QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

Robert Wille*T, Ludwig Schmid*, Yannick Stade*, Jorge Echavarriat, Martin Schulz*®, Laura Schulz¥, Lukas Burgholzer*
*Chair for Design Automation, Technical University of Munich, Munich, Germany
tSoftware Competence Center Hagenberg GmbH, Hagenberg, Austria
iLeibniz Supercomputing Centre, Garching, Germany
§Chair of Computer Architecture and Parallel Systems, Technical University of Munich, Munich, Germany
{robert.wille, ludwig.s.schmid, yannick.stade, martin.w.j.schulz, lukas.burgholzer} @tum.de
{laura.schulz, jorge.echavarria} @Irz.de

Abstract—Quantum computing is a promising technology that
requires a sophisticated software stack to connect end users to
the wide range of possible quantum backends. However, current
software tools are usually hard-coded for single platforms and
lack a dynamic interface that can automatically retrieve and
adapt to changing physical characteristics and constraints of
different platforms. With new hardware platforms frequently
introduced and their performance changing on a daily basis,
this constitutes a serious limitation. In this paper, we show-
case a concept and a prototypical realization of an interface,
called the Quantum Device Management Interface (QDMI), that
addresses this problem by explicitly connecting the software
and hardware developers, mediating between their competing
interests. QDMI allows hardware platforms to provide their
physical characteristics in a standardized way, and software
tools to query that data to guide the compilation process
accordingly. This enables software tools to automatically adapt
to different platforms and to optimize the compilation process
for the specific hardware constraints. QDMI is a central part of
the Munich Quantum Software Stack (MQSS)—a sophisticated
software stack to connect end users to the wide range of possible
quantum backends. QDMI is publicly available as open source
at https://github.com/Munich-Quantum-Software-Stack/QDMI,

I. MOTIVATION

Quantum utility—the ability to solve useful problems with
quantum computing—crucially depends on the quality of the
quantum software stack used to realize potential applications.
Such a stack consists of various layers of software tools
and must be able to connect the end users (usually domain
experts from the respective application areas such as material
simulation, machine learning or optimization) with the wide
range of quantum backends developed by physical experi-
mentalists across a broad spectrum of technologies, including
superconducting qubits, ion traps, and neutral atoms.

In general, these software tools act as compilers between
levels of abstraction. A good quantum compiler should pro-
duce an implementation that is executable on and optimized
for the targeted quantum platform. This requires upfront and
direct communication of the constraints that need to be satis-
fied and the objective functions that should be optimized for.
In a spirit of rapid prototyping and exploration, the quantum
computing community has settled on rather simplistic and
abstract constraints and objectives in the past. So far, the main
constraints that have been considered were the limited gate set
and the limited connectivity of existing quantum platforms—
resulting in the de facto standard optimization criterion that
aimed to minimize the number of gates in the resulting
circuit (e.g., see [1]-[6]]). However, pushing the boundaries
further towards practical applications of quantum computing
requires far more sophisticated considerations due to the
diversity and complexity of quantum devices and algorithms.

Different quantum devices have different architectures, gate
sets, error rates, topology, calibration, and noise models or
provide fundamentally different operational capabilities such
as qubit shuttling [7], [8]].

Different quantum algorithms have different requirements,
objectives, and trade-offs [9]—[12]. In addition, these factors
can vary over time and depend on the environmental conditions
as well as the state of the device. This needs a way to enable
efficient communication and optimization between quantum
compilers and quantum devices that encapsulates and reflects
the knowledge base of the people developing said software
and hardware. After all, quantum computers are likely to
be used as accelerators for classical computing platforms
and, hence, need to be tightly integrated into the rest of the
ecosystem and workflows [[13]. Such a communication and
optimization process would require a common language and
a standardized interface that both parties can understand and
use. This would allow the people developing software tools
to query relevant information and feedback about devices,
and the people developing the hardware to provide guidance,
express limitations, and offer suggestions in a standardized
and automated machine-readable form.

In this paper, we showcase the Quantum Device Man-
agement Interface (QDMI) as a central part of the Munich
Quantum Software Stack (MQSS) that addresses this problem.
The MQSS is a project of the Munich Quantum Valley (MQV)
initiative and is jointly developed by the Leibniz Supercom-
puting Centre (LRZ) and the Chair for Design Automa-
tion (CDA) as well as the Chair of Computer Architecture
and Parallel Systems (CAPS) at the Technical University of
Munich (TUM). It provides a comprehensive compilation and
runtime infrastructure for on-premise and remote quantum
devices, support for modern compilation and optimization
techniques, and enables both current and future high-level
abstractions for quantum programming. This stack is designed
to be capable of deployment in a variety of scenarios via
flexible configuration options, including stand-alone scenarios
for individual systems, cloud access to a variety of backends
as well as tight integration into HPC environments supporting
quantum acceleration. Within the MQYV, a concrete instance
of the MQSS is deployed at the LRZ for the MQV, serving
as a single access point to all of its quantum devices via
multiple compatible access paths, including a web portal,
command line access via web credentials as well as the option
for hybrid access with tight integration with LRZ’s HPC
systems. It facilitates the connection between end-users and
quantum computing platforms by its integration within HPC
infrastructures, such as those found at the LRZ.

https://github.com/Munich-Quantum-Software-Stack/QDMI

Software Developers

Hardware Developers

Fig. 1: Illustration of the proposed concept

II. THE PROPOSED CONCEPT

illustrates the proposed concept to bridge the gap
between quantum software developers and hardware experts
based on a standardized interface, the Quantum Device Man-
agement Interface (QDMI), and a software library, the Fo-
MaC library (Figures of Merit and Constraints), to facilitate
dynamic communication and optimization between software
tools and quantum hardware platforms. QDMI enables hard-
ware platforms to provide detailed characteristics and con-
straints of their devices in a standardized manner, allowing
software layers to query this data effectively. The FoMaC
library, leveraging QDMI, abstracts this low-level information
into actionable metrics for software tools, optimizing quantum
computing applications based on real-time hardware data.

This approach not only simplifies the integration of new
hardware platforms into the quantum software stack but also
supports continuous adaptation to hardware changes. By pro-
viding a common language and standardized interface, QDMI
and the FoMaC library aim to harmonize the objectives of soft-
ware and hardware developers, facilitating the development of
more efficient and adaptable quantum computing applications.

III. TECHNICAL REALIZATION

Quantum circuits, typically represented in intermediate for-
mats like OpenQASM, MLIR dialects, or QIR, undergo a
series of transformations during compilation before execution
on a quantum platform as illustrated in Traditionally,
this compilation process has been static, with platform-specific
optimizations hardcoded into the compiler. However, this
approach lacks flexibility and fails to account for dynamic
changes in hardware characteristics. To address these limi-
tations and to enable dynamic interaction between quantum
software tools and hardware platforms, we introduce QDMI.
QDMI is provided as a collection of C header files to allow
fast integration into an HPC environment and consists of four
main components:

1) ODMI Core: Provides core functionality to manage ses-

sions as well as to open and close connections to devices.

2) ODMI Control: Enables the control of the quantum

devices. One can submit quantum circuits, control the
job queue, and readout measurement results.

3) ODMI Device: Provides device handling functionality,

e.g., device calibration or checking the device status.
4) ODMI Query: Allows querying properties of the device,
e.g., supported gates, error rates, gate duration, etc.

This interface supports querying a wide range of data, from

static information like qubit count and gate sets to dynamic

Quantum

FoMaC 2
L\gra:es
—
Circuit ¢
| —
Platform-agnostic > Platform-specific >

-

Compilation Passes

Compilation Passes w

—> Compilation Flow ~—3 Information Flow

Fig. 2: Overall flow.

data such as current environmental conditions. This data is
accessible through a key/value interface and can be used by:

1) The FoMaC library, which abstracts low-level hardware
details into higher-level metrics for software tools,

2) Software layers for selecting the most suitable platform
and optimization strategies based on current hardware
characteristics.

The adoption of QDMI by hardware vendors simpli-
fies the process of obtaining device information, eliminat-
ing the need for custom solutions. Additionally, the Fo-
MaC library, powered by QDMI, provides a standardized
way to compute and utilize important metrics like ex-
pected fidelity, enhancing the efficiency of quantum compil-
ers and tools by leveraging real-time hardware data. QDMI
is publicly available as open source at https://github.com/
Munich-Quantum-Software-Stack/QDMI.

ACKNOWLEDGMENTS

The authors acknowledge funding from the Munich Quan-
tum Valley initiative, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern
Plus. R'W., L.S., Y.S., and L.B. acknowledge funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant
Agreement No. 101001318) and the MILLENION project
(Grant Agreement No. 101114305).

REFERENCES

[11 G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-
era quantum devices,” in Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2019.

[2]1 Y. Li, Y. Zhang, M. Chen, et al., “Timing-Aware Qubit Mapping and Gate
Scheduling Adapted to Neutral Atom Quantum Computing,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 42, no. 11, pp. 3768-3780, 2023.

[3] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for mapping
quantum circuits to the IBM QX architectures,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 2019.

[4] S. Sivarajah, S. Dilkes, A. Cowtan, et al., “Tlket): A retargetable compiler for
NISQ devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2021.

[5] M. Amy and V. Gheorghiu, “Stag—A full-stack quantum processing toolkit,”
Quantum Science and Technology, vol. 5, no. 3, p. 034016, 2020.

[6] T. Héner, D. S. Steiger, K. Svore, and M. Troyer, “A software methodology for
compiling quantum programs,” Quantum Science and Technology, vol. 3, no. 2,
p. 020501, 2018.

[71 D. Bluvstein, H. Levine, G. Semeghini, et al., “A quantum processor based on
coherent transport of entangled atom arrays,” Nature, vol. 604, no. 7906, pp. 451—
456, 2022.

[8] W. K. Hensinger, “Quantum computer based on shuttling trapped ions,” Nature,
vol. 592, no. 7853, pp. 190-191, 2021.

[9] B. Poggel, N. Quetschlich, L. Burgholzer, ef al., “Recommending Solution Paths
for Solving Optimization Problems with Quantum Computing,” in Int’l Conf. on
Quantum Software, 2023. arXiv: 2212.11127

[10] T. Lubinski, S. Johri, P. Varosy, et al., “Application-oriented performance bench-
marks for quantum computing,” IEEE Transactions on Quantum Engineering,
vol. 4, pp. 1-32, 2023.

[11] A. Montanaro, “Quantum algorithms: An overview,” npj Quantum Information,
vol. 2, no. 1, p. 15023, 2016. arXiv: 1511.04206.

[12] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan. “Quantum algorithms for
quantum chemistry and quantum materials science.” arXiv: 2001.03685. (2020),
preprint.

[13] M. Schulz, M. Ruefenacht, D. Kranzlmuller, and L. B. Schulz, “Accelerating
HPC With Quantum Computing: It Is a Software Challenge Too,” Computing in
Science & Engineering, vol. 24, no. 4, pp. 60-64, 2022.

https://github.com/Munich-Quantum-Software-Stack/QDMI
https://github.com/Munich-Quantum-Software-Stack/QDMI
https://arxiv.org/abs/2212.11127
https://arxiv.org/abs/1511.04206
https://arxiv.org/abs/2001.03685

	Motivation
	The Proposed Concept
	Technical Realization

