, this gives equiva-
lent error probabilities for both cases, which can be derived
readily by substituting x 7→ −x,

1√
2πσ2

∫ −1

−∞
e−x2/2σ2

dx =
1

2
Erfc

(
1√
2σ2

)
, (C6)

where x 7→ Erfc(x) is the complementary error function. For
given psyndr the solution is

σ =

√
2
−1

Erfc−1(2psydr)
=

√
2
−1

Erf−1(1− 2psydr)
, (C7)

where x 7→ Erfc−1(x) is the inverse of the complementary er-
ror function and Erf−1(x) the inverse of the error function.
This allows us to relate the discrete qubit and (analog) cat
qubit error models in a one-to-one correspondence.

3. Belief-propagation

Both the SSMSA decoder proposed in Ref. [68] and our
ATD method are based on belief propagation (BP), which is
a decoding algorithm that has been adapted from classical
(LDPC) codes to quantum codes [41, 69, 104]. In this sec-
tion, we briefly review the main aspects of BP relevant to our
methods. We refer the reader to literature in the field for a
more in-depth discussion, for instance [41, 70]. Since we fo-
cus on CSS codes that can be seen as a combination of two
classical linear codes, we focus on a single check side in the
following.

Given a syndrome s = H · e, the objective of the decoder
is to find the most likely error e. In practice, this amounts
to finding a minimum (Hamming) weight estimate ε for the
error, i.e.,

ε = argmaxePr(e|s).

In an i.i.d. noise model, ε can be computed bit-wise by com-
puting the marginal probabilities

Pr(ei) =

n∑
i

Pr(e1, e2, . . . , êi = 1, ei+1, . . . , en|s), (C8)

where the hat êi indicates that the variable is left out, i.e.,
summation over all variables except ei.

The goal of BP is to compute these probabilities in an itera-
tive way by using the natural factorization given by the Tanner
graph of the code (also called the factor graph in this context).
The marginals Pr(ei) are then used to infer an estimate ε by
setting

ε =

{
1 if Pr(ei) ≥ 0.5,

0 otherwise.
(C9)

Belief propagation computes marginals using an iterative
message-passing procedure, where in each iteration, a mes-
sage is sent from each node to its neighbors. The messages

Algorithm 1: Hard syndrome belief-propagation
(MSA) with serial scheduling

1 s: Syndrome;
2 H: Parity-check matrix;
3 N (c): Bits in the neighborhood of check c;
4 M(b): Checks in the neighborhood of bit b;
5 µc,b: Check-to-bit update from check c to bit b;
6 νc,b: Bit-to-check update from bit b to check c;
7 λb = log((1− p)/p): LLR for bit b;
8 p: Channel probability;
9 bit-count: The number of bits;

10 max-iter: The maximum no. BP iterations to run;
Result: estimate ε

11 for all c, b where Hc,b ̸= 0 do // Initialization
12 νb,c := log((1− p)/p)
13 for iter to max-iter do // Main iteration loop
14 for b ∈ {1, . . . , bit-count} do // Serial bit loop
15 λb = log((1− p)/p); // Initialise LLRs
16 for c ∈ M(b) do // Loop over neighbors
17 |µc,b| = min

b′∈N (c)\{b}
|νb′,c|;

18 sgn(µc,b) = sgn(λb) ·
∏

b′∈N (c)\{b}
sgn(νc,b′);

19 µc,b = α · sgn(µc,b) · |µc,b|; // Check to
bit

20 λb = λb + µc,b; // Update LLRs
21 for c ∈ M(b) do
22 νb,c = λb − µc,b; // Bit to check
23 if λb ≤ 0 then // Hard decision on bit b
24 εb = 1;
25 else
26 εb = 0;
27 if s = H · ε then
28 return ε; // Converged, return

estimate.
29 return ε; // Return estimate after maximum

number of iterations reached.

constitute sets of “beliefs” on the probabilities to be com-
puted. The value of the messages depends on the syndrome
and the bit error channel. In this work, we use a serial sched-
ule to compute BP marginals. Our implementation is outlined
in Algorithm 1 and is described below.

In the first step of BP decoding, the values of the bit nodes
bj are initialized to the log-likelihood ratios (LLRs) λi of the
error channel

λi := log

(
1− p

p

)
. (C10)

In every iteration, each check node i sends messages to neigh-
boring bit nodes j ∈ N (i), denoted as µi,j . The value of
the check-to-bit message µi,j is computed as a function of the
syndrome γi and the incoming bit-to-check messages vi,j′ as

α · sgn(γi) ·
∏

j′∈N (i)\{j}
sgn(νi,j′) · min

j′∈N (i)\{j}
|νi,j′ |. (C11)

The factor α ∈ R is called the scaling factor [105]. The bit-to
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check node messages νj,i are computed as

µj,i := λj +
∑

i′∈N (j)\i
µi′,j .

It is well-known that BP only computes the marginals Pr(ei)
exactly on factor graphs that are trees (in a single step). In
the more general setting, where the graph contains loops, the
computed marginals are approximate [106]. To check for ter-
mination of the iterative procedure, we use the marginals and
Eq. (C9) to infer an estimate ε from the currently computed
marginals and check if ε is valid for the given syndrome. i.e.,
if s = H · ε the solution ε is valid. If ε is valid, the BP algo-
rithm terminates and ε is returned as the decoding estimate.

We use the BP+OSD implementation provided in
the LDPC2 package by Roffe et al. available on
Github https://github.com/quantumgizmos/
ldpc/tree/ldpc_v2.

4. Soft-syndrome MSA

The SSMSA algorithm is essentially equivalent to BP as
sketched in Algorithm 1 with some alterations. Instead of
the hard syndrome vector s, the input is an analog syn-
drome vector s̃, whose corresponding LLR vector is denoted
γ (cf. Eq. (12)). The initialization and bit-to-check messages
are computed equivalently. For computing the check-to-bit
messages, the analog syndrome γ is taken into account. If
the syndrome value is below a pre-defined cutoff value Γ that
models the reliability of the syndrome information, the syn-
drome information is treated as unreliable and the messages
µc,b are instead computed as

µc,b :=


min

b′∈N (c)\b
(|νb′,c|) if |γc| > Γ,

min
b′∈N (c)\b

(|νb′,c|, |γc|) otherwise.
(C12)

Note that there is a case in which Algorithm 2 erases the ana-
log syndrome information. This occurs when the absolute
value of the analog syndrome is smaller than the value of all
incoming messages of the check node c, and the sign of the
incoming messages matches the sign of the syndrome. From
Line 22 of Algorithm 2, we see that in this case the analog
syndrome value is overwritten and thus lost.

Our implementation of the SSMSA decoder is made pub-
licly available in the LDPC2 package https://github.
com/quantumgizmos/ldpc/tree/ldpc_v2.

5. Analog Tanner graph decoder

In analog Tanner graph decoding (ATD), we use the Tan-
ner graph of the code T to construct the analog Tanner graph
(ATG). This allows us to directly incorporate the analog syn-
drome information in virtual nodes in the Factor graph.

Algorithm 2: Soft-Syndrome MSA
1 γi: Analog syndrome LLR;
2 H: Parity-check matrix;
3 N (c): Bits in the neighborhood of check c;
4 M(b): Checks in the neighborhood of bit b;
5 µc,b: Check-to-bit update from check b to bit b;
6 νc,b: Bit-to-check update from bit b to check c;
7 λb: LLR for bit b;
8 Γ: Cutoff for soft-info decoding;
9 p: Channel probability;

10 bit-count: the number of bits;
11 max-iter: The maximum no. BP iterations;

Result: estimate ε
12 for all c, b where Hc,b ̸= 0 do // Initialization
13 νb,c := log((1− p)/p);
14 for iter to max-iter do // Main iteration loop
15 for b ∈ {1..bit-count} do // Serial bit loop
16 λb = log((1− p)/p); // Initialise LLRs
17 for c ∈ M(b) do // Loop over check bits
18 if |γc| ≤ Γ then // Virtual check

update
19 |µc,b| = min

b′∈N (c)
(|νb′,c|, |γc|);

20 if |γc| < min
b′∈N (c)

(|νb′,c|) then

21 if sgn(γc) ==
∏

b′∈N (c)

sgn(νb′,c) then

22 γc = sgn(γc) · min
b′∈N (c)

(|νb′,c|);
23 else
24 γc = −1× γc;
25 else // Default to MSA if above

cutoff
26 |µc,b| = min

b′∈N (c)\{b}
|νb′,c|;

27 sgn(µc,b) = sgn(γc) ·
∏

b′∈N (c)\{b}
sgn(νb′,c);

28 µc,b = sgn(|µc,b|) · |µc,b|; // Check to
bit

29 λb = λb + µc,b; // Update LLRs
30 for c ∈ M(b) do
31 νb,c = λb − µc,b; // Bit to check
32 if λb ≤ 0 then // Hard decision on bit b
33 εb = 1;
34 else
35 εb = 0;
36 sc = sgn(γc); // Hard syndrome
37 if s = H · ε then
38 return ε; // Converged, return

estimate.
39 return ε; // Return estimate after maximum

number of iterations reached.

In the initialization phase of the ATD decoder, BP sets the
values λi, i ∈ [n] of all bit nodes in the factor graph to

λi = log

(
1− p

p

)
, i ∈ [n]. (C13)

To ensure that we initialize the values of the analog nodes
λn+j , j ∈ [m] with the value of the analog syndrome γj , we

https://github.com/quantumgizmos/ldpc/tree/ldpc_v2
https://github.com/quantumgizmos/ldpc/tree/ldpc_v2
https://github.com/quantumgizmos/ldpc/tree/ldpc_v2
https://github.com/quantumgizmos/ldpc/tree/ldpc_v2
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derive the error channel probabilities p′i from Eq. (C13)

p′i =
1

eγi + 1
. (C14)

Thus we set

p′n+j =
1

eγj + 1
, j ∈ [m] (C15)

for the analog nodes to ensure that after the initialization phase
of BP the bit nodes are initialized with the LLRs, and the vir-
tual nodes with the analog syndrome (i.e., the LLR) values.

Appendix D: Obtaining analog information for data qubits and
concatenated GKP codes

One might raise the question as to whether it is possible
to include more analog information in the decoding graph,
e.g., by considering analog values associated with qubits (data
nodes in the factor graph used for decoding) as well. The an-
swer to this question is positive under the assumption that one
performs active error correction on the bosonic qubit. In the
considered phenomenological noise model that is inspired by
stabilized cat qubits, this is not the case as the cat qubit is au-
tonomously protected by the engineered stabilization mecha-
nism as discussed in Section VI A.

Although in some cases, for example, dissipative stabilized
cat qubits, information about certain types of errors can also
be obtained by continuously monitoring the buffer mode that
is used to implement the dissipation mechanism [107], doing
so with sufficiently high reliability seems to be a task of simi-
lar complexity as implementing a QEC protocol.

However, if the bosonic code is actively corrected in some
way, one can use this information in the decoder as well. A
straightforward example is the single mode GKP code as it is
a stabilizer code with generators given by the displacements
in phase space R2

⟨SX := e2i
√
πp̂, SZ := e−2i

√
πx̂⟩, (D1)

where p̂ and x̂ are the momentum and position operators of
the harmonic oscillators. Here,

e2i
√
πp̂ = D(−

√
2(1, 0)T ), e−2i

√
πx̂ = D(

√
2(0, 1)T )

(D2)
with

D(ξ) := exp
(
−i
√
2πξT (p̂,−x̂)T

)
(D3)

being the single mode shift operator, generating shifts in phase
space by ξ ∈ R2. One can measure the stabilizer generators
using Steane-type error correction which requires auxiliary
GKP qubits [23]. Assuming the availability of noiseless aux-
iliary qubits, the Steane-type error correction determines the
shift error the data qubit has undergone modulo This means
that shift errors up to a magnitude of at most

√
π/2 can be

corrected, while shift errors that have a larger magnitude typ-
ically lead to logical errors in the GKP qubit subspace. Sup-
pose that the measurement yields an outcome xm for the x-
quadrature shifts. Then, if

∣∣xm mod
√
2π

∣∣ ≈ 0 it is unlikely

−1/2 −1/4 0 1/4 1/2
xm/

√
π
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FIG. 14. Obtaining analog information from GKP data qubits. The
main panel shows the GKP qubit error probability conditioned on
the measurement outcome xm for different values of noise strength
σ. Detecting a value xm close to zero corresponds to a small er-
ror probability for any value of σ, while the error probability for
measurement outcomes closer to the “decision boundaries” ±√

π/2
are highly dependent on the assumed noise channel and its variance
σ2. The inset shows a sketch of the distribution of measurement out-
comes xm for two different values of σ and the dashed lines indicate
the decision boundaries.

that this qubit has undergone a logical GKP error if we as-
sume as above that shift errors follow a Gaussian distribution
xm ∼ N (0, σ2) with mean zero and variance σ2. However,
if

∣∣xm mod
√
2π

∣∣ ≈ √π/2, a logical GKP qubit error is
significantly more likely. Thus, it is possible to quantify this
likelihood and use it to also initialize the data nodes of the de-
coding graph [black circles in Fig. 1(d-f)] with analog infor-
mation and then apply ATD to decode. See also Fig. 14 for a
visualization of the likelihood function in analogy to Fig. 1(c).

Appendix E: Concatenated multi-mode GKP and rotation
symmetric bosonic codes

In a measurement-based setting, analog information can be
extracted through teleportation-based Knill-type error correc-
tion [108]. This works for stabilizer codes such as single- and
multi-mode instances of the GKP code [109–111]. Generally,
one can think of multi-mode encodings beyond single-mode
encodings in terms of displacement operators

D(ξ) := exp
{
−i
√
2πξTJ(p̂1, . . . , p̂m,−x̂1, . . . ,−x̂m)T

}
(E1)

in phase space R2m×2m of m bosonic modes, with

J :=

[
0 1m

−1m 0

]
(E2)

Then one can generally define a stabilizer group of a GKP
code in terms of displacements

⟨D(ξ1), . . . , D(ξ2m)⟩, (E3)

where ξ1, . . . , ξ2m ∈ R2m×2m are linearly independent and
we have that ξTi Jξj ∈ Z for all i, j. This defines a stabilizer
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group isomorphic to a lattice [111]. In this way, one obtains
multi-mode information in the syndrome measurements. For
this reason, the methods introduced here also contribute to the
question of how to decode GKP codes. In a similar way, one
can consider large classes of alternative bosonic codes known
as rotation symmetric bosonic codes [112, 113]. Both our de-
coding techniques and software tools are easily adapted to in-
corporate analog information for the data qubits, as explained
above.

Appendix F: Additional results

In this section, we present additional simulation results for
various parameter settings of the considered decoder imple-
mentations. We also present results for the phenomenological
threshold of the three-dimensional toric code (i.e., the 3DSC
with period boundaries).

1. Phenomenological noise threshold of the three-dimensional
toric code

As a by-product of our QSS simulations, we obtain a
threshold of the non-single-shot side of the 3DTC under phe-
nomenological noise of ≈ 1.26% and ≈ 1.66% using hard
syndromes (HS) and analog syndromes (AS), respectively.
The corresponding threshold plots are shown in Fig. 15. This
generalizes recent code capacity results presented in Ref. [57].
Here, we simulated a pure bit-flip noise model with pdataerr =
psynderr . Measurement results are collected over 2L rounds and
then decoded using minimum-weight perfect-matching. For
the case of hard syndromes, the noise from the syndrome is
added as discussed in Section II C 2. This ensures the effec-
tive error channel for hard syndromes is the same as that for
analog syndromes. We use the PyMatching implementation
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FIG. 15. Phenomenological noise threshold of the three-dimensional
toric code. The logical error rates are obtained by simulating a pure
bit-flip noise model with pdataerr = psynderr . The syndrome is collected
in 2L measurement rounds of which the last one is noiseless. We
decode using minimum-weight perfect matching yielding a threshold
at ≈ 1.26% and ≈ 1.66% using the hard syndrome (HS) and the
analog syndrome (AS), respectively.

of minimum-weight-perfect matching [79, 80] as the decoder
for these simulations.

2. BP parameter optimization

Since there are various parameters that allow to fine-tune
the BP+OSD implementation, we conducted a set of numer-
ical experiments to determine which parameter setting per-
forms the best in the considered scenario. However, not that
for this work we focus on techniques and methods rather than
low-level optimizations in general. Hence, the presented nu-
merical results are in general implementation-dependent and
most likely prone to further optimization and fine-tuning.

In summary, the conducted numerical experiments demon-
strate that there can be quite significant differences in de-
coding performance (achieved logical error rate/threshold
and number of BP iterations/elapsed time) depending on the
BP+OSD parameters, most notably the chosen BP scaling fac-
tor α (cf. Section C 3) and the OSD method.

The main findings are that OSD-cs with a scaling factor
α = 0.5 to α = 0.6 perform best. Furthermore, con-
cerning the SSMSA implementation, we find that a cutoff of
Γ = 5 performs the best for the considered lifted product code
family. For readers interested in more detailed results, we
refer to the GitHub repository github.com/cda-tum/
mqt-qecc, where we present detailed simulation results.

Appendix G: Numerical simulation details

In this section, we discuss the implementation details of nu-
merical simulations and the main techniques used. Since we
focus on CSS codes using depolarizing (biased) noise with-
out correlations, we decode X and Z errors separately (that
implies that a Y error on a qubit q is treated as X and Z er-
ror on q). To determine the logical error rate of an [[n, k, d]]
single-shot code, decoder combination in the considered phe-
nomenological (cat qubit) noise model, we use the following
procedure:

1. Sample an error vector e ∈ Fn
2 (bit-wise and dependent

on the error channel.

2. Compute the syndrome s = H · e.

3. Sample and apply a syndrome error es ∈ Fm
2 to obtain

the noisy syndrome ŝ.

4. Apply (analog) single-stage decoding to obtain an esti-
mate ε.

5. Check if r = ε+ e is a logical.

The sample run is successful if r is not a logical operator (i.e.,
the correction induced a stabilizer, which does not alter the
encoded logical information).

We apply a similar procedure to estimate the logical er-
ror rate for a code and decoder combination when applying
the (analog) overlapping window method to decode over time

github.com/cda-tum/mqt-qecc
github.com/cda-tum/mqt-qecc
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with multiple syndrome measurements. To simulate decoding
in R rounds of noisy syndrome measurement, we first com-
pute R noisy syndromes and then apply overlapping window
decoding as described in the main text to obtain a single sam-
ple. We repeat this procedure for a maximum number of sam-
ples N .

The logical X/Z error rate pX/Z
ℓ is the fraction of failed runs

nfail for N total samples

p
X/Z
ℓ :=

nfail

N
. (G1)

The error bars eX/Z are computed by

e2X/Z = (1− pℓ)
pℓ
N

. (G2)

The simulations are terminated if the maximum number of
samples N is reached, or if the errors fall below a certain pre-
cision cutoff, we set to 10−1.

To give a better comparison of logical error rates for codes
that encode a different number of logical qubits k, we use the
word error rate (WER) for codes with k > 1, which intu-
itively can be understood as logical error rate per logical qubit.
The WER pw is computed as

pw = 1− (1− pℓ)
1/k−1. (G3)

We can use the methods described above to obtain a threshold
pth estimation by computing the logical error rates for code in-
stances of a code family with increasing distance and increas-
ing physical error rate and then estimating where the graphs
cross. We use a standard approach based on a finite-size scal-
ing regression analysis [57, 114, 115].

To this end, we perform a quadratic fit on the logical error
rate data obtained by numerical experiments. Let pth be the
threshold physical error rate we want to determine, µ > 0 a
parameter called the critical exponent, and define the rescaled
physical error rate

x := (p− pth) · d1/µ, (G4)

which is x = 0 at p = pth. We use x to fit the simulation data
to the following quadratic ansatz Φ(p, d)

Φ(p, d) := ax2 + bx+ c, (G5)

where a, b, and c are coefficients of the quadratic ansatz and
are parameters to be determined by fitting the data. Note that
Φ(p, d) is only a valid approximation near p = pth, therefore
only data points close to this region were used to compute
the fit. Given this ansatz, we use the logical error rates pℓ
(cf. Eq. (G1)) to obtain the free parameters (pth, µ, a, b, c) by
computing a fit using the minimized mean square error.

Note that, since we focus on CSS codes, where the X and
Z decoding is done separately (assuming non-correlated er-
rors), we need to compute the combined logical error rates
from the separate experimental data. Given a X and Z logical
error rates pX

ℓ , p
Z
ℓ from numerical experiments, we compute

the combined logical error rate pℓ as

pℓ := pX
ℓ · (1− pZ

ℓ ) + pZ
ℓ · (1− pX

ℓ ) + pX
ℓ · pZ

ℓ . (G6)
Moreover, the corresponding errors are computed using stan-
dard methods for propagation of uncertainty. i.e., we use the
variance formula [116]

s2f :=

(
∂f

∂x

)2

s2x +

(
∂f

∂y

)2

s2y +

(
∂f

∂z

)2

s2z + · · ·, (G7)

where sf is the standard deviation of f , and sk the standard
deviation of k ∈ {x, y, z, . . . }. To be concrete, we apply
the formula above to the separately computed errors ex, ez , to
obtain the overall error e with

e2 := e2x · (1− ez)
2 + e2z · (1− ex)

2. (G8)

Appendix H: Open-source software

All our techniques are available in the form of open-
source software available on GitHub https://github.
com/cda-tum/mqt-qecc as part of the Munich Quan-
tum Toolkit (MQT) and partly in the LDPC2 pack-
age https://github.com/quantumgizmos/ldpc/
tree/ldpc_v2. With the proposed software, we hope to
provide a set of useful tools for analog information decoding
and to emphasize the need for open-source implementations
to foster public review, reproducibility, and extendability.
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