
Hamiltonian-based Quantum Reinforcement
Learning for Neural Combinatorial Optimization

Georg Kruse
Fraunhofer IISB

Technical University Munich
Erlangen, Germany

georg.kruse@iisb.fraunhofer.de

Rodrigo Coelho
Fraunhofer IISB

Erlangen, Germany
rodrigo.coelho@iisb.fraunhofer.de

Andreas Rosskopf
Fraunhofer IISB

Erlangen, Germany
andreas.rosskopf@iisb.fraunhofer.de

Robert Wille
Technical University Munich

Munich, Germany
robert.wille@tum.de

Jeanette Miriam Lorenz
Fraunhofer IKS

Ludwig Maximilian University
Munich, Germany

jeanette.miriam.lorenz@iks.fraunhofer.de

Abstract—Advancements in Quantum Computing (QC) and
Neural Combinatorial Optimization (NCO) represent promising
steps in tackling complex computational challenges. On the one
hand, Variational Quantum Algorithms such as QAOA can
be used to solve a wide range of combinatorial optimization
problems. On the other hand, the same class of problems can
be solved by NCO, a method that has shown promising results,
particularly since the introduction of Graph Neural Networks.
Given recent advances in both research areas, we introduce
Hamiltonian-based Quantum Reinforcement Learning (QRL), an
approach at the intersection of QC and NCO. We model our
ansatzes directly on the combinatorial optimization problem’s
Hamiltonian formulation, which allows us to apply our approach
to a broad class of problems. Our ansatzes show favourable
trainability properties when compared to the hardware efficient
ansatzes, while also not being limited to graph-based problems,
unlike previous approaches. In this work, we evaluate the
performance of Hamiltonian-based QRL on a diverse set of
combinatorial optimization problems to demonstrate the broad
applicability of our approach and compare it to QAOA.

Index Terms—Quantum Reinforcement Learning, Combinato-
rial Optimization, Neural Combinatorial Optimization

I. INTRODUCTION

Recently, both Quantum Computing (QC) and Neural Com-
binatorial Optimization (NCO) have seen significant progress
in their respective areas, both potentially offering solutions
to complex computational problems [1], [2]. On the one
hand, in NCO, Reinforcement Learning (RL) algorithms can
be used to learn heuristics to find approximate solutions
to Combinatorial Optimization (CO) problems [2]. On the
other hand, QC is believed to solve problem classes that are
intractable for classical computers, especially those with an
exponential scaling in solution space. Variational Quantum
Algorithms (VQAs) for tackling CO problems, such as QAOA
[3], already exist on currently available quantum hardware. In
this context QAOA has been extensively studied, particularly
the design of cost and mixer Hamiltonians and their effect
on solution quality [4]. Nevertheless, quantum advantage still
remains to be demonstrated.

Given the recent progress in these two research areas, their
combination might be particularly suited to solve complex CO
problems. In this context, Quantum Reinforcement Learning
(QRL) can be used to learn heuristics following the paradigm
of classical NCO. In QRL, the neural network of the classical
RL algorithm is replaced by a Variational Quantum Circuit
(VQC) as a function approximator, which is then optimized by
a classical training loop. While the ansatzes of VQAs, such as
QAOA, are problem dependent, in QRL, the problem-agnostic
hardware efficient ansatz (HEA) in different shapes and forms
is widely used [5], [6]. However, the main advantage of the
HEA might as well be its main disadvantage: being problem-
agnostic. While it can be applied to a large class of problems
due to its high expressibility and its problem independence,
it becomes untrainable due to Barren Plateaus (BPs) [7], [8]
as problem sizes increase. Hence, most works in QRL focus
on small-sized toy-problems with less than a dozen qubits [9],
[10], with their scalability to larger problem instances being
highly unlikely.

Therefore, recent works have focused on VQC architectures
with favourable properties that make them less prone to BPs.
One line of research shows that an increase in parameter
correlations within a given ansatz improves its trainability
[8]. Similarly, Larocca et al. argue that ansatzes can only be
effectively trained if their generator sets do not yield full-
rank Dynamical Lie Algebras (DLA) [11], and Ragone et
al. introduce a general theory of BPs, illustrating various
strategies on how to avoid them [12]. Another line of research
has been explored by Skolik et al. [13] and Mernyei et al. [14],
who argue that symmetry-preserving quantum circuits show
better training performance than their non symmetric counter
parts. Additionally, Skolik et al. propose a first step towards the
integration of QC into NCO. They introduce the Q-Learning
algorithm for learning on weighted graphs and showcase that
equivariant quantum circuits outperform standard HEAs on
the traveling salesperson problem (TSP). Furthermore, He [15]
has proposed to combine classical graph neural networks and



quantum annealing to solve the TSP.
Based on the considerations on the trainability of ansatzes

and the initial integration of QC into NCO, our contributions
are as follows: We introduce Hamiltonian-based QRL, where
we base our ansatz directly on the (problem) Hamiltonian of
(binary) CO problems (Section III). We analyse the trainability
of our ansatz (Section III-A) and show its relation to QAOA
(Section III-B1). In order to reduce the number of additionally
required qubits due to inequality constraints, we incorporate
an encoding strategy by [16] in our approach (Section III-B2).
The broad applicability of our ansatz is demonstrated on
three CO problems (Section III-B3). Finally, we compare our
approach to previously introduced QRL methods and analyse
its training performance with a detailed comparison against
QAOA (Section IV).

encoding block

variational block

entangling block

|0⟩

|0⟩

|0⟩

RY (s1λ1) RZ(s1λ4) RZ(θ1) RY (θ4)

RY (s2λ2) RZ(s2λ5) RZ(θ2) RY (θ5)

RY (s3λ3) RZ(s3λ6) RZ(θ3) RY (θ6)

Fig. 1: Single-layer VQC for QRL: U(s, θ) generally consists
of three blocks which are repeated in each layer: An encoding-
block, where the features of state s (possibly scaled by
additional trainable parameters λ) are encoded. A variational-
block, where additional parameterized quantum gates are
placed, and an entangling-block, where the entanglement gates
are placed. However, this structure is not static and blocks may
be switched or merged with one another.

II. QUANTUM REINFORCEMENT LEARNING

An RL problem consists of two parts: the agent (the decision
maker consisting of a function approximator that is trained)
and the environment (the surroundings with which the agent
interacts). The goal of the agent is to learn how to interact with
the environment such that the reward signal it receives from
this interaction is maximized. Most RL environments are based
on a Markov Decision Process (MDP). In short, it consists of a
set of states S, a set of actions A, a state transition probability
function P (that defines the probability of transitioning from a
state s to a state s′ after taking action a) and a reward function
R, that guides the RL agent’s training.

The behavior of the agent is represented by the policy
π(s, a), which is a probability function of actions conditioned
on states. The policy is updated such that it maximizes the
cumulative return Gt, defined as

Gt =

∞∑
k=0

γkRt+k+1, (1)

where γ ∈ [0, 1] is a discount factor and Rt the reward at
time step t. In any MDP, there exists at least one deterministic

optimal policy π∗(s, a) that maximizes the cumulative return
Gt. Hence, the goal of the RL agent is to learn this policy.
In classical RL, the most common approach to approximate
the optimal policy π∗(s, a) is by using a neural network as
function approximator for the policy π(s, a). In the subfield
of QRL which this work is confined to, the sole modification
is the replacement of the neural network with a VQC, with
the (classical) RL algorithms themselves remaining (except for
the hyperparameters) unchanged. Hence, the main difference
stems from the function approximator which is either classical
or quantum. A typical VQC U(s, θ) that can be used as
function approximator for QRL takes the classical environ-
ment state s as input and is parameterized by the trainable
parameters θ. The general structure of a VQC for QRL based
on the HEA is depicted in Fig. 1. In the following sections,
we briefly cover the two RL algorithms used throughout this
work and their adaptations to QRL. For a broader explanation
of the classical RL algorithms, the reader is referred to [17].

A. Q-Learning

In Q-Learning, the action-value function qπ(st, at) defines
the expected value of taking action at in state st as

qπ(s, a) = Eπ [Gt|st = s, at = a] (2)

where Gt is the cumulative return at time step t. In state st
the next action is chosen according to at = argmaxQ(st, a).
To ensure initial exploration, a so called ϵ-greedy policy can
be applied such that the probability of choosing a random
action is 1 − ϵ. Furthermore, ϵ typically decays over time to
balance the exploration-exploitation trade-off [17]. In QRL,
the Q-value of a given state action pair Q(s, a) is computed
by the expectation value of an observable Oa

Q(s, a) =
〈
0⊗n

∣∣U(s, θ)†OaU(s, θ)
∣∣0⊗n

〉
(3)

where n is the number of qubits and U(s, θ) is a VQC that
depends on the state s and parameters θ. The parameters are
then updated using a variant of the stochastic gradient descent
algorithm on

[r + γmax
a′

Q̂(s′, a′, θ−i −Q(s, a, θi))
2] (4)

where Q̂ is the target network, an additional VQC Û(s, θ̂)
with frozen weights that are updated every C time steps to
ensure training stability. In the following sections, we refer to
the Q-learning algorithm with a trainable VQC at its core as
QDQN.

B. Policy Gradient

The Policy Gradient (PG) algorithm aims to find a param-
eterized policy πθ which maximises the cumulative reward in
a given environment. At each time step t, the agent chooses
an action at in a given state st with probability πθ(at|st),
such that the cumulative return Gt is maximized. In QRL, the
trainable parameters θ of the function approximator U(s, θ)



are optimized according to the gradient of the performance
measure J(θ)

∇θJ(θ) = Eπθ

[∑
∇θln(πθ(at|st)) ·Gt

]
. (5)

For a given VQC U(s, θ) acting on n qubits, we can
compute the probability of an action ai according to the
current policy πθ by measuring an observable Oai

. As has
been shown in previous works, the choice of observables
can have a significant impact on the training performance
[18]. In this work we introduce a slight modification to the
approach originally proposed by [19]: To improve the training
performance of the VQC, we add an additional trainable
parameter that scales the expectation values of the observables,
an approach similar to the one introduced in the context of Q-
Learning [9] or actor-critic algorithms [6]. In the following we
refer to the PG algorithm with a trainable VQC at its core as
QPG.

C. Quantum Reinforcement Learning for Neural Combinato-
rial Optimization

The general idea behind QRL for NCO is to train a QRL
model to learn a heuristic capable of solving CO problems.
Moreover, we want our models to be able to generalize fairly
well to unseen problem instances. That way, one trains the
model once on a dataset of problem instances and then uses its
heuristics to find solutions for other new and unseen problem
instances. Other classical optimization algorithms such as
branch-and-bound algorithms or VQAs such as QAOA and
VQE need to be run on each new problem instance indi-
vidually, hence the computational cost for each new problem
instance remains the same. In NCO, the computational cost of
the algorithm is instead moved to a previous training phase.
While this leads to higher computational costs during this
phase, it enables fast predictions for new unseen problem
instances with only minor additional computational costs after
training. A trained NCO model can hence outperform other
algorithms in terms of computational cost and, therefore, on
runtime for new and unseen problem instances [2].

Even though CO problems can contain time dependent
variables, their description as a graph or QUBO is static. One
way to solve such a CO with an RL algorithm is to model
it as a multiarmed bandit problem: A bandit problem can be
thought of as a special MDP, where each episode consists
of a single time step. Multiarmed in that context means that
multiple actions can be chosen in one time step. Moreover, the
state of the environment may vary between episodes, giving
rise to a contextual multiarmed bandit. In this setting, the RL
agent learns on a dataset of problems, where each episode
consists of one single randomly sampled problem instance. All
(binary) decision variables are chosen in a single time step.
Hence, the action space in this formulation is multi-discrete:
For all (binary) decision variables of the CO problem instance,
the agent assigns either a ”0” or a ”1” in a single time step. The
output (action) is a vector of size corresponding to the number
of decision variables of the problem instance. In QRL, this can

be realized by encoding the static problem instance as state
s into a unitary U(s, θ) and conducting a measurement with
observables Oai

such that all variable values of the problem
instance can be derived (ref. Section III-B3).

Another way to solve CO problems with an RL algorithm
is to assign one decision variable at each time step,
constructing the solution to the problem one variable at a
time, similar to the approach used in [13] and [20]. To do
this, additional information needs to be added to the static
problem information, namely annotations [13]. For a given
QRL agent with unitary U(s, α, θ) as function approximator,
the state s encodes the static problem information (e.g. the
Hamiltonian of the sampled instance that remains static
throughout the episode), while the annotations α encode the
current status of the episode (e.g. which variable has been
previously assigned and which are free to be assigned). Using
this method, the QRL agent can distinguish between different
time steps in the same episode and sequentially build the final
solution with appropriate measurements (ref. Section III-B3).

Because ansatzes such as the HEA have been shown to be
untrainable due the BP phenomena, [13] and [14] propose to
use symmetry-preserving quantum circuits that perform better
than their non symmetric counter parts. Skolik et al. are the
first to show in a QRL for NCO setting how to construct an
ansatz from a weighted graph which is equivariant under node
permutations. For this problem-inspired encoding scheme,
the edges of a graph (corresponding to the weights of the
weighted-MaxCut or the distances of the TSP) are encoded as
two-qubit gates. The use of only a single layerwise parameter
for each encoding-block and a single layerwise parameter for
each annotation-block (which can be seen as an in-between
of the encoding-block and the variational-block) ensures that
the ansatz remains equivariant throughout training. They prove
that the Q-Learning algorithm for learning on weighted graphs
preserves the equivariance property as long as no additional
individual output scaling parameters are introduced.

III. HAMILTONIAN-BASED QUANTUM REINFORCEMENT
LEARNING

To solve CO problems with QRL, we base our ansatz on
the (problem) Hamiltonian of the given binary CO problem
directly. Instead of encoding the graph information of the
problem, as has been introduced by [13], we take the QUBO
formulation of the problem and use the structure of its Hamil-
tonian representation as ansatz for our QRL agent. Hence, we
can expand the approach to the same range of problems as
QAOA instead of being limited to (weighted) graph problems.
Any binary CO problem that can be mapped to a QUBO
formulation can hence also be solved by Hamiltonian-based
QRL. However, even though the structure of the ansatz is
directly based on the QUBO formulation, it remains an open
question how the ansatz should be parameterized and whether
or not additional trainable gates should be added to the ansatz.
To answer this question, one first needs to consider the effects



parameterization and additional gates have on the trainablity
of the ansatz, which we will analyse next.

The trainabilty of ansatzes has been subject of extensive
study [21]–[23]. In order to successfully train a VQC, the
chosen ansatz must not only contain the desired solution, but
also exhibit large enough cost function gradients [8], such that
gradient based optimization is feasible. In [12] and [24], four
main sources for BPs have been identified: An excess in circuit
expressivity, generalized entanglement, global measurements
and circuit noise. In order to theoretically assess whether
or not an ansatz exhibits BPs, one can analyse the sets of
generators the ansatz of interest is constructed from. In [11],
the dimension of the DLA is introduced as a measure for the
rate at which the variance of the gradient of an ansatz vanishes.
As an example, Larocca et al. show that the dimension of the
DLA of the generator sets of the Erdös-Rényi model - better
known as the MaxCut Hamiltonian - as well as the widely
spread Spin Glass model is of full rank and hence the variance
of the cost function vanishes exponentially with system size.
However, even though both ansatzes exhibit BPs, the rate
at which the variance of the gradients vanishes differs and
depends on the amount of layers as well as on their respective
generator sets.

Following the same principle, but from an empirical point
of view, Holmes et al. have also found the excess in circuit ex-
pressivity to be a cause of BPs [8]. To reduce the expressivity
and thereby increase the trainability of an ansatz, they propose
to correlate the trainable parameters. By utilizing the same
parameters across qubits in each layer (as it is generally done
for QAOA where the β and γ parameters are used across all
respective Hamiltonian gates within one layer), they are able
to reduce the slope of the variance decay of the gradients.
According to [8], the most effective strategies to amplify
gradients are the correlation of parameters and the reduction
of circuit depth.

θl,1 θl,2

ZZ
ZZ

X

ZZ
X

X

θl,1 θl,2

ZZ
ZZ

Z X

ZZ
Z X

Z X

Fig. 2: Schematic illustration of a single layer of a three qubit
VQC for the sets of generators GPP,P in Eq. 6 (left) and
GPP+P,P in Eq. 7 (right) of the sge-sgv ansatz.

Based on these considerations, we propose to use an ansatz
constructed from a minimal set of generators, using as much
correlation as possible: Our ansatzes for Hamiltonian-based
QRL are constructed using the set of generators GPP,P , if
the QUBO formulation contains only quadratic terms, and the
set GPP+P,P , if the QUBO formulation has additional linear
terms, with P being an arbitrary Pauli gate P ∈ X,Y, Z and
PP two-qubit Pauli gates PP ∈ XX,Y Y,ZZ.

θl,1 θl,3 θl,4
θl,2

ZZ
ZZ

X

ZZ
X

X

θl,1 θl,3

θl,4
θl,2

θl,5

θl,6

ZZ
ZZ

X

ZZ
X

X

θl,1 θl,2

θl,3 θl,6

θl,4 θl,7

θl,5 θl,8

ZZ
ZZ

X Y Z

ZZ
X Y Z

X Y Z

Fig. 3: Schematic illustration of a single layer of a three qubit
VQC for the sets of generators Gmge−sgv in Eq. 8 (upper left),
Gmge−sgv in Eq. 9 (upper right), and Gsge−sgv+hea in Eq. 10
(lower center).

GPP,P =
{ n∑

i<j

PiPj ,

n∑
i=1

Pi

}
. (6)

GPP+P,P =
{ n∑

i<j

PiPj +

n∑
i=1

Pi,

n∑
i=1

Pi

}
(7)

In Eq. 6 and 7, we use a single generator and hence a single
parameter for our encoding-block and one additional generator
as variational-block (or annotation-block ref. Fig. 4), totalling
two parameters per layer. We call this ansatz in the following
sge-sgv (single generator encoding-block - single generator
variational-block). The ansatzes are depicted in Fig. 2.

Additionally, we also propose variants of the sets GPP,P

and GPP+P,P . Starting with sge-sgv, we introduce two mod-
ifications to this ansatz: multiple generator encoding-block
- single generator variational-block (mge-sgv) and multiple
generator encoding-block - multiple generator variational-
block (mge-mgv). Hence, the generator sets for CO problems
with QUBO formulations without linear terms are

Gmge−sgv =
{
PiPj

}n

i<j

⋃{ n∑
i=1

Pi

}
(8)

for the mge-sgv ansatz and

Gmge−mgv =
{
PiPj

}n

i<j

⋃{
Pi

}n

i=1
(9)

for the mge-mgv ansatz respectively (ref. Fig. 3). While the
amount of entanglement of these ansatzes remains unchanged,
the increase of generators and therefore the decrease of pa-
rameter correlation is expected to lead to a faster decrease
of gradient variance (ref. Section III-A). Additionally, we
compare our ansatzes to an sge-sgv ansatz, to which we add an
additional HEA (ref. Fig. 3). The generator set of the ansatz
is hence

Gsge−sgv+hea = Gsge−sgv

⋃{
Yi, Zi

}n

i=1
. (10)



In summary, constructing our ansatzes solely from GPP,P

and GPP+P,P for CO problems gives us various advantages:
First, we encode a meaningful representation of the CO prob-
lem as our ansatz. It incorporates the structure of the problem
directly, which can greatly improve training performance as
has been previously shown for graph neural networks [25].
Second, we greatly increase the trainability of our ansatz by
strongly correlating the parameters within one layer [8]. Third,
we preserve the equivariance property of our ansatz during
training [13] (if no additional individual output scaling is
applied), which can improve the performance of our ansatz,
especially on equivariant problems. Fourth, the low number
of parameters compared to other ansatzes accelerates training,
mainly on real quantum hardware, where at least two circuit
executions are needed to estimate the gradient of a parameter
with the parameter shift rule [26].

encoding block variational block

annotation block

ZZ(s12θ1)
ZZ(s13θ1)

X(α1θ2)

ZZ(s23θ1)
X(α2θ2)

X(α3θ2)

Fig. 4: Hamiltonian-based QRL: A single layer of the sge-
sgv ansatz consists of an encoding-block, where the features
of state s with trainable parameters θ are encoded, and a
variational-block, where additional parameterized quantum
gates are placed. If additional annotations α are used, we also
refer to the variational-block as annotation-block.

In the following, we analyse the trainability of our ansatz
and illustrate our approach on exemplary CO problems in
Section III-B3.

A. Trainablity of Ansatz

The generator sets GPP,P and GPP+P,P of the proposed
sge-sgv ansatz for QRL are closely related to the Erdös-Rényi
model and the Spin Glass model, respectively. Larocca et al.
show that ansatzes which are built from these generator sets
also have BPs [11] (for circuit depths at which the ansatzes
approximate a 2-design). Larocca et al. analyse the variance
of the gradients of the generator set of the Erdös-Rényi model
with L = 12n layers (with n being the number of qubits) and
of the generator set of the HEA with L = 100 layers. However,
ansatzes with hundreds of layers are out of the scope of current
hardware and impractical for QRL due to their higher numbers
of parameters. We therefore investigate the gradient scaling for
shallow circuits of L = 5 layers for all previously introduced
ansatzes (with linear terms) and compare it to an ansatz with
no trainable parameters in the encoding-block and an HEA
ansatz as variational-block (encoding + hea). In all cases we
take the partial derivative with respect to the parameter θL

2 ,2 as
proposed by [11]. For each ansatz, we compute the variance
of the gradient by sampling 1000 random initializations. In

2 4 6 8 10 12 14

qubits

10−4

10−3

10−2

10−1

100

V
a
r θ

[∂
C

(θ
)]

5 layer

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

encoding + hea

Fig. 5: Numerical results of the variance of the cost function
partial derivatives for the introduced ansatzes with L = 5
layers. For each point, we evaluated the variance of the
gradient for 1000 samples.

Fig. 5 it can be seen that the variance of the gradient vanishes
exponentially for all evaluated ansatzes. However, the offset
as well as the rate at which the variance vanishes differs: The
mge-sgv and mge-mgv ansatzes’ variance decays quickly, with
a slightly higher offset of the mge-sgv due to the increased
parameter correlation in the variational block. The sge-sgv
ansatz exhibits the best variance scaling. The variance of the
sge-sgv+hea and the encoding+hea ansatzes decay at a similar
rate, but with a lower offset, and at 10−4 the decay of the
encoding+hea ansatz starts to decelerate due to the small
amount of used layers [7]. This shows that the proposed sge-
sgv ansatz shows the highest gradient variance and therefore
the best trainability for the problem sizes used in this work.

B. Solving Combinatorial Optimization Problems with
Hamiltonian-based Quantum Reinforcement Learning

In Hamiltonian-based QRL, each binary decision variable
of the QUBO corresponds to a single qubit. Thus, for a
given problem instance with n binary decision variables (and
no additional constraints), our encoding requires n qubits.
During the training of the QRL agent, at the beginning of
each episode a problem instance is sampled randomly from a
training dataset and, at the end of the episode, the QRL agent
returns a binary vector with the final value for each of the
decision variables. For example, if for a given MaxCut instance
with three nodes a, b, c, the QRL agent outputs the final action
[0, 1, 1], it means that the node a was given value 0 and so on.
The way the agent outputs the binary variable vector depends
on the problem being solved and its formulation as an RL
environment. It is either done sequentially, where for each time
step, the RL agent assigns one of the variables, constructing
the solution one variable at a time, or it is solving each instance
as a bandit problem, assigning all decision variables in a single
time step.

1) Relation to QAOA: A popular approach to solve CO
problems is to use QAOA [27], [28], which finds an approxi-



mate solution to the given problem. For QAOA to be used, the
problem instance first needs to be reformulated as a QUBO,
which has a trivial translation to the Ising model (the problem
Hamiltonian). However, most CO problems of interest have
constraints, which need to be encoded as penalties in the
QUBO formulation. While the encoding of equality constraints
is trivial [29], this can be quite complex for inequalities (ref.
Section III-B2). Once the QUBO formulation is constructed,
QAOA can be used to approximate the ground state of the
corresponding problem Hamiltonian. In this context, QAOA
can be seen as a variant of the Hamiltonian-based QRL method
for solving a bandit problem where all decision variables are
assigned in a single time step via a single global observable
which acts on all qubits. On the contrary, in the proposed QRL
bandit approach, a single-qubit observable is applied for each
decision variable.

2) Inequality Encoding: There are mainly two approaches
for encoding inequality constraints as penalties: unbalanced
penalization [16] and slack variables [30]. The later consists of
turning the inequality constraints into equality constraints by
the use of slack variables, at the expense of additional qubits.
The former consists of approximating the constraints using
(a quadratic approximation of) the exponential decay function
(ref. Eq. 11), effectively yielding an exponential penalty if the
constraint is broken and a negligible penalty if not.

e−h(x) ≈ 1− h(x) +
1

2
h(x)2 (11)

Montanez et al. show that the unbalanced penalization
method outperforms the slack variables approach in two ways:
It does not require additional qubits and the optimal solution is
found with higher probability [16]. However, this method has
one major drawback, as there is no guarantee that the ground
state of the encoded Hamiltonian corresponds to the optimal
solution of the original problem. Even though the authors
empirically show that the optimal solution is typically among
the lowest eigenvalues of the Hamiltonian, this still means that
QAOA might be optimizing for the wrong solution, possibly
even an invalid one.

By adapting the unbalanced penalization method to
Hamiltonian-based QRL, we are able to maintain the main
advantage of the approach (the reduced number of required
qubits) while coping with its main disadvantage (potentially
not optimizing towards the optimal solution). We start with
the unbalanced penalization method and reformulate the in-
equalities of the CO problem as a QUBO without the need
for ancilla qubits. This QUBO is then mapped to the problem
Hamiltonian and used as the ansatz for the VQC of our QRL
agent. However, we choose a reward function that depends
only on the original problem, not on the ground state of the
problem Hamiltonian. This way we can ensure that, even if
the Hamiltonian’s ground state does not encode the optimal
solution of the CO problem, the reward function of our QRL
agent is still an unbiased guide towards the optimal solution.
Additionally, we drive the QRL agents towards valid solutions,
by either masking solutions that would break the constraints

(hard-constraint) or simply penalizing the agent if it outputs
an action that does so (soft constraint).

In summary, when using QAOA, one is limited to
minimizing a Hamiltonian that might not correctly encode
the original problem, leading possibly to an incorrect or even
invalid solution. Hamiltonian-based QRL, on the other hand,
combines the best of both worlds. It uses the unbalanced
penalization Hamiltonian as ansatz, effectively incorporating
information about the problem with less required qubits
compared to the standard slack variables approach. However,
using a reward function that represents the ground truth of the
original problem for training mitigates the main disadvantage
of the unbalanced penalization method when applied to
QAOA.

3) Combinatorial Optimization Problems: To demonstrate
the applicability of Hamiltonian-based QRL to a wide class of
binary CO problems, we evaluate our agents on three diverse
problems and showcase different variants of our approach
on the weighted-MaxCut, the Unit Commitment Problem
(UCP) and the Knapsack Problem (KP). In the following, we
formulate these problems as RL environments and show how
to use Hamiltonian-based QRL to solve them.

a) Weighted-MaxCut: For a given graph G = (V,E)
with nodes V and edges E of size n and edge weights w,
the objective is to partition its nodes into two disjoint sets
such that the total weight of the edges connecting the two sets
is maximized.

maxx∈{0,1}
∑
ij∈E

wi,j(1− xixj) (12)

In Eq. 12, xi is the binary variable representing whether
vertex i is in set 0 or set 1. To solve this problem using
Hamiltonian-based QRL, the set of generators as well as the
observables need to be defined: Since the problem statement
of Eq. 12 does not contain linear terms, we chose the generator
set for the sge-sgv ansatz to be

Gmaxcut =
{ n∑

i<j

ZiZj ,
n∑

i=1

Xi

}
, (13)

using the first generator to encode the static problem and
the second generator for annotation (ref. Section II-C and Fig.
4). In our RL environment’s formulation of the weighted-
MaxCut (mainly following the approach of [20]), a single
episode of the game starts with a randomly sampled graph
instance from a dataset with all nodes assigned to a single
set (set 0), and with all annotation terms α set to π. At
each time step, the QRL agent assigns one node to the
second of the two sets (set 1). The action is selected either
by node measurements using X observables (following our
approach), or by edge measurements (as proposed by [13])
using ZZ observables without additional output scaling. After
each action, the change between the cut weight of the previous
and the current cut is returned as reward. After a node has been
assigned to set 1 at time step t, it is masked as a possible action



for the following time steps, such that the agent cannot select
the same node several times during an episode. All previously
assigned nodes are annotated for the next time step t+ 1 and
their respective value of α is set to 0. The episode ends as
soon as the change in cut weight is either 0 or negative. The
problem instances used in our experiments are taken from [13].

b) Unit Commitment: For a given set of N power gener-
ators with binary operating status x, output power p, minimal
and maximal output power pmin and pmax, the goal of the
UCP is to satisfy a power demand L such that the cost of
energy generation is minimized.

minx∈{0,1}

N∑
i=1

(Ai +Bipi + Cip
2
i )xi (14)

N∑
i=1

pixi = L (15)

In the objective function Eq. 14, the factors A, B and
C represent the cost of power generation of the respective
generator and the values are taken from the dataset of [31].
In the simplest scenario of the UCP, the objective function
Eq. 14 is subject only to the equality constraint of Eq. 15
[32]. For the standard version of the UCP, the classical solver
needs to assign binary values to x and integer values to p.
In more realistic UCP scenarios, these values need not only
to be assigned for a single time step, but rather a sequence
of time steps with additional time dependent constraints for
generator up and down times (see [33] and [34]). Since the
assignment of integer values to p as well as the additional time
dependent constraints and variables would require too many
qubits, we chose in our experiments a simplified version of the
problem for the RL environment. A single episode consists of
a sequence of contextual multiarmed bandit problems: At the
beginning of an episode we randomly sample 10 values for
L between min(pmini

), the minimal amount of power the
smallest generators can produce, and

∑
pmaxi

, the maximal
amount of power all generators combined can produce. Then
we also sample for each time step of the episode random
values for all pi instead of assigning them by the agent. At
each time step, the QRL agent outputs all values for the binary
variables xi. The reward at each time step equals the negative
cost of objective function Eq. 14 for the chosen variables xi.
Finally, an episode ends after 10 time steps.

As for the weighted-MaxCut, we need to decide on a
set of generators for our ansatz as well as a measurement
strategy. The QUBO formulation of our problem exhibits
both quadratic and linear terms, but unlike for the weighted-
MaxCut, there is no need for annotations since we formulated
our game as a sequence of contextual multiarmed bandit
problems. Nevertheless we introduce a trainable variational-
block consisting of a single generator

∑n
i=1 Xi, hence our

generator set Guc for our QRL ansatz is

Guc =
{ n∑

i<j

ZiZj +

n∑
i=1

Zi,

n∑
i=1

Xi

}
. (16)

Since we need to assign all variables xi at each time step,
we use single qubit observables Zi on all qubits. In future
work, annotation strategies as well as additional constraints
can be easily incorporated within our approach to tackle more
realistic problem instances.

c) Knapsack: Let N be the number of items, v ∈ RN

a vector that indicates the value of items n = {1, ..., N},
w ∈ RN a vector that indicates the weights of such items and
M ∈ R the maximum weight. Then, the objective function of
the KP can be formulated as

maxx∈{0,1}

N∑
n=1

xivi (17)

subject to the inequality constraint

N∑
i=1

xiwi ≤ M. (18)

The goal is to maximize the sum of the values of the chosen
items while making sure that the total weight does not exceed
the maximum weight. In our QRL approach, the inequality
constraint will be encoded in the QUBO formulation using
the unbalanced penalization method, such that no additional
qubits are required [16]. As has been stated in Section III-B2,
the ground state of the reformulated problem Hamiltonian
might not be the same as for the original problem. Hence,
the QRL agent is trained with the reward function in Eq. 19.

R =

{
xT v, xTw ≤ M

0, xTw > M
(19)

Thus, even if the encoded problem Hamiltonian’s ground
state is not the optimal solution of the original CO problem,
the model is trained on a ground truth reward function.

For Hamiltonian-based QRL, the generator set Gknapsack

is identical to Guc and we use single-qubit Zi observables
on all qubits. The only difference is that the generator of the
variational-block is in fact an annotation-block (ref. Fig. 4).

The RL environment of the KP is similar to the weighted-
MaxCut: An episode starts with a randomly sampled problem
instance from a dataset, with all annotation terms α set to
π. At each time step, the QRL agent selects a single item
and the selected item is then masked for all following time
steps with its annotation value α set to 0. The reward function
during training is Eq. 19. Since we need the complete vector
x (containing the values for all decision variables), the reward
is only given in the last time step, with all other time steps
yielding a reward of 0. Moreover, an episode ends when the
maximum weight is exceeded (let’s assume at time step tf ),
with the final vector x being the vector at the end of time step
tf−1. The output of the QRL agent is the vector containing all
the items before the constraint is broken, effectively masking
invalid actions. Thus, the agent always outputs a valid action.



IV. NUMERICAL RESULTS

In this section, we present the numerical results of
Hamiltonian-based QRL on the three CO problems introduced,
demonstrating that our method can be applied to solve all
binary CO problems which have a QUBO formulation, much
like QAOA. We thereby illustrate how different problem
formulations and RL algorithms influence the performance of
the Hamiltonian-based QRL agent. First, in Section IV-A we
start by using the weighted-MaxCut problem to compare our
method to the one introduced in [13]. Second, we show on
the UCP how our ansatz outperforms the HEA ansatz as the
number of qubits increases (see Section IV-B). Third, the KP
is used to benchmark our model against QAOA. The KP is
used for the comparison with QAOA because it contains an
inequality constraint, thus serving as an appropriate example
to showcase all the capabilities of the introduced methods
(see Section IV-C). All models were trained on state vector
simulators with Adam optimizers. For details on training
parameters for all experiments as well as code to reproduce
them we refer to GitHub [35].

A. Weighted-MaxCut

The weighted-MaxCut problem is the only CO problem
considered in this work that can also be solved by the approach
introduced by [13]. Here, our ansatz only diverges slightly,
since the Hamiltonian formulation of the problem only differs
from the graph representation by a prefactor of − 1

2 . On
this benchmark we compare the performance of two RL
algorithms, QDQN and QPG, on two different versions of the
weighted-MaxCut environment: We either measure the nodes
or the edges during the action selection process. Additionally,
we compare the performance of the sge-sgv ansatz with the
sge-sgv+hea ansatz. The agents are trained for 50.000 time
steps on a dataset of 100 graph instances with 5 nodes, hence
VQCs with 5 qubits. We do not use additional output scaling
for QDQN or QPG, but introduce a softmax temperature
schedule for QPG, therefore preserving the equivariance prop-
erty. Fig. 6 depicts the approximation ratio, which is defined
as robtained/roptimal, during training. However, we do not
use this approximation ratio as a reward function (ref. Section
III-B3a), since this would require knowing the optimal solution
beforehand.

Generally, the evaluated RL algorithms and action measure-
ment strategies seem to converge to similar final scores when
the sge-sgv ansatz is used. However, the initial performance
during the exploration phase of the algorithms has a different
offset for the two measurement strategies. It can be clearly
seen that the addition of the HEA ansatz hinders training,
independently of the RL algorithm and action measurement
strategy, illustrating the advantage of our ansatz.

An important feature of the sge-sgv ansatz is that, for
some graph-based problems like the weighted-MaxCut, the
initialization of the ansatz already represents a competitive
heuristic to solve the problem. We illustrate this feature in the
following by analyzing the training behavior of the QDQN
agent with sge-sgv ansatz and edge measurement. However, all

0 10000 20000 30000 40000 50000

environment steps

0.75

0.80

0.85

0.90

0.95

1.00

a
pp
ro
x
im
a
ti
on
ra
ti
o

NodeMeasurement

QPG− sge− sgv
QDQN − sge− sgv
QPG− sge− sgv + hea

QDQN − sge− sgv + hea

sge− sgv − init

0 10000 20000 30000 40000 50000

environment steps

0.75

0.80

0.85

0.90

0.95

1.00

EdgeMeasurement

QPG− sge− sgv
QDQN − sge− sgv
QPG− sge− sgv + hea

QDQN − sge− sgv + hea

sge− sgv − init

Fig. 6: Training performance of QDQN and QPG agents
on weighted-MaxCut: Node and edge measurement strategy
are compared for two RL algorithms with different ansatzes.
The optimal value for the weighted-MaxCut environment is
indicated by the solid gray line, while the average initial
greedy policy of the QDQN with sge-sgv ansatz is drawn as
a dashed gray line. The main line of the QRL agents is the
mean over 5 seeds with the shaded area indicating the standard
deviation.

trained sge-sgv-based agents exhibit this feature on weighted-
MaxCut. The epsilon decay schedule from 1.0 to 0.01 is
set for the first 10.000 time steps. In the training plot it
seems as if the agents improve their policy greatly during
this initial phase. However, this is not the main explanation.
Instead, the initial policy, indicated by the dashed black line,
is already significantly better than the all-random policy. As
epsilon decays, this shift towards the initial policy leads to the
sharp increase, not the optimization of the policy. After the
exploration phase is over, the increase in training performance
is greatly decelerated. However, the agents still improve upon
this initial policy. This means, that the main reason for the
better performance of the sge-sgv over the sge-sgv+hea ansatz
for the weighted-Maxcut is not mainly caused by the better
training capabilities of the ansatz due to parameter correlation
or symmetry-properties: Instead, the structure of the ansatz
already represents a well performing heuristic.

B. Unit Commitment

On the UCP we trained the QPG agent in a contextual
multiarmed bandit setting as described in Section III-B3b. We
evaluate all four ansatzes, which we introduced in Section III,
on this benchmark: the ansatzes sge-sgv, mge-sgv and mge-
mgv as well as the sge-sgv+hea ansatz. We trained each agent
for 150.000 time steps for problem instances of size 5, 10
and 15 generators and use VQCs with the same amount of
qubits with L = 5 layers. All ansatzes have additional trainable
output scalings for all observables, hence the equivariance
property is broken for all ansatzes. In Fig. 7, we plot the



0 50000 100000 150000

environment steps

−80

−70

−60

−50

−40

−30

−20

−10

re
w
a
rd

5 Units

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

0 50000 100000 150000

environment steps

−200

−175

−150

−125

−100

−75

−50

−25

10 Units

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

0 50000 100000 150000

environment steps

−450

−400

−350

−300

−250

−200

−150

−100

−50

15 Units

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

Fig. 7: Training performance of QPG agents on the UCP: Four ansatzes (sge-sgv, mge-sgv, mge-mgv, sge-sgv+hea) are evaluated
on problem instances of size 5 (left), 10 (center) and 15 (right). The main line of the QRL agents is the mean over 5 seeds
with the shaded area indicating the standard deviation.

negative cost of energy production according to objective
function Eq. 14 (which equals the reward) during the training
of the QRL agents.

On the problem instances of size 5, all ansatzes show
comparable training performance. Even though the sge-sgv
ansatz slightly outperforms the other ansatzes, this trend is
not prominently indicated. On the larger problem instances of
size 10 and 15 however, the advantage of the sge-sgv ansatz
becomes clearly visible: even though the sge-sgv+hea ansatz
has still similar training performance for 10 units, only the sge-
sgv ansatz is able to successfully train on the 15 unit instances
due to its greater trainability.

C. Knapsack

On the KP we trained QPG agents for each of the four
ansatzes on an artificially generated dataset available in [35]
with 100 Knapsack instances for 200.000 time steps. In
order to maintain the equivariance property of the VQC, the
output scaling parameter needs to be the same across all
qubits. Hence, we define a schedule that linearly increases
this parameter throughout training.

The first graph in Fig. 8 shows the training performance on
the 5 item instance of the KP. As for the UCP, all evaluated
ansatzes are able to learn on this small problem instance.
In the second graph of Fig. 8 the training performance on
the 10 item instance KP is depicted. While the mge-mgv
and the sge-sgv+hea ansatz show poor training behaviour, the
mge-sgv ansatz still converges to a similar maximal score as
the sge-sgv ansatz, albeit being more unstable. In the third
plot of Fig. 8, we compare the performance of the sge-sgv
and the sge-sgv+hwe ansatz on the training dataset and an
unseen validation dataset of 100 Knapsack instances. As the
instance sizes increase, the training as well as the validation
performance of the sge-sgv ansatz remains high, while the
performance of the sge-sgv+hea ansatz starts to decrease at
instance sizes > 7. Thus, similarly to what has been previously
shown, our ansatzes consistently outperform HEA ansatzes at
larger problem instances.

In Fig. 9 we compare the final performance of the trained
QRL agents with sge-sgv and sge-sgv+hea ansatzes with
QAOA. To do so, we trained 5 QAOA models (using Open-
QAOA with a maximum of 100 optimization steps and p = 3
layers) with unbalanced encoding and slack encoding for each
problem instance of the validation dataset (that contains 100
instances) and averaged the probability of choosing the optimal
or a valid action. The QRL agents were first trained on a
training dataset with 100 instances. For each model, 10 agents
were trained. Then, using the inference, for each of these
agents we simulated 100 episodes on each of the 100 (unseen)
problem instances of the validation dataset and averaged both
the probability of choosing the optimal or a valid action over
all agents and problem instances.

From the first graph of Fig. 9, it is clear that the QRL models
find the optimal solution with a much higher probability than
the QAOA models. Moreover, the sge-sgv ansatz clearly out-
performs the sge-sgv+hwe ansatz, particularly as the instance
size grows. From the second graph, one sees that the QAOA
with unbalanced encoding is capable of choosing a valid
action (that does not break the constraint) with a much higher
probability than the QAOA with slack encoding. Moreover, as
indicated by the dashed line, the QRL agents always choose
a valid action due to the hard constraint incorporated in their
design.

V. DISCUSSION

Neural Combinatorial Optimization (NCO) is a promising
application area for Quantum Reinforcement Learning (QRL).
The relation between QUBO formulation and problem Hamil-
tonian unveils a natural strategy to construct ansatzes for QRL.
In this work, we introduced Hamiltonian-based QRL, where
the ansatz is constructed from a small generator set inspired
by the problem Hamiltonian of binary CO problems. The
generator set consists of a single generator for the encoding-
block and a single generator for the variational-block, hence
sge-sgv (single generator encoding-block - single generator
variational-block). We analyzed the trainability of our ansatz



0 50000 100000 150000 200000

environment steps

0.6

0.7

0.8

0.9

1.0

a
pp
ro
x
im
a
ti
on
ra
ti
o

5 Items

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

0 50000 100000 150000 200000

environment steps

0.6

0.7

0.8

0.9

1.0

10 Items

sge− sgv
mge− sgv
mge−mgv
sge− sgv + hea

4 5 6 7 8 9 10

instance size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sge− sgv : training

sge− sgv : validation

sge− sgv + hea : training

sge− sgv + hea : validation

Fig. 8: Training performance of QPG agents on KP: Four ansatzes (sge-sgv, mge-sgv, mge-mgv, sge-sgv+hea) are evaluated on
problem instances of size 5 (left) and 10 (center). The main line of the QRL agents is the mean over 10 seeds with the shaded
area indicating the standard deviation. The performance of sge-sgv and sge-sgv+hea ansatz are evaluated on 100 instances of
the training dataset and 100 instances of the validation dataset for instance sizes 4 to 10 (right).

4 5 6 7 8 9 10

instance size

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob
a
bi
li
ty
of
op
ti
m
a
ls
ol
u
ti
on

4 5 6 7 8 9 10

instance size

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob
a
bi
li
ty
of
v
a
li
d
so
lu
ti
on

sge− sgv
sge− sgv + hea

QAOA : unbalanced

QAOA : slack

Fig. 9: Probability of optimal solution (left) and valid solution (right) of QRL and QAOA on KP: The QRL ansatzes are
evaluated on unseen KP problem instances of size 4 to 10 and benchmarked against QAOA models, which were trained using
COBYLA with a maximum of 100 iterations and p = 3 on each of the problem instances.

by calculating the variance of its gradient and found that it
vanishes at a lower rate than the widely spread HEA or other
variants of the sge-sgv ansatz.

In order to demonstrate the board applicability and train-
ability of our approach, we applied it to a wide range of
binary combinatorial optimization (CO) problems with sizes
up to 15 qubits. On the weighted-MaxCut our sge-sgv ansatz
outperformed the HEA ansatz already at small qubit num-
bers. However, the main training advantage stems not from
the improved trainability, but rather from a powerfull initial
heuristic. Why the sge-sgv ansatz encodes such a favourable
heuristic for graph-based problems and how this property can
be exploited for even better training performance will be left
for future analysis.

On the Unit Commitment problem, we analysed the training
performance of our ansatz for instances from 5 to 15 qubits.
While the advantage of the sge-sgv ansatz over the other
evaluated ansatzes was limited at small problem instances,
it increased with problem size. For problem instances of
size 15, only the sge-sgv ansatz was able to stably train
towards an optimal policy. These findings were confirmed
on the Knapsack problem. On this benchmark we integrated

the unbalanced penalization method, originally proposed for
QAOA [16], in our QRL ansatz, such that the number of
required qubits is reduced. By training our QRL agents with
reward functions which depend on the original problem, we
were able to cope with the disadvantage of the unbalanced
penalization method of potentially optimizing towards the
ground state of an ill posed problem Hamiltonian.

The comparison of Hamiltonian-based QRL with QAOA
showed that QRL consistently performs better, especially
as problem instance size increases. QRL finds the optimal
solution with a higher probability than QAOA at the cost
of much higher required circuit evaluations during training.
Moreover, QRL always finds a valid solution, since unfeasible
solutions are masked during training, while QAOA often finds
invalid solutions that break the constraints. Finally, QRL also
generalizes well to unseen problem instances, which at least
partially compensates for the increased training costs.

ACKNOWLEDGEMENTS

The research is part of the Munich Quantum Valley, which
is supported by the Bavarian state government with funds from
the Hightech Agenda Bayern Plus.



REFERENCES

[1] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[2] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy
Bengio. Neural combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:1611.09940, 2016.

[3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv preprint arXiv:1411.4028,
2014.

[4] Sebastian Brandhofer, Daniel Braun, Vanessa Dehn, Gerhard Hellstern,
Matthias Hüls, Yanjun Ji, Ilia Polian, Amandeep Singh Bhatia, and
Thomas Wellens. Benchmarking the performance of portfolio optimiza-
tion with qaoa. Quantum Information Processing, 22(1):25, 2022.

[5] Theodora-Augustina Drăgan, Maureen Monnet, Christian B Mendl,
and Jeanette Miriam Lorenz. Quantum reinforcement learning for
solving a stochastic frozen lake environment and the impact of quantum
architecture choices. arXiv preprint arXiv:2212.07932, 2022.

[6] Georg Kruse, Theodora-Augustina Dragan, Robert Wille, and
Jeanette Miriam Lorenz. Variational quantum circuit design for
quantum reinforcement learning on continuous environments. arXiv
preprint arXiv:2312.13798, 2023.

[7] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush,
and Hartmut Neven. Barren plateaus in quantum neural network training
landscapes. Nature communications, 9(1):4812, 2018.

[8] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Con-
necting ansatz expressibility to gradient magnitudes and barren plateaus.
PRX Quantum, 3(1):010313, 2022.

[9] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in
the gym: a variational quantum algorithm for deep q-learning. Quantum,
6:720, 2022.

[10] Rodrigo Coelho, André Sequeira, and Luı́s Paulo Santos. Vqc-based
reinforcement learning with data re-uploading: Performance and train-
ability. arXiv preprint arXiv:2401.11555, 2024.

[11] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleed-
haran, Patrick J Coles, and Marco Cerezo. Diagnosing barren plateaus
with tools from quantum optimal control. Quantum, 6:824, 2022.

[12] Michael Ragone, Bojko N Bakalov, Frédéric Sauvage, Alexander F
Kemper, Carlos Ortiz Marrero, Martin Larocca, and M Cerezo. A unified
theory of barren plateaus for deep parametrized quantum circuits. arXiv
preprint arXiv:2309.09342, 2023.

[13] Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and
Vedran Dunjko. Equivariant quantum circuits for learning on weighted
graphs. npj Quantum Information, 9(1):47, 2023.

[14] Péter Mernyei, Konstantinos Meichanetzidis, and Ismail Ilkan Ceylan.
Equivariant quantum graph circuits. In International Conference on
Machine Learning, pages 15401–15420. PMLR, 2022.

[15] Haoqi He. Quantum annealing and graph neural networks for solving
tsp with qubo. arXiv preprint arXiv:2402.14036, 2024.

[16] Alejandro Montanez-Barrera, Dennis Willsch, Alberto Maldonado-
Romo, and Kristel Michielsen. Unbalanced penalization: A new ap-
proach to encode inequality constraints of combinatorial problems for
quantum optimization algorithms. arXiv preprint arXiv:2211.13914,
2022.

[17] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[18] Nico Meyer, Daniel Scherer, Axel Plinge, Christopher Mutschler, and
Michael Hartmann. Quantum policy gradient algorithm with optimized
action decoding. In International Conference on Machine Learning,
pages 24592–24613. PMLR, 2023.

[19] Sofiene Jerbi, Casper Gyurik, Simon Marshall, Hans Briegel, and Vedran
Dunjko. Parametrized quantum policies for reinforcement learning.
Advances in Neural Information Processing Systems, 34:28362–28375,
2021.

[20] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning combinatorial optimization algorithms over graphs. Advances
in neural information processing systems, 30, 2017.

[21] Louis Schatzki, Martin Larocca, Quynh T Nguyen, Frederic Sauvage,
and Marco Cerezo. Theoretical guarantees for permutation-equivariant
quantum neural networks. npj Quantum Information, 10(1):12, 2024.

[22] Martin Larocca, Nathan Ju, Diego Garcı́a-Martı́n, Patrick J Coles,
and Marco Cerezo. Theory of overparametrization in quantum neural
networks. Nature Computational Science, 3(6):542–551, 2023.

[23] R Wiersema, E Kökcü, AF Kemper, and BN Bakalov. Classification of
dynamical lie algebras for translation-invariant 2-local spin systems in
one dimension (2023). arXiv preprint arXiv:2309.05690.

[24] NL Diaz, Diego Garcı́a-Martı́n, Sujay Kazi, Martin Larocca, and
M Cerezo. Showcasing a barren plateau theory beyond the dynamical
lie algebra. arXiv preprint arXiv:2310.11505, 2023.

[25] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Com-
binatorial optimization with physics-inspired graph neural networks.
Nature Machine Intelligence, 4(4):367–377, 2022.

[26] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin.
General parameter-shift rules for quantum gradients. Quantum, 6:677,
2022.

[27] Peter Gleißner, Georg Kruse, and Andreas Roßkopf. Restricted global
optimization for qaoa. arXiv preprint arXiv:2309.12181, 2023.

[28] Lilly Palackal, Benedikt Poggel, Matthias Wulff, Hans Ehm,
Jeanette Miriam Lorenz, and Christian B Mendl. Quantum-assisted
solution paths for the capacitated vehicle routing problem. In 2023 IEEE
International Conference on Quantum Computing and Engineering
(QCE), volume 1, pages 648–658. IEEE, 2023.

[29] Fred Glover, Gary Kochenberger, and Yu Du. Quantum bridge analytics
i: a tutorial on formulating and using qubo models. 4or, 17(4):335–371,
2019.

[30] Tomáš Vyskočil, Scott Pakin, and Hristo N Djidjev. Embedding
inequality constraints for quantum annealing optimization. In Quantum
Technology and Optimization Problems: First International Workshop,
QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1, pages
11–22. Springer, 2019.

[31] Spyros A Kazarlis, AG Bakirtzis, and Vassilios Petridis. A genetic
algorithm solution to the unit commitment problem. IEEE transactions
on power systems, 11(1):83–92, 1996.

[32] Samantha Koretsky, Pranav Gokhale, Jonathan M Baker, Joshua Viszlai,
Honghao Zheng, Niroj Gurung, Ryan Burg, Esa Aleksi Paaso, Amin
Khodaei, Rozhin Eskandarpour, et al. Adapting quantum approximation
optimization algorithm (qaoa) for unit commitment. In 2021 IEEE
International Conference on Quantum Computing and Engineering
(QCE), pages 181–187. IEEE, 2021.

[33] Patrick de Mars and Aidan O’Sullivan. Applying reinforcement learning
and tree search to the unit commitment problem. Applied Energy,
302:117519, 2021.

[34] Patrick de Mars and Aidan O’Sullivan. Reinforcement learning and a*
search for the unit commitment problem. Energy and AI, 9:100179,
2022.

[35] https://github.com/georgkruse/hamiltonian-based-qrl.
[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,

Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.


	Introduction
	Quantum Reinforcement Learning
	Q-Learning
	Policy Gradient
	Quantum Reinforcement Learning for Neural Combinatorial Optimization

	Hamiltonian-based Quantum Reinforcement Learning
	Trainablity of Ansatz
	Solving Combinatorial Optimization Problems with Hamiltonian-based Quantum Reinforcement Learning
	Relation to QAOA
	Inequality Encoding
	Combinatorial Optimization Problems


	Numerical Results
	Weighted-MaxCut
	Unit Commitment
	Knapsack

	Discussion
	References

