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Neutral Atom Quantum Computing (NAQC) emerges as a promising hardware platform primarily
due to its long coherence times and scalability. Additionally, NAQC offers computational advantages
encompassing potential long-range connectivity, native multi-qubit gate support, and the ability to
physically rearrange qubits with high fidelity. However, for the successful operation of a NAQC pro-
cessor, one additionally requires new software tools to translate high-level algorithmic descriptions
into a hardware executable representation, taking maximal advantage of the hardware capabilities.
Realizing new software tools requires a close connection between tool developers and hardware ex-
perts to ensure that the corresponding software tools obey the corresponding physical constraints.
This work aims to provide a basis to establish this connection by investigating the broad spectrum
of capabilities intrinsic to the NAQC platform and its implications on the compilation process. To
this end, we first review the physical background of NAQC and derive how it affects the overall
compilation process by formulating suitable constraints and figures of merit. We then provide a
summary of the compilation process and discuss currently available software tools in this overview.
Finally, we present selected case studies and employ the discussed figures of merit to evaluate the
different capabilities of NAQC and compare them between two hardware setups.

I. INTRODUCTION

To achieve computational advantages with Quantum
Computers (QC), large-scale, high-fidelity qubit entan-
glement is required, posing a technologically challeng-
ing problem. In recent years, qubit systems based on
Neutral Atoms (NA) [1, 2] in combination with Rydberg
interactions have established themselves as a promising
candidate, due to their ability to perform high-fidelity
long-range gates [3–5], native multi-qubit gates [4–7], and
physical atom shuttling [8, 9], combined with their scal-
ability [10–12].

However, to fully harness these capabilities, it becomes
essential to devise hardware-specific optimization tech-
niques and software tools. In particular, this includes
compilation, i.e. translating high-level algorithmic de-
scriptions into a low-level representation of operations
that can be executed on the hardware, obeying given
physical constraints, and optimizing for specific figures
of merit. Manual optimization becomes infeasible as sys-
tem sizes scale, necessitating automated processes and
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comprehensive toolkits to establish a complete compila-
tion pipeline. While a multitude of frameworks is avail-
able for other hardware platforms, such as superconduct-
ing chips [13–22], or trapped ions [23–27], the landscape
of compiler tools tailored to NA-specific hardware con-
straints [28–36] is still less developed.

Existing solutions for NAs often address specific
compilation subproblems or make assumptions about
a particular hardware configuration, failing to fully
leverage the expansive capabilities of the NAQC plat-
form. To properly ensure that corresponding compil-
ers and tools obey physical constraints and optimize for
hardware-specific figures of merit, a close connection be-
tween tool developers and hardware experts is required.
The aim is to create valuable and high-quality compi-
lation software that can leverage and take advantage of
the full range of computational capabilities intrinsic to
the NAQC platform.

This work aims to provide a basis to establish this con-
nection by furnishing a comprehensive overview of soft-
ware compilation for the NAQC platform and laying the
groundwork for potential directions in compiler develop-
ment geared explicitly toward adaptive, hardware-aware
compilation strategies. We discuss important figures of
merit and employ them to evaluate the different capa-
bilities of NAs, as well as compare them between two
different hardware setups.

To achieve this goal, first, we establish a connection
from physics to computer science by reviewing the physi-
cal background of NAs and translating the physical prin-
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ciples and processes to a hardware-aware but more ab-
stract problem formulation suitable for tool developers.
The correspondingly resulting “take home-messages” for
tool developers are then summarized in the form of opti-
mization constraints and figures of merit in self-contained
boxes, suitable résumés for individuals who are already
familiar with NAs. In this discussion, we particularly
focus on the NA-specific capabilities of long-range con-
nectivity, native multi-qubit gates, and the possibility
of implementing MOVE operations on the qubits, using
shuttling.

Secondly, we discuss how these new capabilities impact
the compilation task, give a comprehensive overview of
the full range of the compilation possibilities, and contex-
tualize currently available software within this overview.
This discussion gives a possibility to structure the current
progress of compilation development and aids potential
tool developers in identifying unsolved subproblems and
automation tasks.

Finally, we present selected case studies and error anal-
ysis to provide an overview of the current state of the art
of hardware-aware compilation for NAQC. This provides
insights for tool developers regarding suitable figures of
merit and optimization metrics depending on available
hardware properties. Concurrently, this gives hardware
experts the means to estimate the impact of their hard-
ware configuration on the final compilation output and
could potentially aid in devising forthcoming hardware
arrangements, prioritizing hardware attributes that yield
the most encouraging outcomes.

Based on these three main contributions, we pro-
vide the basis for a successful connection between tool
developers and hardware experts for physical realiza-
tion, which is necessary for the future development of
hardware-aware compilation tools, taking full advantage
of the broad spectrum of capabilities of the NAQC plat-
form.

The remainder of this work is structured as follows:
In Section II, we discuss the specific compilation aspects
addressed in this work. We define key terms and compila-
tion steps, such as synthesis, mapping, and routing, at an
abstract and hardware-independent level. In Section III,
we focus on the NAQC platform. Here, we explore its dis-
tinctive capabilities and characteristics relevant to com-
pilation. Each subsection covers a particular capabil-
ity and discusses its underlying physical principles and
mechanisms. This is followed by an abstract formulation
tailored to the computer science community, summarized
in self-contained boxes referring to the three previously
introduced compilation steps. In Section IV, we investi-
gate how these novel capabilities influence the compila-
tion process, outlining a potential overview and illustrat-
ing the overall compilation problem in an overview figure.
Referring to this framework, Section V reviews existing
software and discusses what capabilities they focus on,
giving a comprehensive overview of currently available
software for NAQC. Section VI offers selected case stud-

ies that showcase how the NA platform’s various capabil-
ities and hardware parameters influence the computation
results.

II. COMPILATION

In its broadest sense, the term “compilation” refers to
translating a high-level, abstract description of a quan-
tum algorithm into a lower-level representation of oper-
ations suitable for hardware execution. This is typically
achieved by employing multiple layers of software, each
designed to address specific subroutines. The collective
arrangement of these layers is commonly known as a com-
pilation tool-chain [37]. Given the diverse range of tasks
involved and the intersection between computer science-
and physics-related terminology, various terms, including
the term “compilation” itself, can vary depending on the
context. To avoid ambiguity, we provide a brief review
and definitions of different subroutines considered in this
work.

A. Compilation Subroutines

The subroutines can be divided into three major cat-
egories, depending on their abstraction level and their
specificity to a particular hardware configuration.

• Platform-independent compilation
High-level optimization techniques can be applied
irrespective of the underlying platform. These tech-
niques include for example loop unrolling and func-
tion inlining [38], to substitute or simplify e.g., for-
loops and function calls on a high level similar to
classical compilers. Another possibility are opti-
mization techniques on the gate level such as gate
commutation rules.

• Platform-dependent compilation
These subroutines account for a given hardware
platform’s specific capabilities and constraints,
such as superconducting chips, trapped ions, NAs,
or photonic quantum computing. The output of
these subroutines comprises a sequence of platform-
specific instructions, which is still agnostic of the
physical hardware setup.

• Hardware-dependent compilation
This translation layer is tailored to each hardware
configuration, converting abstract quantum opera-
tions into hardware-specific instructions that can
be directly executed on the quantum processing
unit. It is occasionally referred to as firmware to
underscore its close proximity to the underlying
hardware.

This work focuses on addressing the subroutines of
platform-dependent compilation, particularly the NAQC
platform. Specifically, we assume that all hardware- and
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platform-independent optimizations have already been
conducted, and our objective is to generate a collection
of hardware-oriented operations without delving into dis-
cussions related to direct hardware control through elec-
tric signals or pulse-level intricacies. This leads to three
primary objectives.

1. Synthesis entails decomposing abstract gates into
operations compatible with the provided platform
and is therefore also often referred to as decompo-
sition.

2. Mapping involves spatially arranging the gates by
assigning circuit qubits to corresponding hardware
qubits and inserting SWAP or MOVE operations
to fulfill connectivity constraints.

3. Scheduling corresponds to the temporal arrange-
ment of the gates to satisfy the dependencies and
consider the parallelism constraints inherent to the
platform or the hardware.

In the following, we present concise and abstract defi-
nitions of these three steps tailored to the context of this
work. An illustration is shown in Figure 1.

1. Synthesis

Within the framework of the quantum circuit model,
every non-dissipative quantum computation U ∈ C2n×2n

can be expressed as a finite sequence of quantum opera-
tions g ∈ C2m×2m known as quantum gates, denoted by
reversible unitary transformations. Here, n (m) denotes
the number of qubits upon which the circuit (gate) acts.
According to the Solovay-Kitaev theorem [39], given a
universal gate set Σuniv with a discrete number of gates,
an approximate decomposition up to an arbitrarily small
error can always be obtained. Furthermore, this can be
done efficiently in terms of the number of gates. In con-
trast, the native gate set Σnative characterizes the feasible
operations that can be performed on the quantum state
using a specific hardware platform or setup. For universal
computing, it is necessary that Σnative is also a universal
gate set.

Definition 1 (Synthesis) Given a quantum computa-
tion U ∈ C2n×2n and the native platform gate set Σnative,
synthesis is the task to find a gate sequence

Ũ = gN−1 ◦ · · · ◦ g0

with all g0, . . . gN ∈ Σnative and U = Ũ up to some small
error.

2. Mapping

Each gate operates on a subset of the circuit qubits
denoted as Q = {q0, ..., qn−1}. For instance, g0(q0, q1)
indicates that the first gate of the computation acts on

the circuit qubits q0 and q1. These gates must be im-
plemented using the available physical hardware qubits
represented by P = {Q0, ..., Qn−1}. Without loss of gen-
erality, we assume that the number of circuit and physical
qubits is the same. A common challenge encountered in
current hardware platforms is limited connectivity, which
is described by a coupling graph G = (P,E). In this
graph, the nodes correspond to the physical qubits, while
the edges E indicate the qubits capable of interacting
with each other.
To execute a gate g(Qi, Qj) with (Qi, Qj) /∈ E (that

is, the qubits are not directly connected), it is necessary
to adjust the coupling graph to establish the required
connectivity. In most platforms, connectivity is closely
related to the physical locations of the qubits. There-
fore, two commonly employed techniques are SWAP and
MOVE operations. The SWAP(Qi, Qj) operation ex-
changes the positions of the qubits Qi and Qj , resulting
in a modification of their labels in the coupling graph.
On the other hand, the MOVE(Qi) operation relocates
qubit Qi to a different position, consequently reassigning
the associated edges.

In superconducting (SC) hardware, these operations
are typically performed at the virtual level, acting on
Q, and require, for example, three controlled-NOT (CX)
gates to implement a SWAP operation. On the contrary,
for other platforms, such as trapped ions or NAs, it may
be possible to physically move and swap the correspond-
ing atoms or ions, directly affecting the hardware qubits
P.

Definition 2 (Mapping) Given a quantum circuit
U = gN−1 ◦ · · · ◦ g0 on circuit qubits Q and a hardware
configuration with physical qubits P and coupling map
G(P,E). The task of mapping is to find a bijective func-
tion f : Q → P and an insertion of MOVE and SWAP
operations such as

U = ... ◦MOVE(qi) ◦ SWAP(qj , qk) ◦ g(qi, qj) ◦ ...

such that for each gate g(qi, qj) all inter-qubit connections
are fulfilled, i.e. (f(qi), f(qj)) ∈ E.

It should be noted, that this graph-based approach to
mapping can only represent a first approximation. In
general and, in particular, for multi-qubit gates, addi-
tional constraints such as gate direction and the geomet-
ric arrangement of the qubits can impose additional con-
straints.

3. Scheduling

While mapping primarily concerns the spatial arrange-
ment of gates on qubits to satisfy connectivity con-
straints, we must also consider the temporal position-
ing of the gates. Subject to commutation rules, gates
acting on the same qubit must be executed in a specific
order. This aspect can be abstracted by transforming the
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Synthesis Mapping Scheduling

FIG. 1. Illustration of the three steps for platform-dependent compilation. In the synthesis step, general operations
and unitaries are decomposed into the native gate set Σnative. During the mapping step, the circuit qubits qi are assigned
to physical hardware qubits Qi, and necessary SWAP or MOVE operations are introduced to satisfy connectivity constraints.
Finally, in the scheduling step, gate times and restrictions on parallelism are considered. In practice, these steps are often
performed simultaneously as a single step rather than sequentially.

gate sequence U = gN−1 ◦ · · · ◦ g0 into a Directed Acyclic
Graph (DAG) denoted D. In this DAG, the nodes cor-
respond to quantum gates, while the incoming and out-
going edges correspond to the qubits on which the gates
operate. The direction of the edges reflects the sequential
execution order of the gates.

When two gates act on disjoint sets of qubits, lack-
ing any common path in the DAG, they can generally
be executed in parallel. However, the execution of gates
in parallel may face additional constraints imposed by
hardware limitations, such as the availability of control
channels for qubit control, or platform-specific restric-
tions on gate operations, such as cross-talk effects.

Definition 3 (Scheduling) Given a quantum circuit U
and its corresponding DAG representation D, the objec-
tive of scheduling is to determine the optimal timing for
the gates to be executed while preserving the integrity of
the DAG up to commutation rules.

Due to decoherence, the primary goal during the
scheduling phase is typically to maximize parallelism,
thereby minimizing the overall execution time of the cir-
cuit.

In the next section, we delve into a comprehensive
study of the NAQC platform, exploring its unique com-
putational capabilities compared to other platforms. In
particular, we analyze how the physical principles and
processes of the NAs can be formulated on an abstract
level regarding optimization constraints and figures of
merit, focusing on the three compilation steps of syn-
thesis, mapping, and scheduling.

III. THE NEUTRAL ATOM QUANTUM
COMPUTING PLATFORM

Building on continuous efforts in using NAs for atomic
clocks and analog quantum simulations, several recent
experimental and theoretical breakthroughs have allowed
this platform to evolve into a promising candidate for
scalable digital quantum computing [1–4, 40–44]. This
section provides an overview of the fundamental physical
principles essential for employing NAs in quantum com-
puting and the resulting additional capabilities. Based on

that, we then translate these physical principles and pro-
cesses to a hardware-aware but more abstract problem
formulation, establishing a connection between physics
and computer science and, hence, hardware experts and
tool developers. This results in “take-home messages”
for tool developers, which are provided in terms of ded-
icated boxes covering optimization constraints as well
as figures of merit and entailing everything relevant for
compiler development. Individuals with prior knowledge
of NAs and/or compilation for quantum hardware may
only check these boxes or bypass the corresponding sec-
tions completely. In the following, we first show that
the NAQC is a suitable candidate for universal quantum
computation. We discuss in depth the NA capabilities
and error sources, each entailed by one of the aforemen-
tioned summary boxes focusing on the three hardware-
dependent compilation steps of synthesis, mapping, and
routing, extended by hardware and error discussions.

A. Platform Requirements

For the NAQC to be suitable as a quantum comput-
ing platform, one requires multiple properties, which are
commonly known as DiVincenzo’s criteria [45], namely:

1. A scalable physical system of qubits

2. The ability to initialize the state of the qubits to a
simple fiducial state

3. A universal set of quantum gates

4. Long relevant coherence times, much longer than
the gate operation time

5. A qubit-specific measurement capability.

The following outlines that all those requirements are ful-
filled for NAs trapped in optical tweezer arrays or optical
lattices.
1. System and qubits: NAs can be stored in optical dipole
traps [46], which are typically formed by far-detuned
lasers interacting with the atomic dipole moment. Ex-
amples include optical lattices, which are stationary pat-
terns of light that emerge from the interference of mul-
tiple laser beams [47], or optical tweezer arrays, which
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consist of many individual tightly focused and individ-
ually controllable laser beams arranged in one, two, or
three dimensions [48]. In state-of-the-art optical tweezer
arrays, atoms are loaded stochastically and can then be
dynamically rearranged in desired configurations [11, 12],
with the possibility of dynamically reloading atoms from
a reservoir to compensate for occasional loss of atoms
[49, 50]. It is possible to laser-cool the atoms within the
traps to their motional ground states [51]. Commonly
used atom species in such experiments are alkali atoms,
e.g. Rb, Cs, or alkaline-earth-like atoms, such as Sr or
Yb. Specific internal electronic states of the atoms serve
as the qubit states |0⟩ and |1⟩. Both states are typi-
cally encoded in two long-lived states of the atom, such
as two hyperfine states in alkali atoms [4, 52], a nuclear
spin [53–55] ,low-energy singlet and triplet states [56, 57],
fine-strucure [58, 59], or circular Rydberg states [60] in
alkaline-earth (like) atoms. Due to their different prop-
erties, also dual-species atom arrays have been proposed
and demonstrated [61].

2. Initialization, and 3. Quantum gates: Transitions
between electronic states can be precisely controlled by
applying laser pulses to the atoms. Such pulses are used
to initialize qubits in well-defined initial states, e.g. |0⟩,
and to perform arbitrary single-qubit gates. Universal
quantum computing also demands controlled two-qubit
gates. To achieve this, atoms can be temporarily ex-
cited to Rydberg states, which are electronic states with
very large principal quantum numbers. Atoms in Ryd-
berg states exhibit large polarizabilities, and as a con-
sequence, two Rydberg atoms interact via dipole-dipole
interactions [62]. By coupling one of the qubit states,
e.g. |1⟩, to a Rydberg state |r⟩, one obtains an effective
interaction between two atoms in the state |1⟩ [40, 63].
Depending on the exact settings, interaction character-
istics can vary from dipolar to van der Waals [2]. This
mechanism can be used to engineer two-qubit or multi-
qubit gates.

4. Coherence times: The two primary error sources of
trapped atoms during idling are dephasing and ampli-
tude damping (|1⟩ 7→ |0⟩). These processes cause the off-
diagonal terms in the density matrix ρ of a qubit to decay
on a time scale T ∗

2 , and the matrix element ρ11 to decay
on a time scale T1. Both time scales can reach up to the
order of several seconds for NAs in optical tweezers [5, 56]
and are characteristic for the specific qubit implementa-
tion, e.g. magnetically insensitive clock states with very
long lifetimes. Controlled phase gates can be performed
in timescales of the order of 100 ns− 500 ns [64], depend-
ing on the physical details, which is orders of magnitude
faster than the decoherence time of such systems.

5. Measurements: Finally, the qubit states of the atoms
can be measured by performing fluorescence imaging,
that is, driving transitions between one of the qubit levels
and an auxiliary electronic level with a laser and imaging
the emitted photons with a camera.

B. Computational Capabilities

In addition to fulfilling DiVincenzo’s criteria, NAs offer
a broad spectrum of capabilities that can be employed to
perform quantum computations. In the following, these
capabilities are discussed in more detail. This is done by
first discussing the corresponding capabilities’ basic phys-
ical principles and processes, followed by self-contained
boxes, summarizing the resulting constraints and opti-
mization figures of merit on a more abstract level. There-
fore, tool developers can refer only to the boxes for the
development of NA-specific compilers.

1. Single-qubit Gates

Single-qubit gates are realized with lasers that drive
Rabi oscillations between the qubit states |0⟩ and |1⟩.
The respective Hamiltonian reads

H1(t)

ℏ
=

Ω(t)

2
|0⟩⟨1|+ Ω∗(t)

2
|1⟩⟨0| −∆(t) |1⟩⟨1| , (1)

where Ω(t) and ∆(t) are the effective Rabi frequency
and detuning, respectively. Depending on the precise
qubit encoding, the transitions might be either single- or
two-photon transitions. In the latter case, the Hamilto-
nian in Equation (1) is obtained after adiabatic elimina-
tion of an intermediate level. Depending on the experi-
mental setup, some laser beams might only be available
as global beams [3], simultaneously illuminating many
atoms. However, single-qubit addressing can also be re-
alized using beams focused on individual atoms [34, 65].

2. Two-qubit Gates

To execute two-qubit gates, typically, one of the qubit
states, e.g. |1⟩, is coupled to a Rydberg state |r⟩ using
a laser with Rabi frequency Ωr and detuning ∆r. Two
atoms in the same Rydberg state and separated suffi-
ciently far from each other interact via the van der Waals
interaction

VvdW(d) =
C6

d6
, (2)

where C6 is a state-specific constant and d the inter-qubit
distance. The Hamiltonian describing two atoms illumi-
nated by a global Rydberg laser, therefore, reads

H2(t)

ℏ
=

2∑
i=1

(
Ωr(t)

2
|1⟩⟨r|i +

Ω∗
r (t)

2
|r⟩⟨1|i −∆r(t) |r⟩⟨r|i

)
+

VvdW

ℏ
|r⟩⟨r|1 ⊗ |r⟩⟨r|2 .

(3)
The van der Waals interaction imposes an energy penalty
to promote two nearby atoms together to a Rydberg
state. Consequently, laser excitation of one atom to a
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FIG. 2. Capabilities of the NAQC platform. In this setup, atoms are arranged on a regular grid of Spatial Light
Modulator (SLM) traps, with a fixed distance denoted as d. (a) Rydberg blockade interaction: Within a specific interaction
zone of radius rint =

√
2d, depicted in yellow, interacting gates can be performed to all qubits within this range. (b) Two-

qubit gate: A gate can be applied between neighboring qubits but restricts the simultaneous execution of other entangling
gates on nearby atoms. The restriction volume, represented by a red sphere of radius rre = d, indicates this restriction. The
interaction radius rint = d is not explicitly shown to simplify the illustration. (c) Long-Range interactions: For gates with
larger interaction radii, the restriction zones (rre = 3d ≥ rint = 2

√
2d) also expand, resulting in more restricted atoms. (d)

CCZ gate with a line arrangement of the qubits. According to [4] it is sufficient if the central atom interacts with both the
outer qubits, resulting in a minimal interaction radius of rint = d. The restriction radius is illustrated examplatory as rre = 2d.
(e) CCCZ gate: In this case, we require that all four gate qubits must be within the interaction radius rint = rre = 2d of
every other qubit, according to Equation (8). (f) Shuttling operation: Dynamic Acousto-Optic Deflector (AOD) traps (blue)
enable the movement of atoms within the same column (x) or row coordinate (y) simultaneously. The procedure addresses
certain constraints discussed in Section III B 4. (g) Additional NA capabilities, useful for future fault-tolerant computations.
For example, mid-circuit measurements and possible inter-photonic connections.

Rydberg state is impossible if another Rydberg atom is
close by. This so-called Rydberg blockade can be uti-
lized to engineer state-dependent interactions and, thus,
two-qubit gates between two atoms. The first proposal
by Jaksch et al. [63] requires a sequence of locally ad-
dressed laser pulses and was realized for the first time in
2010 with neutral Rb atoms [66, 67]. More recent two-
qubit gate sequences require only global addressing of
both involved qubits and are also faster than the original
scheme [4]. The qubits must be located sufficiently close
to each other so that the interaction is strong enough
for the Rydberg blockade to hold. From the condition
ℏΩr ≃ VvdW(rb) follows a blockade radius

rb ≃
(

C6

ℏΩr

)1/6

. (4)

This length scale gives an estimate of how far two atoms
participating in a two-qubit gate can be separated at
most. Since the blockade radius can be much larger than
the distance between neighboring atoms, two-qubit gates
can be applied to pairs of atoms that are not nearest
neighbors, resulting in higher inter-qubit connectivity.
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Synthesis: (One- and two-qubit gates)
Assuming local addressability of all qubits, this re-
sults in a native gate set Σuniv = {R,CZ} containing
arbitrary single-qubit rotations R and the two-qubit
CZ gate to synthesize a given algorithm.
Nevertheless, synthesis for NAs is hard, as the ex-

act synthesis steps required depend heavily on the
chosen atom species and qubit encoding. Further-
more, one has to distinguish between laser pulses
available as global or locally addressable beams. A
first approach, leveraging SC synthesis tools with ad-
ditional post-processing was demonstrated by Not-
tingham et al. [32].

Mapping: Two-qubit gates can be executed be-
tween any pair of qubits sufficiently close for the
blockade to take effect. This constraint can be de-
scribed by a constant interaction radius denoted as
rint, where a gate g(Qi, Qj) can be performed if

d(Qi, Qj) ≤ rint, (5)

where d is the Cartesian distance. This is illustrated
in Figure 2 (a).

We can define a coupling graph C = (V,E), with

E = {(Qi, Qj)|d(Qi, Qj) ≤ rint}. (6)

With this coupling graph, common mapper tools of
the SC platform[13, 14, 16, 18, 19] can be partially
employed for the NAQC platform.

However, during the two-qubit gate sequence, both in-
volved qubits are promoted to the Rydberg state and,
therefore, could interact with other nearby atoms in Ryd-
berg states, resulting in unwanted detrimental cross-talk.
While the strong Rydberg interaction is indispensable for
achieving high-fidelity two-qubit gates, it also imposes
limitations on other atoms in close proximity, preventing
them from simultaneously performing similar gates.

Scheduling: To establish the constraint on simul-
taneous gate executions, we use the concept of a
restriction radius denoted as rre. This parameter
represents the minimum distance required between
two atoms in the Rydberg state to prevent undesir-
able cross-talk. It is worth noting that, in general,
rre ≥ rint, as cross-talk may arise even at distances
where a gate interaction may not yet be feasible.

Thus, for two gates g(Qi, Qj) and g′(Qa, Qb) to be
executed in parallel, the following condition must be
satisfied:

d(Qi, Qa), d(Qi, Qb), d(Qj , Qa), d(Qj , Qb) > rre. (7)

If the distances between qubits involved in gates are
too small, gates must be executed in sequential or-
der, possibly increasing the execution time of the
circuit. This limitation is commonly known as block-
ing ; however, to avoid any potential confusion with
the concept of Rydberg blockade, we use the term
restriction. We refer to the region surrounding a
gate, affected by this phenomenon, as the restriction
volume.
A simple visual example with different radii is il-

lustrated in Figure 2 (b) and (c), where the restric-
tion volume and the corresponding restricted atoms
are colored in red.

The interdependence of rint and rre on the strength of
the Rydberg blockade rb allows us to establish a rela-
tionship between them as rre = k · rint, where k ≥ 1 is
referred to as blocking factor. This gives rise to an in-
teresting trade-off between higher connectivity achieved
with a larger rint, which, in turn, leads to larger restric-
tion volumes and consequently reduces the number of
parallel gate executions. This phenomenon has been in-
vestigated by Baker et al. [33] and is further discussed
in greater detail with additional case studies and error
analysis in Section VI.

3. Multi-qubit Gates

In NA quantum processors, it is also possible to apply
native multi-qubit gates to sets of atoms.
Analogous to the case of two-qubit gates, the atoms

must be located within the blockade radius of each other
such that the atoms interact when excited to Rydberg
states. There exist multiple theoretical proposals to im-
plement multi-qubit gates such as CkZ and CZk gates, up
to single-qubit rotations, and also more exotic versions
[5–7, 68]. Parallel applications of Toffoli (CCZ) gates to
multiple sets of atoms have already been demonstrated
in experiments with trapped Rb atoms [4, 5].

Synthesis: This expands the possible native gate
set to Σuniv = {R,CkZ,CZk} and, therefore, gives
much more possibilities to synthesize a given circuit.
First, multi-qubit gates within an algorithm do not
have to be decomposed to a more basic gate set, pos-
sibly increasing gate or decoherence errors.
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Furthermore, native multi-qubit gates are of great
interest for the implementation of classical re-
versible circuits, using Toffoli and multiple controlled
gates [69–72]. Those classical circuits can be used for
algorithmic subtasks or the synthesis of oracles used
in quantum algorithms. In this context, oracles refer
to black-box functions performing the required oper-
ation. Although often used during the construction
of quantum algorithms, the task of finding an ade-
quate realization is non-trivial in general.
Secondly, instead of decomposing unitaries to one-
and two-qubit gates only, also other gate combina-
tions such as Hadamard plus Toffoli [73, 74] may be
used, resulting in alternative decompositions.

Mapping: The mapping constraints for multi-qubit
gates depend on the specific implementation and the
corresponding laser pulses. To simplify the discus-
sion we assume the worst case, where each qubit
needs to interact with each other qubit within the
gate. Therefore, to implement a multi-qubit gate
g(Q) acting on the set of qubits Q = {Qi, . . . , Qj},
all qubits have to be within the interaction radius of
each other:

d(Qi, Qj) ≤ rint ∀i, j ∈ Q. (8)

Furthermore, this implies that rint places a con-
straint on the size and configuration of multi-qubit
gates. For instance, a Toffoli gate with its three
qubits aligned in a straight line necessitates rint ≥ 2d
as in Figure 2 (d), while a possible perpendicular ar-

rangement could be achieved with rint ≥
√
2d.

As mentioned, this constraint’s extent can be mit-
igated depending on the specific gate and its imple-
mentation. For instance, in the case of the CCZ gate
[4] in Figure 2 (d), solely a single qubit needs to be
within rint of the others, while among themselves,
they may be situated at a greater distance. On the
other hand, depending on the implementation, con-
straints in addition to Equation (8) must be fulfilled.
Taking again the example of the CCZ gate, one also
has to take into consideration the geometric arrange-
ment of the qubits. In this case, the gate requires the
three qubits to sit along a straight line, while a per-
pendicular arrangement would not be possible [4].

Scheduling: The restriction mechanism from the
two-qubit gates generalizes to the case of two
multi-qubit gates by composing the minimal distance

rre between any two qubits of the respective gates.
So, for two gates g(Q) and g′(Q′) acting on the two-
qubit sets Q,Q′ we need

d(Qi, Qm) ≥ rre ∀Qi ∈ Q and ∀Qm ∈ Q′. (9)

In difference to the interaction constraint of Equa-
tion (8), this cannot be relaxed, as both control and
target qubits are potentially in the Rydberg state
during gate execution. As a result, multi-controlled
gates restrict a larger number of atoms compared to
simpler gates.

The necessity for a larger interaction radius, along with
the increased number of qubits, leads to an expanded
restriction volume for multi-qubit gates in contrast to
two-qubit gates. Nevertheless, this could potentially be
compensated by a more efficient synthesis process facil-
itated by utilizing a larger native gate set or the faster
execution of the corresponding multi-qubit gate.

4. Atom Shuttling

In the context of NAQC, individual tweezers hold-
ing qubits can be dynamically moved during computa-
tion without disrupting entanglement, as demonstrated
in [8, 9, 75]. This capability offers an alternative to imple-
menting SWAP operations at the virtual level, requiring
three CX gates. In addition, physically shuttling atoms
to new locations provides the flexibility to establish dy-
namic connectivity between qubits.
One physical realization of these shuttle operations

involves placing atoms intended for shuttling within a
tweezer array generated using a 2D crossedAcousto-Optic
Deflector (AOD). On the contrary, stationary qubits re-
main in a static tweezer array formed by employing a
Spatial Light Modulator (SLM). A typical complete shut-
tling operation requires first a pick-up from a static SLM
to a dynamic AOD trap. Via a controlled frequency ramp
applied to the AOD, the qubit is rearranged to the desti-
nation, followed by a controlled release of the atom back
into a static trap. The selection of atoms to move can be
altered for subsequent maneuvers, and specific parallel
moves are feasible [42, 48], with the constraints summa-
rized in the following box.

Mapping: The AOD can be characterized by two
sets of coordinates: xi, . . . xk and ya, . . . yc. Each
intersection (xi, ya) defines a potential trap where
an atom can be confined. Shuttling is achieved
by modifying these coordinates, effectively relocat-
ing the corresponding traps. Consequently, chang-
ing the value of a specific coordinate, say x0, results
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FIG. 3. Neutral Atom Dynamically Field-Programmable Array (DPQA) Processor. In this architecture, atoms
are strategically placed within Spatial Light Modulator (SLM) trap pairs, ensuring that the distance between them is smaller
than rint while maintaining an inter-pair distance larger than rre to prevent mutual restrictions. Computation in a DFPA
processor can be considered as the repetition of three major phases: (a) Loading phase: A subset of atoms undergoes
a switching process to be rearranged using Acousto-Optic Deflectors (AODs), indicated by the AOD coordinates x and y.
(b + c) Shuttling phase: The trapped atoms are rearranged by readjusting the AOD coordinates. To avoid conflicts due
to row crossing, the atom in the lower left corner (indicated in red) must be displaced first, allowing the other atom to occupy
its designated position. In particular, for y2 to reach its destination, the y3 row has to be moved along as the coordinates are
not allowed to cross. Subsequently, the remaining atoms, and also y3, can be shuttled to their respective locations. For more
complicated shuttling operations this requires sophisticated methods to find adequate AOD movements. (d) Gate phase: An
entangling CZ gate can be performed on atoms within the same pair of traps. This operation can be accomplished either with
a global laser beam or individually using selective beams, as discussed in Figure 2. Phases (a) to (d) are repeated iteratively
until all the required gates have been executed.

in the simultaneous movement of all AOD-trapped
atoms in the first column, with identical displace-
ments in the same direction. This implies that not
all atoms within a single AOD can be moved inde-
pendently. By examining the movement vectors m⃗i,a

for atoms located at coordinate (xi, ya), the follow-
ing constraints emerge:

m⃗i,a · êx = m⃗i,b · êx ∀a, b
m⃗i,a · êy = m⃗j,a · êy ∀i, j ,

(10)

where êx and êy are the respective unit vectors.
An illustrative example of this scenario is shown in
Figure 2 (f), where two atoms are simultaneously
shuttled row-wise. On the contrary, a third AOD-
trapped atom remains stationary, corresponding to
different row and column traps.

As a second constraint, we observe that two co-
ordinates are not allowed to be closer than a given
minimal distance dmin.

|xi − xj | > dmin ∀i, j
|ya − yb| > dmin ∀a, b.

(11)

Otherwise, this would result in overlapping trap po-
tentials and undefined behavior with potential atom
loss. Equation (11) enforces that the coordinate lines
cannot cross each other, maintaining a fixed ordering
x0, . . . , xk throughout the process.

Scheduling: There are two possible approaches to
shuttle multiple AOD-trapped atoms in parallel.
First, by spanning an AOD with multiple x or y co-

ordinates to trap multiple atoms using a single AOD.
In this scenario, all parallel movements must comply
with the constraints described in Equation (10) and
Equation (11). Specifically, columns (rows) can only
move along the same x (y) displacement and must
not cross each other.
The second case involves using multiple AODs,

each with their respective coordinates. In this setup,
movements from different AODs are independent of
each other, allowing for maximum flexibility. The re-
maining constraint is to ensure that the atoms keep
a minimal distance through the shuttling process.
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Instead of using shuttling only as a substitute for vir-
tual SWAP and MOVE operations, the recently discussed
Dynamically Field-programmable Qubit Arrays (DPQA
or D-FPQA) [8, 9, 30, 35] has emerged as a quantum pro-
cessor design, which entirely focuses on shuttling. Com-
pared to the previous discussion, this new computation
architecture is not based on qubits placed on a regular
grid. A short definition is given in the following box and
described in Figure 3.

Architecture: (DPQA)
In the Dynamically Field-Programmable Qubit Ar-
rays (DPQA) setup, stationary SLM traps are ar-
ranged in groups on a grid, ensuring that the qubit
distance within a single group is smaller than rint,
allowing gates to be applied within the group. Mean-
while, the groups themselves are placed at an inter-
group distance greater than rre, preventing interfer-
ence between gates on different groups, as illustrated
in Figure 3. This arrangement requires more space
than the previous configuration, especially for larger
rre values.

The computation process in DPQA can be divided
into three phases, assuming that all atoms start in
one of the SLM traps:

1. Loading: Depending on the following gates to
be executed, atoms that need to be shuttled
are loaded into the AOD traps by activating
the corresponding coordinates.

2. Shuttling: Modulating the AOD coordinates
enables the atoms to move column / row-wise.
Due to the constraints of Equation (10) and
Equation (11), direct movement of atoms to
their destinations may not always be possi-
ble, necessitating intermediate shuttling, as de-
picted in Figure 3 (b). Here, the left atom
has to be shuttled downwards first to let the
other atom reach its destination. After reach-
ing their destinations, the atoms switch traps
back to stationary SLM traps.

3. Gate execution: Entangling gates can be per-
formed on qubits within the same group.
This can be achieved by addressing individ-
ual atoms, possibly implementing multi-qubit
gates, or using a global beam to apply the same
entangling gate on all groups with more than
one atom. In this phase, required single-qubit
gates can also be performed by addressing the
atoms individually or globally.

These three steps are iterated until all the gates in
the circuit have been executed. Due to the movement
dependencies of Equation (10), finding suitable AOD
movements is a highly non-trivial task.

An extension of the DPQA setup adds the possibility
of defining separate zones for dedicated entangling, mea-
suring and storing qubits which allows for experimen-
tally optimized setups [8]. The routing between these
zones on the other hand imposes an additional computa-
tional overhead, resulting in a trade-off situation regard-
ing processor design similar to the discussions between
gate-based and shuttling-based mapping in Section VID.

5. Measurements

The qubit state of an atom can be measured by per-
forming fluorescence imaging on a cycling transition be-
tween one of the computational states and an auxiliary
electronic state [1]. During this process, the fluorescence
light emitted by the atoms is imaged with a camera such
that bright spots in a final image correspond to atoms in
a specific qubit state. However, this procedure is exper-
imentally challenging. Scattering of photons for readout
heats the atoms, leading to significant atom loss from
the shallow optical dipole traps without laser cooling.
Measurements that preserve the atoms in the traps have
been demonstrated in free space [76, 77], but might be
easier to achieve by performing cavity-enhanced fluores-
cence imaging [78, 79]. Next to being faster and non-
destructive, the latter technique has the advantage that
much fewer photons must be scattered for detection, re-
ducing atom heating and cross-talk problems at the ex-
pense of serial readout. Parallel mid-circuit measure-
ments of qubits have also been demonstrated recently
[8, 80–84].

6. Errors

Qubits in a quantum computation can suffer from idle-
errors, incurring when the qubits are unused, or gate er-
rors when imperfect quantum gates are applied. During
idling, NA qubits mainly experience two error processes.
First, atoms can decay from the qubit state with higher
energy, commonly referred to as |1⟩, to the ground state,
which typically encodes the qubit |0⟩ state. This ampli-
tude damping causes the matrix element ρ11 of the den-
sity matrix ρ of a qubit to decay on a characteristic time
scale T1, called relaxation time. The relaxation time for
NAQC is typically very large; it can be of the order of
100 s for hyperfine qubits, but even for other qubit en-
codings T1 can reach several seconds [56]. Second, atoms
undergo dephasing, mainly resulting from fluctuating ex-
ternal fields or drive fields. Due to both error processes,
the off-diagonal elements of the qubit’s density matrix
decay on a time scale T ∗

2 . Canceling noise on slower time
scales with dynamical decoupling techniques results in
a modified, increased, dephasing time T2. Encoding a
qubit in two states insensitive to external field fluctua-
tions yields long dephasing times that can be as high as
several seconds. As a simplification to the exact error
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analysis, which is highly non-trivial in general, we want
to define the artificial parameter of an effective coherence
time

Teff =
T1T2

T1 + T2
. (12)

If either T2 ≪ T1 or vice versa, Teff reduces to the re-
spective shorter time, such that it correctly captures the
typical time scale, limiting the system’s coherence.

Furthermore, the application of gates can induce errors
on a qubit. Besides experimental imperfections such as
e.g. miscalibrations or laser intensity fluctuations, there
are physical processes that limit achievable gate fidelities.
In particular, two- and multi-qubit gates require atoms to
be temporarily excited to Rydberg states. Those states
decay quickly, either to the qubit subspace, leading to
computational errors, or to other electronic states, re-
sulting in leakage errors. Experimentally, specific pulse
shapes can be utilized to minimize the effect of such er-
rors [85, 86]. Typically, these Rydberg decay errors are
combined with other gate execution errors, resulting in a
gate-specific average gate fidelity Fg for a given gate g.
Unfortunately, even given the average gate fidelities of

all gates in a quantum circuit, it is not possible to com-
pute the exact final output fidelity. In general, it is even
hard to establish useful thresholds, as the exact fidelity
depends on complicated microscopic error characteristics
and their interplay with each other. To still account for
different gate fidelities and coherence times, we consider a
strongly simplified error discussion in the following which
should be considered only a very rough estimate of the ac-
tual errors. Nonetheless, we can consider it a first proxy
criterion regarding optimization techniques during com-
pilation.

We can summarize this discussion of physical errors
into two principal error types. Decoherence errors for
idle qubits and gate fidelities for executing gates. In this
simplified scheme, we can make the following abstraction
from physical error processes to an error measure, which
requires only a small set of physically motivated param-
eters to get a basic but hardware-aware error estimation.

Errors Given a quantum computation U with syn-
thesis, mapping, and scheduling already performed,
including inserted MOVE and SWAP operations, we
obtain a sequence of Ñ operations O:

U = ON−1 ◦ · · · ◦O0̃.

In addition, let the fidelities f of all operations and
the coherence times T1 and T2 be given. We can
define the abstract measure of approximate success
probability P . It is defined as the product of all av-
erage gate fidelities, combined with the term for the
idle error:

P (U) = exp

(
− tidle
Teff

) Ñ∏
i=0

FOi
, (13)

where Teff is given according to Equation (12) and
the idle-time tidle describes the time in which no gate
is applied to a qubit, summed over the whole register.
In the case that all operations, including SWAPs and
MOVEs, are realized by gates, Equation (13) simpli-
fies to

P (U) = exp

(
− tidle
Teff

) N∏
i=0

Fgi , (14)

where we only need the gate fidelities F(gi) for all
gates gi ∈ Σnative in the native gates set.
The idle-time can be computed given the gate exe-
cution times t and the total circuit execution time T
as

tidle = n · T −
N∑
i=0

t(gi), (15)

after routing has been employed to compute T .

The scheme of approximate success probability pro-
vides a simple and fast-calculated proxy criterion for the
occurrence of errors in quantum computation. The gen-
eral concept allows comparison between operations at dif-
ferent abstraction levels, such as native gates or oracles,
and operations performed using additional capabilities,
such as SWAP gates or SWAP shuttling movements, as
long as it is possible to assign an operation-specific exe-
cution time t and an average fidelity F .

7. Fault-tolerant QC and Error Correction

For the long-term goal of large-scale quantum com-
putation, it will be necessary to employ techniques from
quantum fault tolerance to deal with the accumulation of
noise and errors [87]. In the case of NAs, not only compu-
tational errors but also leakage errors must be corrected
to achieve fault tolerance. There are proposals to con-
vert leakage errors into Pauli Z-errors [88] or detect and
thus convert them into erasures [89–92]. Two-qubit gate
designs have been proposed in which errors mainly occur
in the form of detectable erasures [93, 94].
Regarding quantum error correction, most schemes re-

quire mid-circuit measurements and real-time feedback, a
procedure which has been demonstrated lately with NAs
[8, 83, 84] but remains challenging. Therefore, progress
on measurement-free fault-tolerant quantum error cor-
rection might be promising for NAs [95–97]. Also, the
possibility of using atom-photon interactions has been
discussed lately [98, 99], allowing for photonic intercon-
nects on long distances. Due to experimental demon-
strations [8], current work is focused on the possibil-
ity of using the shuttling capability of NAs to prepare
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and manage encoded states for qLDPC [100], the surface
code [101], and generalized bicycle codes [102]. Com-
bined with the discussion on fault-tolerant realizations
of non-Clifford gates [103], this paves the way towards
fault-tolerant computation on the NAQC platform. This
is of particular interest, as the requirements for proposed
qLDPC code realizations on superconducting platforms,
are still beyond current hardware capabilities [104–106].

IV. COMPILATION FOR NEUTRAL ATOMS

Meeting DiVincenzo’s criteria at the hardware level is
not sufficient to achieve a fully operational quantum com-
puter. Abstractly formulated quantum algorithms must
be translated into physical operations available on the
hardware and carefully coordinated to satisfy constraints
and conditions imposed by the physical process or exper-
imental setup.

In this section, we will explore how the computational
capabilities and constraints of the NAQC platform, as
discussed in Section III B, impact hardware-focused com-
pilation steps. Additionally, we will propose a set of sim-
plified proxy criteria as figures of merit to evaluate the
compilation results, enabling comparison between funda-
mentally different operations, such as virtual or physical
swapping.

This discussion proposes potential compilation paths
to address the increased number of possibilities, given
the diverse quantum operation capabilities of NAs. Such
efforts may aid the development of design automation
and compilation software, taking full advantage of the
capability spectrum of the NAQC platform. In particu-
lar, regarding the choice of figures of merit to evaluate
the compilation results.

A. Overview

The NAQC platform introduces a novel set of capa-
bilities for implementing gates and new degrees of free-
dom for conducting operations, but consequently, also
additional constraints within the compilation processes.
Moreover, for certain operations like shuttling, conven-
tional figures of merit for evaluating compilation quality
are no longer directly applicable. This necessitates new
schemes on how a given quantum algorithm is compiled
and how the efficacy of the resulting compilation can be
assessed. To this end, we propose an abstract compila-
tion overview that considers the distinct computational
capabilities and appropriate figures of merit for optimiza-
tion processes and evaluation in the specific case of NAs.
The proposed procedure encompasses three main steps,
depicted in Figure 4 as a three-layer diagram.

1. Input/pre-processing: The initial step involves provid-
ing the input to the workflow, comprising a quantum
circuit in which all platform-independent optimizations
have already been performed.

2. Computational capabilities: This part involves the
compilation process, which varies depending on the spe-
cific hardware capabilities, encompassing long-range in-
teractions, multi-qubit gates, and shuttling as discussed
in Section III B.

3. Figures of merit: The final step requires using suitable
figures of merit to evaluate the quality of the compilation,
which may differ across various capabilities.

1. Input/Pre-processing

The initial stage acts as the input layer in the proposed
compilation overview. It outputs a fully optimized circuit
where all hardware- and platform-independent optimiza-
tions have been applied. Because this phase is not tied
to any particular platform, well-established optimization
techniques and software initially designed for SC hard-
ware can be employed here. The result is a sequence
of gates, still including abstract gates that will be bro-
ken down in the subsequent steps based on the available
hardware. Certain aspects of this process can also be pre-
compiled beforehand, stored, and later retrieved from an
intermediate representation [107, 108].

2. Computational Capabilities

The subsequent layer includes hardware-dependent
compilation steps, specifically synthesis, mapping, and
scheduling. Unlike the previous optimizations, these
steps depend on the available operations, such as the ba-
sis gate set and how SWAP operations can be performed.
Consequently, the compilation process may vary based
on the set of available capabilities and the corresponding
constraints, which directly correspond to the sections of
Section III B.

(A) Nearest-neighbor connectivity: The first option in-
volves utilizing capabilities equivalent to those often con-
sidered for the SC platform. This includes employing
single-qubit rotations and Rydberg blockade-based con-
trolled phase gates, which differ from CX by just single-
qubit operations. Together, they form a universal gate
set for decomposing non-native gates during synthesis.
Qubit connectivity follows nearest-neighbor connections,
defining the connectivity graph G. Synthesis, mapping,
and routing techniques applied in SC systems can be
adapted with adjustable parameters such as gate time or
fidelity. The additional constraint, gate restriction from
Section III B 2, must be considered on top as it is unique
to the NAQC platform.

(B) Long-range interactions: One significant distinction
of NAs is their ability to execute two-qubit phase gates
not only between adjacent qubits but also between any
two atoms where the blockade interaction reaches suffi-
cient strength. This increases connectivity, reducing the
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FIG. 4. Compilation and Evaluation Process Overview for the Neutral Atom Quantum Computing Platform.
1. Input/Preprocessing: The platform-independent compilation processes lead to a circuit description that includes abstract
and hardware-independent gates. 2. Computational capabilities: The different computational capabilities of the NAQC
platform, as elaborated in Section III B with a short description of the constraints for the corresponding compilation subtasks
of synthesis, mapping, and routing. Depending on the hardware setup, multiple capabilities, including all, can be considered.
3. Figures of merit: The compilation output is evaluated based on capability-specific proxy criteria, such as gate or shuttling
operation counts. To achieve a more comprehensive comparison and evaluation of gate-based routing and shuttling, figures of
merit, such as the final execution time and fidelity of the compilation result, can be computed.

need for additional SWAP operations during circuit ex-
ecution. However, the larger restriction volume due to
long-range interactions may lead to more sequential gate
execution.

(C) Multi-qubit gates: Besides higher connectivity, the
long-range Rydberg interaction enables the implemen-
tation of native multi-qubit gates, which is particularly
beneficial for the synthesis task or algorithms that in-
herently consist of many multi-qubit gates, such as re-
versible classical logic circuits. However, involving more
atoms also increases the restriction volume, potentially
limiting simultaneous gate executions.

(D) Shuttling/DPQA: A fundamental advantage of the
NAQC platform is the ability to physically move atoms,
and hence qubits, rather than relying on virtual SWAP
operations. High-fidelity shuttling is a promising alter-
native for gates between distant qubits. Additionally,
a fully shuttling-based architecture (dynamically field-
programmable quantum array - DPQA) might be possi-
ble, eliminating the need for virtual swaps altogether.

(E) Fault-tolerant quantum computing: NAs also of-
fer additional capabilities relevant to future compilation
tasks, such as fault-tolerant quantum computing. The
details of compiling logical circuits are beyond the scope
of this work, but with the recent experimental progress,
first work in this direction has been done, in particular
discussions on the implementation of qLDPC codes Xu
et al. [100], surface codes [101], and generalized bicycle
codes [102].

Theoretically, it is feasible to combine multiple, or even
all, of the aforementioned capabilities. For instance, it
is possible to harness both physical shuttling operations
and virtual SWAP gates within the same computation.
Alternatively, one could adopt the DPQA approach while
organizing atoms into subgroups instead of pairs, thereby
utilizing shuttling and the ability to implement multi-
qubit gates within the atomic subgroups. Examples are
given by Viszlai et al. [101] studying possible surface code
architectures to take advantage of such a setup, or map-
ping algorithms taking advantage of using both, gate and
shuttling-based mapping techniques [36]. Nevertheless,
there remains a diverse set of compilation tasks and open
avenues for further investigation.
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3. Figures of Merit

The evaluation of a compilation output requires the use
of appropriate performance measures or metrics. The
choice of metrics varies depending on whether the aim
is to compare different compilers, capabilities, or plat-
forms. For instance, the common practice of counting
additional swap gates as a measure in SC compilers lacks
significance for a DPQA-based architecture that avoids
swap gates altogether. Therefore, novel metrics may be
required to measure the quality of a compilation output
for NAs. The same holds for the figures of merit used
during optimization in the form of cost functions. These
figures of merit, suitable for NA-based hardware, are dis-
cussed in the following.

(A) Gate count: The predominant approach to evaluate
the quality of a compilation is to quantify the total num-
ber of gates. Directing attention to the gates with the
lowest fidelity often suffices, as they exert the most sig-
nificant influence on the final output. In the context of
synthesizing, notable metrics include the counts of CX
gates for NISQ computing or T gates in the regime of
fault-tolerant quantum computing. In the case of NAs,
a similar figure of merit could be employed, where, de-
pending on the hardware, the focus lies on the gates with
the lowest fidelity or longest execution time.

In addition to the total number of gates, another critical
aspect to consider is the number of gate layers, referred
to as circuit depth, where each layer contains operations
that can be executed simultaneously. This evaluation
considers the scheduling of operations and serves as a
proxy criterion for estimating the overall execution time.
However, when dealing with NA, especially in cases in-
volving nearest-neighbor interactions (2.A), it is imper-
ative to account for the existence of gate restriction vol-
umes, as elaborated in Section III B 2, during the schedul-
ing process. This will result in larger circuit depths in
general.

(B) Operation count: Since shuttling does not intro-
duce additional gates into the circuits, the previous gate-
based measure is not applicable. An alternative approach
would be to define a similar and straightforward opera-
tion count. A suitable candidate for this count could be
the number of AOD-based MOVE or SWAP operations.
For DPQA architectures, one can use the number of it-
erations of the three phases of loading, shuttling, and
execution as a first-order evaluation measure.

(C) Fidelity and runtime: The diverse possibilities for
implementing a quantum circuit on the NAQC platform
render simple measures such as gate count less suitable,
especially when multiple capabilities are leveraged. The
most comprehensive measure for evaluating a quantum
computation is the output fidelity and the total run-
time. Unfortunately, computing the exact output fidelity
is generally not feasible. To address this limitation, we
considered the proxy of approximate success probability

of Equation (13), quantifying the likelihood of execut-
ing the circuit successfully without errors. It enables a
comparative analysis of compilation outcomes for vari-
ous circuits, facilitating the evaluation of a given com-
piler’s performance. Additionally, this metric allows for
comparing different capabilities, assisting in estimating
the most promising approach for mapping, for example,
whether employing nearest neighbor, long-range SWAP
gates, or shuttling SWAP operations are most suitable.

B. Compilation Parameters

All stages within the overview depicted in Figure 4
are contingent upon hardware-specific parameters, such
as the strength of the Rydberg blockade, the gate exe-
cution time for the mapping and -scheduling task, and
the corresponding gate fidelities used to compute the fi-
nal output fidelity. These parameters heavily depend on
the chosen hardware and the overall experimental con-
figuration, including the atom species and the protocol
employed to implement specific gates. Nonetheless, the
development of compilers necessitates the utilization of
reasonable hardware parameters to generate practical re-
sults for hardware experts and other users. Hence, we
present a list of estimated parameters in Table I for two
exemplary setups. These parameters align with the more
abstract description of the physical capabilities, suitable
for tool developers, and discussed in Section III B. It is
important to note that these parameters are not fixed and
will inevitably evolve in the coming years with advance-
ments in hardware and control systems. The underlying
idea is that one can then reason on an updated set of the
same or similar parameters but with the same general
considerations, as all shown parameters can change with
future hardware improvements. Therefore, the objective
is to develop more adaptable compilers that can adjust
to specific hardware configurations provided.

C. Discussion

Figure 4 provides a comprehensive overview of the
whole hardware-dependent compilation process by bring-
ing the summary boxes of Section III B in relation to
each other and to possible figures of merit for evaluation.
Nevertheless, it should not be viewed as an inflexible
framework dictating the compilation process. Instead,
it should be perceived as a graphical representation de-
lineating the broad spectrum of compilation possibilities
of the NAQC platform. This complexity arises from the
potential selection or amalgamation of multiple capabili-
ties to achieve improved outcomes. In addition to the in-
creased number of compilation options, the overview un-
derscores the need for additional or more intricate metrics
and figures of merit, depending on the available capabil-
ities. Depending on the available hardware, a compiler
can take multiple paths along the three layers, leverag-
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Setup 1 Setup 2

General Atom species Strontium [56, 64, 109] Rubidium [5, 9]
Inter atomic distance d 3µm 3 µm

Gate durations t Single-qubit 200 µs [109] 0.5µs [110]
CZ 0.1 µs [64] 0.2µs [5]
CCZ ∼ 1 µs ∼ 1 µs
CCCZ ≥ 1 µs ≥ 1 µs

Gate fidelities F Single-qubit > 0.99 [109] > 0.999 [110]
CZ > 0.99 > 0.995 [5]
CCZ ∼ 0.95 > 0.98 [5]
CCCZ ∼ 0.95 ∼ 0.95

Coherence times Qubit decay T1 > 1 s [56] > 100 s

Dephasing T §
2 > 10 s [56] > 1.5 s [5]

Long-range Interaction radius rint 2 2
Restriction radius rre 4 4

Shuttling Fidelity 1 1∗ [9]
Shuttling speed vs < 0.025 µmµs−1 [109] < 0.55µmµs−1∗ [9]
Trap swapping 20µs [75] 20µs [75]

∗ According to Fig. 1d of Bluvstein et al. [9] we assume perfect fidelity if the average shuttling
speed is below the indicated threshold.

§ We consider T2 times using additional dynamic decoupling techniques.

TABLE I. The hardware parameters pertain to the compilation steps of mapping and scheduling, alongside the subsequent
evaluation measures shown in the overview of Figure 4. These parameters are provided for two hypothetical experimental
setups and are intended solely for a preliminary estimation, as they are dependent on the specific hardware utilized and are
likely to change with future experimental improvements.

ing different capabilities. As a tool developer, one must
check which paths the compiler should cover and, there-
fore, which figures of merit are suitable for optimization.
In the following Section V, we will consider already avail-
able examples of compilers and discuss which path in Fig-
ure 4 has been chosen. Afterward, in Section VI, we will
perform multiple selected case studies to compare error
rates along different paths and discuss appropriate figures
of merit, depending on the given hardware parameters.

V. RELATED WORK AND SOFTWARE

Based on the compilation overview of Figure 4, we
want to give a concise summary of already available com-
pilation software for NAs. For this aim, we categorized
the compilers based on the capability they focus on most,
including long-range, multi-qubit gates, and shuttling.
Additionally, we also discuss the usage of SC compilers
for the NAQC platform, since we will employ such an
approach for some of the case studies in Section VI. We
briefly discuss each compiler’s functionality and the cor-
responding methods used. All compilers and the respec-
tive supported capabilities are summarized in Table II.
This section aims to review currently available compil-
ers and aids interested tool developers in identifying sub-
problems that still lack a corresponding software solution.

A. Compilers for Superconducting Platform

Before discussing compilers specific to the NAQC plat-
form, we first want to briefly discuss the idea of reusing
already available compilers. While general compilation
for NAQC has to consider a more extensive range of capa-
bilities and constraints, it is still possible to leverage e.g.
currently available SC compilers with additional pre- and
post-processing steps to get compilation outputs valid for
NAQC. In this way, the full potential of NA-specific capa-
bilities cannot be fully exploited. However, we still want
to mention this possibility here, as we used similar tech-
niques for the evaluations in Section VI. Furthermore, SC
compilation algorithms may provide a suitable basis for
generalization and adaptation to the NAQC platform.
The SC platform has access to a broad range of ad-

vanced software tools [13, 14, 18–22] that greatly facili-
tate the compilation process. However, when applied to
the NAQC platform, these tools are only partially suit-
able for the synthesis, mapping, and scheduling steps.

• Synthesis: As the SC platform lacks straightfor-
ward support for multi-qubit gates, the correspond-
ing synthesis steps usually decompose to one- and
two-qubit gates, omitting capability 2.C from Fig-
ure 4.

• Mapping : SC relies on gate-based virtual swap-
ping to establish the required connectivity, exclud-
ing 2.D from the process. However, the mapping
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Long-range
Synthesis ✓ ✓∗ ✓∗ ✓∗ ✓∗ ✓∗ ✓∗

Mapping &
Routing

✓ ✓ ✓ ✓§ ✓† ✓‡ ✓ ✓§

Scheduling ✓ ✓ ✓ ✓ ✓ ✓

Multi-qubit
Synthesis ✓∗∗

Mapping &
Routing

✓ ✓ ✓ ✓ ✓

Scheduling ✓ ✓ ✓ ✓

Shuttling
Mapping ✓§§ ✓ ✓ ✓ ✓ ✓
Scheduling ✓ ✓ ✓ ✓ ✓ ✓

Single-qubit
Synthesis ✓ ✓
Scheduling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Setup indiv. indiv. indiv. indiv. indiv. DPQA indiv. indiv. DPQA DPQA -

General

Technique/
Algorithms

SMT, A*,
heuristics,

....

look-ahead
heuristic

heuristic,
MCTS

heuristic SMT
SMT,

heuristic
heuristic heuristic

MAX k-Cut,
heuristic

heuristic SMT

Open source
availability

Github,
PiPI, ...

Github
[113]

Github
[114]

Zenodo
[115]

-
Github
[116]

-
Github
[117]

- - -

Language
Python,

C++, Rust,
....

Python C++ Python Python C++

General input
(e.g. QASM)

✓ ✓ ✓ ✓ ✓ ✓

∗ conversion to native gate set (CZ-gates).
§ uses mapping from [13]
† uses mapping from [21].
‡ uses mapping from [15].
∗∗ Composition of Toffoli gates.
§§ only 1D displacement of grid row/columns.

TABLE II. Overview of Presently Available Compilers for the NA Platform. The symbol ✓ indicates the main
functionality of the software and implies full support, while ✓ refers to partial support only or reliance on external software.
The setup differentiates between compilers that assume individual addressability of entangling gates and the DPQA setup
discussed in Section III B 4.

problem can be adapted for NAs by defining the
coupling graph C based on the interaction radius
rint as shown in Equation (6).

• Scheduling : Additional scheduling constraints of
the restriction volume according to Equation (7)
require an extra scheduling post-processing step for
the NAQC platform.

Evaluation proxies commonly used in these tools in-
volve gate count and circuit depth. This leads to the
following path in Figure 4: 1 → 2.A/2.B → 3.A.

B. Long-range Compiler

When directly compared to other QC platforms, one
of the constraints of the NAQC platform is the occur-
rence of restriction volumes whenever an atom employs
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the Rydberg state to execute a two- or multi-qubit gate.
This significantly impacts the scheduling task, as such
gates that restrict each other must be executed sequen-
tially rather than in parallel, increasing the total execu-
tion time. Given that quantum information can only be
stored for a limited time without decoherence, this di-
rectly affects the output fidelity, which can be estimated
according to Equation (13).

1. The initial solution to address this problem was
proposed by Baker et al. [33], with an openly available
Python package [113]. Their approach assumes that the
synthesis task has already been performed and concen-
trates on the mapping part and potential strategies to
mitigate atom loss.

• Mapping : Utilizing a look-ahead scheme to select
the shortest SWAP path with minimal disruption
for future interactions.

• Scheduling : Execute swap gates in parallel when
they do not impose restrictions on other operations.

Baker et al. [33] primarily investigated the trade-off
between long-range interactions and the effect of the si-
multaneously increasing restriction volume.

Remark It should be noted that Baker et al. consider
a slightly different definition of the restriction volume
than the one proposed in our work. Additionally, they
assume the restriction to be variable, depending on the
inter-qubit distance of the gate and, therefore, possibly
varying from gate to gate.

The Mapper also supports multi-qubit gates, enabling
the utilization of the full gate-based mapping capabilities
of the NAQC platform, represented as 1 → 2.A-C → 3.A
in Figure 4.

2. Addressing the same problem formulation, Li et al.
[28] presented a C++ based solution named Q-Tetris, in-
spired by the resemblance of the problem to the renowned
block puzzle game. In contrast to Baker et al., they con-
sider distinct execution times for single, multi-qubit, and
SWAP gates.

• Mapping & scheduling : Employ a greedy heuris-
tic algorithm in conjunction with a Monte Carlo
tree search (MCTS) approach to strategically insert
necessary SWAP gates and simultaneously mini-
mize the overall circuit execution time.

By arranging the gates in this time-aware manner, they
claim that their method produces more time-efficient cir-
cuits compared to Baker et al. Hence, they do not con-
sider the gate count but the total execution time of the
circuit. Nevertheless, their approach supports the same
capabilities as Baker et al., leading to the compilation
path 1 → 2.A-C → 3.A → 3.C in Figure 4.

C. Multi-qubit Compiler

Although both previous compilers only support the
mapping and scheduling tasks, as of our current knowl-
edge, there is no available software capable of perform-
ing multi-qubit-aware synthesis for general quantum al-
gorithms. For classical reversible logic, tools [118, 119]
exist that create circuits containing Toffoli and higher
controlled NOT gates.
1. However, Patel et al. [29] and the corresponding

open-source Python software Geyser [115] take a different
approach. Instead of decomposing a large unitary into a
basis gate set containing multi-qubit gates, they compose
blocks of Toffoli gates from a set of two-qubit gates.

• Synthesis: The approach involves identifying gate
blocks containing three qubits and seeking an
equivalent gate sequence built from Toffoli gates
and single-qubit gates. This is achieved by min-
imizing the Hilbert-Schmidt distance between the
original gates and the substitute gates.

• Mapping : The SC compiler Qiskit [13] is used, con-
sidering that the constructed Toffoli blocks do not
restrict each other.

For evaluation, they do not consider gate count but
rather laser pulse count, which can be seen as an estima-
tion for the total execution time of the circuit. In terms
of the overview in Figure 4, this leads to a similar path
as the previous two compilers, 1 → 2.A-C → 3.A → 3.C,
but with a focus on the previously unexplored synthe-
sis task, allowing the possibility of leveraging both ap-
proaches.

D. Shuttling Compiler

All previous compilers have solely considered the vir-
tual gate-based SWAP operation for the mapping task.
However, the Rydberg platform offers the additional ca-
pability of physically rearranging atoms to achieve an
equivalent SWAP or a simple MOVE operation.
1. The pioneering attempt to harness this extra degree

of freedom was made by Brandhofer et al. [31]. Their ap-
proach does not encompass general shuttling operations
but focuses solely on one-dimensional displacements of
atom rows. This choice is justified because atoms trapped
in rows or columns using AOD traps can be efficiently
shuttled in parallel.

• Mapping : The model involves considering SWAP
gate insertion (similar to SC [21, 120]) and poten-
tial one-dimensional displacements. The authors
employ Satisfiability Modulo Theories (SMT) [121]
solvers to find an optimal solution.

They compute the final circuit fidelity to evalu-
ate the results and compare gate-based swapping with
displacement-based swapping. Consequently, the com-
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piler path in Figure 4 can be described as 1 → 2.A/B →
3.A → 3.C and 1 → 2.D → 3.B → 3.C, covering a signif-
icant portion of the NA capabilities.

Rather than considering only one-dimensional dis-
placements, Tan et al. [111] focus on a shuttling-only
DPQA architecture as discussed in Section III B 4. The
corresponding open-source Python package [116] enables
users to explore DPQA movements and offers helpful vi-
sual animations of these operations.

• Mapping & scheduling : They encode the possible
DPQA movements as an SMT problem and solve
it to optimize the number of shuttling operation
cycles. Additionally, they propose a heuristic ap-
proach based on the exact solver with better run-
time scaling.

In the overview Figure 4, this compiler corresponds to the
path 1 → 2.D → 3.B, but this time it takes advantage of
the full two-dimensional shuttling capability.

2. Recently, Nottingham et al. [32] presented a novel
compiler that addresses the crucial synthesis step for the
NAQC platform, considering the global addressing of the
qubits. Additionally, they propose a unique mapping ap-
proach for a shuttling-only architecture, with less strin-
gent constraints compared to Tan et al. [111].

• Synthesis: The authors propose two distinct de-
composition approaches to address the challenge
posed by single-qubit rotations that are only avail-
able as global beams. They leverage Qiskit’s in-
ternal decomposition to single-qubit and CZ gates
and apply their own optimization post-processing.

• Scheduling : Accounting for global beams in single-
qubit gates, the gates are organized into groups of
parallelizable single-qubit gates and parallelizable
CZ gates. CZ gates that restrict each other are
executed sequentially.

• Mapping : By relaxing the shuttling constraints
from Equation (10) and Equation (11), they al-
low different AOD rows/columns to cross. This
enables the definition of a movement graph that
indicates all possible shuttling moves analogous to
the connectivity graph for gate-based interactions.
Mapping is then performed on this denser graph by
selecting shuttling movements that bring the gate
qubits closer to each other.

Nottingham et al. [32] marks the first step toward syn-
thesis for NAs, addressing global single-qubit rotations
and CZ gates. They subsequently evaluate both virtual
swapping and shuttling-based swapping in a DPQA-like
problem scenario. Their evaluation accounts for the in-
fluence of a gate-based error model and decoherence er-
rors. Regarding the compilation overview, this approach
can be described as 1 → 2.A/B/D → 3.A/B → 3.C, en-
compassing all NA-specific capabilities except for native
multi-qubit gate support.

3. Supporting all capabilities of Figure 4 was done by
Schmid et al. [36], proposing a hybrid compilation scheme
where a heuristic decides the most suitable mapping ca-
pability for each gate.

• Mapping : A SABRE-based [16] heuristic is used to
compute the necessary SWAP gates. The duration
and fidelity of these are compared to AOD-based
shuttling operations, choosing the more favorable
option.

• Scheduling : Assumes single addressability and
taking into account multi-qubit gate restrictions.
Shuttling operations are converted to the respec-
tive AOD movements and scheduled according to
the constraints in Equation (10) and Equation (11).

This approach allows to take advantage of the full spec-
trum of capabilities and covers all paths in Figure 4 ex-
cept the consideration of fault-tolerant quantum comput-
ing.
4. A complementary approach, also employing a

combination of shuttling operations and SWAP gates is
FPQA-C [35]. Based on the FPQA setup, SWAP gates
are used to connect atoms, which cannot be brought close
together due to the AOD constraints.

• Mapping & Scheduling: First, the qubits are as-
signed to different atom arrays with one trapped
in static SLM traps and the others controlled by
a separate AOD each. This is done using a MAX
k-cut heuristic to minimize the intra-array entan-
gling gates, which require additional SWAP gates
to connect. Inter-array gates are performed by re-
arranging the AOD coordinates according to Equa-
tion (10) and Equation (11).

In this sense, FPQA-C represents a hybrid mapper for
the DPQA setup, currently taking into account two-qubit
gates only, resulting in 1 → 2.A/B/D → 3.A/B → 3.C.
5. Wang et al. [112] propose the use of so-called flying

ancillas within the FPQA setup, refered to as Q-Pilot.
Instead of bringing the gate qubits close to each other,
a third ancilla qubit is shuttled between them to estab-
lish the entanglement. In this way, trapping only the
ancilla qubits in movable AODs eliminates the switching
between AOD and SLM traps.

• Mapping & Scheduling: The movements of the an-
cilla qubits are computed based on a heuristic tak-
ing into account Equation (10) and Equation (11),
with a specialized version for QAOA circuits.

While the work concentrates on mapping everything us-
ing flying ancillas, this can be considered as an alter-
native or complementary mapping approach using shut-
tling. The respective path is 1 → 2.D → 3./B → 3.C.
In addition to the capability-specific compilers, Tan

et al. [34] proposed depth-optimal addressing of single
qubit gates on a two-dimensional grid using SMT solvers.
As this represents a scheduling-only problem, it can be
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considered in addition to any of the four capability paths,
assuming the hardware supports this type of single qubit
gate execution.

E. Overview and Discussion

A summarized overview of all compilers and their re-
spective functionalities are provided in Table II, catego-
rized based on the supported computational capabilities
of Section III B. These correspond directly to the paths
in the second layer of Figure 4 and the entailed figures of
merit. Note that this should be considered as an abstract
overview at the current point in time. The assignment to
the different compiler functionality may vary depending
on the exact definitions of the compilation steps and can
also change in the future with the ongoing development
of the tools.

However, this overview also reveals that numerous
open problems still need to be addressed. Notably, one
significant challenge is the synthesis step, which involves
decomposing general quantum algorithms into one- and
two-qubit gates and the full set of supported multi-qubit
gates. Additionally, there is a need to explore the combi-
nation of multiple capabilities as done by for example by
FPQA-C [35] and Schmid et al. [36]. In this regard, in
Section VID, we perform case studies and error analysis
to illustrate possible metrics to decide between multiple
capabilities to perform the same operation.

In summary, while progress has been made in address-
ing NA-specific compilation challenges, further advance-
ments are needed to fully exploit the platform’s capabili-
ties and simplify its utilization for both hardware experts
and computer scientists. The aim of the “big picture”
view proposed and discussed in this section is to consider
the full range of hardware capabilities instead of studying
them independently of each other. This results in compil-
ers that take full advantage of the NAQC platform, nec-
essary to compete with other hardware platforms. For
this aim, it is essential to evaluate promising capabili-
ties for their usefulness and study hardware-dependent
error sources to find valuable figures of merit that can be
employed as cost functions during optimization. This is
done and discussed in the following Section VI, with com-
plementary evaluations of the NA capabilities discussed
in other recent work [122, 123].

VI. SELECTED CASE STUDIES

We now proceed to study the platform-specific capabil-
ities of NAs in the compilation context through selected
case studies. More concretely, we evaluate when and how
much the platform-specific features and limitations im-
pact the compilation process. This is done by employing
existing compilers from Section V and analyzing their
outcome based on the approximate success probability

metric outlined in Section III B 6. The aim is to provide
estimations on error sources considering current and im-
minent hardware configurations.

These considerations offer insights for compiler develop-
ers, aiding in identifying predominant error sources and
refining optimal compilation software. This section does
not aim at providing a final decision on the most suitable
capability but to exemplarily discuss potential techniques
to compare among them. In particular, it provides infor-
mation on suitable figures of merit, depending on a given
hardware setup. For hardware experts on the other side,
the discussion provides a forward-looking perspective for
devising future hardware designs, concentrating on the
most promising capabilities within the NAQC platform.
The concepts discussed in this section can be generalized
and used also for example in the context of compiling for
DPQA setups.

First, a brief discussion on the error analysis based on
the summary box of Section III B 6 is given, focusing on
the mapping and scheduling part only. The aim is to
get an easy-to-compute metric to evaluate and compare
different mapping and scheduling approaches. With this
study, we can get insights about interesting figures of
merit by comparing different hardware setups. In partic-
ular, the two most commonly used figures of merit are
the questions of whether compilation passes should be
optimized for gate count or circuit depth.

As a second step, we apply this analysis to numer-
ically analyze and discuss the NA-specific capabilities,
namely long-range, multi-qubit gates and shuttling. In
this case, we aim to identify the most promising capabil-
ity, depending on some given hardware parameters. This
includes open questions such as the required gate fidelity
or shuttling velocity to achieve an advantage for one of
the two possible mapping capabilities. Both consider-
ations are of importance for both tool developers and
hardware experts. Software tool developers get insights
into how hardware parameters can affect the compilation
process and change the choice of figures of merit. Con-
currently, the latter can estimate the potential of given
capabilities, aiding them in devising forthcoming hard-
ware configurations.

A. Error Metrics and Code Availability

For the evaluations, we adopt the hardware parameters
detailed in Table I. Following the compilation process
outlined in Section IVA, we examine the three distinctive
capabilities of long-range interactions, multi-qubit gates,
and atom shuttling. Depending on the scenario, we will
vary hardware parameters, compilation constraints, and
the employed compilation software to study their impact
on the error metrics discussed in Section III B 6.
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1. Fidelity Estimation

Due to the absence of NA-specific synthesis software,
our focus will be on the mapping and scheduling stages
in the subsequent sections. We compute the final output
fidelity, as introduced in Equation (13), as our perfor-
mance metric. As we will focus on the mapping and
scheduling steps, the considered circuits are all fully de-
composed. Therefore, the gate errors of different mapped
circuits differ only on the added SWAP gates. When
comparing different mapping approaches, it is, there-
fore, sufficient to focus on the fidelity reduction due to
SWAP gates and idle errors instead of computing the
full approximate success probability P as discussed in
Section III B 6.
For gate-based swapping, this leads to the following com-
mutative fidelities regarding mapping and scheduling:

FSWAP = Fidle · Fmapping

= exp

(
− tidle
Teff

)
(FCX)

3·NSWAPS ,
(16)

Here, tidle corresponds to the idle time of the register
according to Equation (15), and NSWAPS represents the
total count of introduced SWAP gates, each executed
through three CX gates. The value of NSWAPS can be
extracted directly from the compilation results. Further-
more, we assume CX to be realizable by a combination of
one single-qubit gate and a CZ gate and, therefore, add
the corresponding gate durations and multiply the fideli-
ties to get the parameters for the CX gate. For the com-
putation of tidle, we used Python-based post-processing
scripts to correctly map and schedule the circuit gates
on a given hardware. A visualization of the scheduling is
available together with the scripts at Zenodo [124].
For shuttling-based swapping, on the other hand, we as-
sume a process fidelity of 1 (Table I) for the shuttling pro-
cedure, making decoherence during idle the sole source
of error.

Fsh = exp

(
− tshidle
Teff

)
. (17)

Here, tshidle represents the idle time of the register, incor-
porating the time necessary for performing the shuttling
operations.

2. Software and Code Availability

All the compilers employed in the subsequent analy-
sis are accessible as open-source software. These tools
have been installed and used in adherence to their re-
spective documentation. The evaluation and interpre-
tation of data, encompassing tasks like scheduling and
error computation, have been realized in Python. The
complete set of scripts employed to generate and visual-
ize the ensuing outcomes, along with the analysis data,

can be found on Zenodo [124]. This collection also en-
compasses a list of utilized software packages with their
corresponding version numbers.

The considered quantum circuits are taken from
MQT Bench [125], a benchmarking suite containing com-
monly used quantum algorithms. In particular, we se-
lected the following from the collection of benchmarks.

• dj: Deutsch-Jozsa algorithm.

• ghz: Preparation circuit of the Greenberger-
Horne-Zeilinger state.

• graphstate: Circuit corresponding to a 2-regular
random graph with edges representing two-qubit
gates.

• qft: Quantum Fourier Transform.

• twolocalrandom/two-local: The two-local Vari-
ational Quantum Eigensolver ansatz with random
parameters.

• wstate: Preparation circuit of the entangling
W-state.

B. Long-Range Interactions

First, we want to study the long-range capability and
the question regarding the trade-off between high con-
nectivity and the simultaneous gate restriction. In con-
trast to the considerations already done in Baker et al.
[33], we focus on the question of whether the compilation
pass should minimize SWAP gates or gate restriction, de-
pending on different fidelities and coherence times.
Performing mapping with long-range interactions implies
gate-based mapping incorporating a fidelity Fmapping and
Fidle, as given in Equation (16). The former arises due to
the introduction of extra SWAP gates, while the latter
emerges from gate durations and restrictions, resulting
in idling qubits. In the following, we aim to investigate
the circumstances under which each error contribution
supersedes the other, highlighting potential optimization
avenues on both the hardware and software fronts. Fur-
thermore, we investigate, if familiar figures of merit like
SWAP gate count or circuit depth are applicable for NAs.
For this aim, first, we will study different hardware con-
figurations by varying parameters rint and rre, followed
by utilizing two compilers optimizing for different figures
of merit.

1. Interaction and Restriction Radius

A larger interaction radius rint yields increased con-
nectivity, resulting in a reduction of SWAP gates and
subsequently improving Fmapping. However, the stronger
influence of long-range Rydberg interactions also imposes
limitations on a greater number of nearby atoms. As
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FIG. 5. Long-range Interaction Analysis: In the left graph, we computed the fidelity reduction based on SWAP gate
insertion and qubit idling for diverse circuits with a dimension of n = 120 and varying interaction radii rint. The displayed
curve represents the effective coherence time required to equate Fidle and Fmapping. This signifies that, given a circuit, when
Teff surpasses (falls below) the line, the dominant fidelity reduction is caused by SWAP gates (decoherence). Larger rint
diminishes the SWAP error due to augmented connectivity, necessitating larger coherence times to balance the influence of
both errors. Owing to the prolonged coherence times of the Rubidium hardware, SWAP gates stand as the prevailing source
of fidelity reduction across all circuits. The right graph follows a similar procedure, modifying the restriction factor rre while
maintaining a fixed interaction radius of rint = 2d, showing different behavior depending on the structure of the circuit. The
error bars correspond to the standard deviation averaged over 10 iterations.

discussed in Section III B 2 this impedes gate paralleliza-
tion, amplifying qubit idling, and thereby reducing Fidle.
Depending on hardware parameters, such as Teff , one
of these two factors becomes the predominant source of
error. We employ the Qiskit compiler [13] to map cir-
cuits comprising n = 120 qubits onto a square grid, fol-
lowed by post-processed scheduling. We evaluate the ef-
fects by computing the coherence time per gate duration
Teff/Tgate, where Fidle and Fmapping are equal. Placing
hardware parameter sets in the same graph thus pro-
vides a direct guideline for future improvements. First,
we varied rint with a fixed restriction factor k = 1, while
afterwards, we modified the restriction radius rre = krint
for k = 1, 2, 3, maintaining a constant rint = 2d. Each
configuration is averaged over 10 runs to account for the
stochastic character of the SABRE compiler.

The results are shown in Figure 5. For all the algo-
rithms considered, an increment in rint leads to a corre-
sponding rise in Teff needed to achieve a balance between
gate and decoherence errors. For a given circuit, data
points situated above the depicted line signify a higher
Teff , indicating that the primary source of reduced fi-
delity is SWAP gate insertion. Conversely, points below
the line indicate a larger decoherence error. For the Ru-
bidium hardware configuration as detailed in Table I, the
dominance of SWAP gate errors holds true for nearly all

scenarios. Except for instances of large interaction radii,
such as rint ≥ 4.5 for the W-state preparation, decoher-
ence errors begin to supersede SWAP gate errors.
On the right side of the graph, we observe how this

point of error equivalence is influenced by altering the re-
striction radius. Evidently, algorithms featuring a more
sequential gate arrangement, like the GHZ state circuit,
are less impacted by greater restrictions. In contrast,
circuits such as the Graphstate circuit or the Two-local
ansatz, characterized by numerous parallel gate execu-
tions, experience more pronounced effects from an in-
creased restriction radius. This is due to the more se-
quential execution of the gates, as a parallel execution
is impossible due to gate restrictions. Subsequently, the
total idle time increases and, therefore, also the decoher-
ence error.
After varying hardware parameters and studying the in-
fluence on the output fidelity, we now want to use two
compilers in the following, each optimizing for different
figures of merit.

2. Compiler comparison

With all hardware parameters held constant, the ex-
ploration now extends to using two different compilers,
each optimized for a distinct figure of merit. In par-
ticular, we utilize the Qiskit internal SABRE heuris-
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FIG. 6. Comparison of Compiler Mapping Fidelity:
By utilizing the values from Table III, one can derive the
gate-based fidelity reduction FSWAP for the outcomes of the
compilers. Each circuit displays a line depicting the point
at which the fidelity of both compiler outputs matches ex-
actly while varying the CX fidelity FCX. Given that Qiskit’s
compilation outcomes involve fewer SWAP gates but result in
longer idle times, instances lying above the line (and therefore

larger T̃eff) should opt for the Qiskit compiler. In contrast,
those lying below signify lower coherence times, thus favoring
Tetris to curtail qubit idling. The error bars correspond to
the standard deviation over four runs of the SABRE mapping.

tic [16], which aims to minimize NSWAPS, and the Q-
Tetris heuristic [114] elaborated upon in Section VB. All
runs are repeated four times and averaged to account for
the stochastic character of SABRE. Q-Tetris orchestrates
gate arrangements to amplify parallelism, hence reducing
tidle. This trend is evident in Table III, demonstrating
that Q-Tetris, on average, yields a 20-30% reduction in
idle time, albeit at the expense of requiring a notably
larger number of SWAP gates. This results in up to dou-
ble the SWAP gate count when compared to Qiskit. This
divergence becomes particularly pronounced for larger
rint values. Consequently, Qiskit prioritizes minimizing
NSWAPS and, therefore, optimizing Fmapping, while Q-
Tetris focuses on achieving optimal tidle. Variations in
CX fidelity and coherence times favor one of the two fi-
delities thereby selecting one of the two compilers can be
favorable.

It is important to note that for this evaluation, the uti-
lization of Q-Tetris adheres to the gate durations found
in Li et al. [28]. Specifically, it assumes that CX (SWAP)
gates require 2x (6x) the execution time of a single-qubit
gate. The definition of qubit restriction aligns with that
presented in Baker et al. [33], which differs from the defi-
nition given Section III B 2. Consequently, we solely con-
sider the single-qubit gate time from Table I and compute
the CX (SWAP) gate duration as the corresponding mul-

tidle [µs] NSWAP

Qiskit Tetris % Qiskit Tetris %
rint

dj 1 187,352 119,887 -36.0 314 500 +59.0
2 113,363 66,703 -41.2 152 372 +145.1
3 72,582 49,099 -32.4 84 209 +150.0

ghz 1 97,847 74,545 -23.8 181 368 +102.9
2 59,990 52,147 -13.1 81 227 +179.6
3 48,855 37,669 -22.9 45 121 +167.7

graph 1 31,893 17,340 -45.6 434 515 +18.6
2 23,035 16,926 -26.5 182 357 +95.7
3 20,683 14,412 -30.3 96 248 +158.3

qft 1 1,108,553 813,101 -26.7 6,117 8,010 +31.0
2 1,177,610 900,108 -23.6 2,849 5,576 +95.7
3 1,470,671 979,202 -33.4 1,479 3,481 +135.3

two-local 1 2,172,426 1,239,620 -42.9 29,989 39,882 +33.0
2 2,118,934 1,462,344 -31.0 14,252 24,102 +69.1
3 2,750,812 2,035,308 -26.0 7,446 18,188 +144.3

wstate 1 153,827 94,693 -38.4 360 410 +13.8
2 106,314 72,741 -31.6 129 245 +89.9
3 90,755 68,965 -24.0 68 164 +139.8

TABLE III. Compiler Comparative Analysis: A com-
parison is drawn between the Qiskit compiler [13] and the
Tetris compiler [114], focusing on the resultant idle time tidle
and the count of inserted SWAP gates NSWAPS. While Qiskit
prioritizes the minimization of NSWAPS, Tetris aims at en-
hancing parallelism, leading to a reduction of tidle. The final
column showcases the relative variance of Tetris in compari-
son to Qiskit, elucidating that each compiler performs best in
its respective domain. For Qiskit the numbers are averaged
over four runs.

tiple. Therefore, the hardware parameters are indicated
with a tilde (∼) to emphasize that they do not directly
correspond to the actual hardware parameters.

As our evaluation is based on rudimentary proxy cri-
teria for the errors in question, it is imperative to treat
these findings as approximations or rough estimates.

In Figure 6, the computation of the effective coherence
time T̃eff , where both error components balance, is show-
cased. Large coherence times increase idle fidelity Fidle,
rendering the Qiskit compiler more favorable. Hence, for
data points situated above (below) the line, the Qiskit
(Q-Tetris) compiler should be chosen, respectively.

When contrasting the results against the two hardware
configurations listed in Table I, it becomes evident that,
for the Strontium scenario, both compilers yield com-
parable outcomes across most algorithms, barring the
W-state preparation and the Deutsch-Jozsa algorithm,
where the Q-Tetris compiler is more suited. This be-
comes clear, in particular for the W-state, considering
again Table II. Q-Tetris is able to reduce the idle time of
about 60ms while adding only 50 additional SWAP gates
compared to Qiskit. For other circuits, the cost of reduc-
ing the idle time is at a larger increase in the SWAP
gate number. For these considerations, one must take
into account that the fidelity difference between the two
compilation outputs is based on the absolute difference
in tidle and NSWAPS, while in Table II only the relative
difference is shown. For the Rubidium hardware, on the
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other hand, the Qiskit compiler remains advantageous for
all cases due to the extended coherence times in relation
to the short gate duration.

3. Discussion - Long-range

Examining the process of gate-based swapping reveals
the emergence of two significant sources of fidelity reduc-
tion: the insertion of SWAP gates and the occurrence of
decoherence during qubit idle periods. The numerical er-
ror analysis provides insights, benefiting both hardware
experts and tool developers in their efforts to improve
the final fidelity of the results.

Hardware experts have the opportunity to engage in
similar considerations as those demonstrated in Figure 5,
allowing them to analyze how hardware parameters in-
fluence the execution of specific circuits. Moreover, it
becomes feasible to estimate the potential enhancements
that hardware modifications could bring about. For in-
stance, in Figure 5, further increasing Teff would result
in only partial error improvements as the SWAP error
due to small rint overshadows the improved decoherence
errors.

Compiler developers, on the other hand, will find this
discourse to be of significant relevance. While the pre-
vailing optimization objective is often considered the re-
duction of inserted SWAP gates, Figure 6 illustrates that
the key figure of merit to optimize for can substantially
vary based on hardware parameters such as Teff and FCX.

This underscores the necessity for a more flexible and
adaptable compiler strategy that can adjust its optimiza-
tion cost function following the specific hardware config-
uration.

Lastly, the observation that different circuits are influ-
enced to varying degree by the constraints imposed by
gate restrictions provides advanced compilation strate-
gies with the opportunity to choose suitable hardware
configurations for each type of circuit. Specifically, se-
quentially structured circuits, such as the Deutsch-Jozsa
algorithm, could be scheduled for hardware setups char-
acterized by higher rre, given that such algorithms are
less sensitive to gate restriction.

C. Multi-qubit Gates

The primary focus on using native multi-qubit gates
is during the synthesis step. This involves exploring
whether simpler decompositions can be achieved using
a broader set of native gates, including advanced gates
such as the Toffoli gate. Unfortunately, we observe cur-
rently a lack of software tools available to address this
issue, and the development of such algorithms for the
NAQC platform remains a mostly unresolved challenge.
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FIG. 7. Required Multi-Qubit Gate Fidelity: The lines
indicate the multi-qubit gate fidelity required for the CCZ
(solid) and CCCZ (dashed) gate, to be favorable to the ap-
proximate success probability (Section III B 6) of the decom-
position. The fidelity is computed for varying CZ fidelities.
The respective decompositions have been found employing
the Qiskit transpile function. This threshold is depicted
for both hardware setups, Strontium (blue) and Rubidium
(green) with the parameters taken from Table I. For the CCZ
gate, indicated by the crosses, the native implementation is
preferable compared to the decomposition. The general lower
success probability of the Strontium setup is due to worse
single-qubit fidelity and longer gate durations.

Another approach is to look at circuits that already
contain multi-qubit gates, for example, for reversible clas-
sical logic, and compare the native execution of the gate
with the corresponding decomposition. While multiple
approaches exist for decompositions [126, 127], we want
to focus on direct decomposition without additional aux-
iliary qubits. In this case, the multi-quit gate can be sub-
stituted one-to-one with the corresponding decomposed
set of gates. As a result, the native execution is favorable
if it has a smaller error in terms of fidelity and decoher-
ence compared to the decomposition.
To compare the native multi-qubit gates with their de-

composition we employed the Qiskit transpiler function
to get a decomposition of the CCZ and the CCCZ gates in
terms of single-qubit gates and CZ gates. The decompo-
sitions are constructed of 9 single-qubit, and 6 CZ gates
for the CCZ gate, and 28 single-qubit, and 20 CZ gates
for the CCCZ gate. Subsequently, we computed the ap-
proximate success probability P from Section III B 6 for
the native gate and the decompositions respectively. Fig-
ure 7 depicts the multi-qubit fidelity necessary depend-
ing on the CZ fidelity FCZ. Additionally, the parameters
from Table I are indicated for the CCZ gate, showing that
for both hardware setups, the native implementation is
favorable compared to the found decomposition. This is
in particular interesting for the Rubidium setup, where
the CCZ gate with the corresponding fidelity has been
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demonstrated in experimets [5]. The worse performance
of the Strontium setup for the same FCZ, is mainly due
to the single-qubit gates with lower fidelity and longer
gate durations.

From a compilation point, this step is trivial, as the de-
composition error can be computed beforehand accord-
ing to Equation (14), and depending on the outcome,
the substitution can be performed or not. According to
Figure 7, the native gate implementation would be fa-
vorable if its fidelity lays above the corresponding line
of the decomposition. For our considerations, the native
gate execution of the CCZ gate would be preferred for
both hardware setups.

D. Shuttling

This section focuses on the comparison between the
two mapping capabilities, namely long-range SWAP
gates or qubit shuttling. Recently, Nottingham et al. [32]
have taken a first step toward qubit shuttling as a full re-
placement for SWAP gates. In the following, we want to
study the possibilities of this approach in more detail. In
particular, we want to study, how different hardware pa-
rameters like gate fidelity or coherence times affect the
choice between the two alternatives. For this aim, we
make multiple assumptions regarding the shuttling ca-
pability and analyze how the results compare to current
gate-based shuttling approaches like SABRE [16].
First, we estimate the shuttling operations as a direct re-
placement for the computed SWAP gates and distinguish
the two cases where shuttling can be executed simulta-
neously to regular quantum gates or has to be scheduled
in a separate shuttling layer. As a second step, we ex-
amine the possible advantage of reconfiguring all qubits
between different layers. Finally, we perform an error
analysis on the shuttling velocity required for shuttling
to be directly superior to a similar SWAP gate.

First, we make some assumptions about the shuttling
error and the possibilities of parallelization for shuttling
to simplify the analysis. For the gate-based shuttling
approach, one has to consider errors stemming from im-
perfect CX gates as well as decoherence errors originating
from qubit idling, as outlined in Equation (16). In the
case of perfect shuttling, only decoherence errors remain,
as per Equation (17). Our interest here is in investigat-
ing a simplified model, wherein each SWAP operation
between physical qubits Qi and Qj is replaced by a corre-
sponding shuttling operation characterized by a duration
approximated by:

tsh(SWAP(Qi, Qj)) = 2

(
ttrap +

d(Qi, Qj)

vs

)
. (18)

In this equation, ttrap denotes the time required for
transitioning between traps from SLM to AOD to initi-
ate the shuttling and then back from AOD to SLM, d is
the physical separation distance between the two qubits,

and vs stands for the maximal shuttling velocity. The
factor of two takes into account the fact that the two
shuttling operations required to swap the qubits have to
be executed sequentially due to the non-cross shuttling
constraint of Equation (11). An illustration of this as-
sumption is given in Figure 12.
Considering the first hardware setup of Strontium

atoms in Table I, we can estimate the shuttling time for
a nearest neighbor SWAP operation as

tsh = 2

(
2 · 20 µs +

3 µm
0.025 µm µs−1

)
= 160µs .

This is significantly faster than a corresponding gate-
based SWAP consisting of three CX gates:

tSWAP ≈ 3 · (200 µs + 0.2 µs) ≈ 600 µs .

As a result, for the Strontium setup, the shuttling SWAP
operation is always preferable, as it is both faster and
has a higher fidelity. Therefore, we will focus mainly on
the second hardware setup based on Rubidium in the
following.

1. Shuttling-based Mapping

To draw a comparative analysis between the gate-
based and shuttling-based mapping strategies, we intend
to once again introduce variations in different hardware
parameters favorable to one of the two cases. Specifically,
we aim to delve into the influence of two parameters: the
CX fidelity, denoted as FCX, which substantially impacts
the precision of gate-based shuttling, and, on the other
side, the effective coherence time Teff , corresponding to
the decoherence errors occurring during shuttling. For
the following evaluations, we always use a fixed circuit
size of n = 80 qubits. This analysis maintains the as-
sumption of equal values for rint and rre, fixed at d.
To perform our studies, we undertake circuit mapping
using the SABRE compiler. Subsequently, following the
considerations provided earlier, we engage in a post-
processing step. This step encompasses the consolidation
of consecutive SWAP gates, thereby generating the req-
uisite shuttling operations, each with its corresponding
shuttling distance. The duration for each shuttling op-
eration is subsequently calculated following the formula
delineated in Equation (18).
Within the realm of scheduling, we consider two dis-

tinct scenarios, both depicted in Figure 8 in comparison
to a SWAP gate-based mapping.
In the first scenario, labeled as parallel shuttling, we

presuppose the availability of a sufficiently high number
of independent AODs. This premise allows for the con-
current execution of all shuttling operations that pertain
to a non-overlapping set of qubits. Moreover, we assume
that both gate and shuttling operations can be executed
simultaneously, requiring local qubit control on the hard-
ware level.
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(a) (b) (c) 

SWAP GATES PARALLEL SHUTTLING SEQUENTIAL SHUTLLING

FIG. 8. Shuttling Scenarios: (a) Mapping output using a gate-based approach. (b) Parallel shuttling: The SWAP gates
are replaced by shuttling operations in a one-to-one fashion. Each shuttling operation consists of initial trap-switch operations,
the atom shuttling, and the final trap-switch operations. In this scenario, shuttling operations can be performed in parallel to
each other and also to regular gate operations, requiring local qubit control at the hardware level. (c) Sequential shuttling:
The same shuttling operations are performed but in a sequential order. Furthermore, regular gates and shuttling are executed
in a non-parallel fashion, resulting in shuttling layers indicated by the cyan box.

Conversely, in the second scenario, referred to as se-
quential shuttling, we operate under the constraint of
possessing only a solitary AOD. Furthermore, the si-
multaneous execution of gate and shuttling operations
is restricted, meaning shuttling and gate operations have
to be executed in an alternating fashion, similar to the
DPQA setting of Figure 3. In this configuration, the cir-
cuit operation involves executing all gates feasible to the
current qubit layout, succeeded by another layer encom-
passing the sequentially executed shuttling operations,
resulting in shuttling layers, discussed in more detail in
Section VID2.

It is important to note that the differentiation between
these two approaches resides solely within the scheduling
component, with the actual shuttling operations remain-
ing unaltered.

Depicted in Figure 9 is the boundary that delineates
an equilibrium point wherein gate-based and shuttling-
based methodologies yield precisely the same total fi-
delity. This assertion aligns with earlier discussions, sig-
nifying that data points situated above the depicted lines
exhibit elevated coherence times and, therefore, favor a
shuttling-based approach. Notably, higher CX fidelities
necessitate elevated values of Teff to render shuttling-
based mapping competitive.

Within the context of parallel shuttling, as denoted
by the continuous lines, a difference between different
circuits is visible. Circuits inherently characterized by
a sequential architecture, exemplified by cases like the
Deutsch Jozsa algorithm (blue), diverge from circuits
with more parallel structures, such as the Quantum
Fourier Transform(red), which benefits from the concur-
rent execution of shuttling operations. Conversely, when
confined to a sole AOD, as indicated by the circled lines,
disparities between these categories tend to attenuate, as
in this case, all operations are executed sequentially. In
addition, we varied the inter-qubit distance d between
the value d = 3µm as given in Table I and a prospec-
tive value of d = 0.574 µm. For smaller d (dashed line)
lower Teff are required, as the shuttling takes less time.
Nevertheless, the difference is small, as SABRE accounts

only for nearest neighbor SWAPS and in this case, the
shuttling duration is almost neglectable compared to the
trap switching time of ttrap = 40µm.
Regarding the Rubidium hardware configuration, the
large Teff favors shuttling-based swapping in all cases
compared to the error-prone gate-based swapping. CX
fidelities of Fcx ≈ 0.999 would be necessary to make gate-
based swapping a comparable alternative again.
Nonetheless, as this approach uses the SC-specific

SABRE algorithm to find necessary SWAP gates, it does
not take full advantage of the shuttling capability, which
can also perform non-local and non-trivial SWAP oper-
ations. We will take account of this shortcoming in the
following section.

2. Shuttling Layers

Now, we want to consider the second shuttling scenario
of sequential, layer-based shuttling. This separation be-
tween gate execution and shuttling facilitates the exami-
nation of their respective impacts on the overall idle time,
denoted as tidle, and thereby, the resultant decoherence
error.
As depicted in Figure 10, the graph portrays the pro-

portion of idling attributed to gate-related factors versus
idling linked to shuttling operations across different cir-
cuits and varying numbers of qubits. For all instances
considered, the contribution from shuttling operations
accounts for more than 90% of the cumulative idle time,
in particular for larger qubit numbers. Furthermore, it
shows that for our assumptions more than half of the to-
tal idle time is due to trap switching. Here, it should
be noted that the long trap switching times are due
to SABRE, with its SC background, preferring multiple
short-distance SWAPs compared to a single long-range
operation. So the results can be expected to be improved
by employing a shuttling-specific compiler.
This method, involving the utilization of SABRE fol-

lowed by the subsequent substitution of resultant SWAPs
with shuttling operations, does, therefore, not use the
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FIG. 9. Error Analysis for Shuttling: A comparative
evaluation of SWAP gate- and shuttling-based Mapping is
presented. The coherence time at which the gate-based fi-
delity FSWAP equates to the shuttling-based Fsh is showcased
by aline, corresponding to two different circuits while varying
the CX fidelities. The solid lines depict scenarios where shut-
tling and gate operations can be executed concurrently, while
the line indicated with a bullet represents the case where shut-
tling and gate executions are performed alternately. The lines
of sequential shuttling lay on top of each other, as due to the
sequential execution of all shuttling operations the difference
between circuit structures is reduced. Additionally, two dif-
ferent inter-qubit distances d are distinguished, indicated by
solid and dashed lines. The error bars indicate the standard
deviation averaged over 20 iterations.

full shuttling potential. SABRE consistently opts for the
shortest feasible swapping path to minimize the count of
SWAP gates. Conversely, for shuttling, it may be strate-
gically advantageous to transport a qubit across a greater
distance, potentially improving the future requirement
for swapping. To address this prospect, we modify the
mapping process, whereby SABRE is initially employed
to ascertain a mapping configuration, enabling the execu-
tion of as many gates as feasible. Subsequently, a wholly
fresh initial mapping is determined for the remaining cir-
cuit. Then again, all feasible gates are executed, and the
process of finding a new mapping for the next layer is
iterated until the complete circuit is processed.

As depicted in Figure 11, the illustration showcases the
proportion by which the cumulative count of layers can
be diminished by employing this comprehensive qubit re-
configuration for each layer. Depending on the specific
circuit and the count of qubits, this approach can yield
reductions of up to 50% in the number of shuttling lay-
ers. While it is generally expected that the required inter-
layer shuttling becomes more complicated with this tech-
nique, it still underscores a promising benefit of utilizing
the full reconfiguration capabilities of NAQC platforms.
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FIG. 10. Comparative Analysis of Idle Times: The cor-
relation between shuttling and gate execution times in layer-
based shuttling is depicted as a ratio. This ratio is influenced
by distinct circuit types and increasing circuit sizes (n). The
analysis takes into account the Rubidium hardware config-
uration for both shuttling and gate timings. Remarkably,
over 90% of the overall circuit execution time is attributed to
shuttling and trap-switching operations, with this proportion
rising as the number of qubits increases. The large contribu-
tion of gate-switch is caused by SABRE preferring multiple
short-range SWAP gates, each requiring the corresponding
trap switch duration ttrap. The error bars indicate the stan-
dard deviation over 50 iterations.

Until now, we assumed fixed shuttling hardware pa-
rameters and only modified Teff . But also other pa-
rameters such as the trap switching time or the actual
shuttling velocity vsh affect the shuttling time of Equa-
tion (18) and therefore the shuttling error. In the follow-
ing, we want to study these parameters by the question,
how fast must the shuttling be to be favorable compared
to a corresponding gate-based SWAP operation?

3. Shuttling Velocity

The shuttling duration, as expressed in Equation (18),
is determined by two components: the time ttrap required
to transition between trap types, i.e. SLM to AOD and
vice versa, and the shuttling velocity vsh. When consider-
ing a specific CX fidelity FCX, the duration of shuttling
must be less than a certain critical value for shuttling-
based SWAP to exhibit improved error performance com-
pared to the equivalent SWAP gate.
In the context of the Rubidium hardware, even though

the time taken for shuttling-based SWAP surpasses that
of three consecutive CX gates, the large Teff mitigates
decoherence errors, particularly when only two qubits are
involved. However, with larger values of n, which also
implies more qubits idling during the shuttling SWAP, a
crossover exists where less accurate yet faster CX gates



27

20 30 40 50 60 70 80

n

0.0

0.2

0.4

0.6

0.8

1.0
re

l.
 r

ed
u
ct

io
n
 o

f 
la

y
er

s
dj

ghz

graphstate

qft

twolocalrandom

wstate

FIG. 11. Layer Reduction via Full Reconfiguration:
The lines present the ratio by which the number of layers
is reduced when the mapping algorithm is granted complete
reconfigurability for each layer. This demonstrates the poten-
tial improvement by utilizing long-range shuttling compared
to nearest neighbor SWAPs. The error bars indicate the stan-
dard deviation over 50 iterations.

become the preferred choice. This is of particular interest
for SWAP operations that can not be parallelized with
other gate operations, occurring often, particularly for
sequentially structured algorithms.

An illustration of this direct substitution of gate-based
SWAP operations by the corresponding shuttling opera-
tions is shown in Figure 12, where the SWAP(Q0, Q1)
gate over a distance rint is substituted by two shuttling
operations.

Figure 13 showcases the required shuttling velocity
(vsh) to achieve parity of FSWAP and Fsh for a sin-
gle SWAP operation, depending upon the count of idle
qubits. Points situated above the lines denote scenarios
where the implementation of shuttling for SWAP gates
results in improved shuttling fidelity compared to the
gate-based alternative. Within the context of the Ru-
bidium scenario (FCX = 0.995 and rint = 2d, shown in
blue), the critical number of idle qubits is determined
by the intersection with the maximal shuttling velocity
(vsh = 0.55 µm µs−1), occurring at approximately 550
qubits. As examples, higher CX fidelities and interac-
tion radii are depicted, both reducing further the maxi-
mal number of allowed idle qubits. While this considera-
tion does not take into account parallel shuttling, it still
shows the possibility of preferring SWAP gates compared
to shuttling for near-term hardware with qubit numbers
in the range of multiple hundreds. The advantages of
a shuttling-based approach for shuttling over longer dis-
tances and in parallel will be subject to future work, re-
quiring a fully working shuttling compiler.

(b) (a) 

FIG. 12. Shuttling as Direct SWAP Substitu-
tion: Illustration of the estimations taken in Figure 13.
(a) SWAP(Q0, Q1) executed as a long-range interaction over
distance rint. (b) Illustration of a two-step shuttling pro-
cess for the same SWAP operation, using shuttling. Due to
Equation (11) these operations can not be executed exactly as
shown, but are used as a first approximation of the actually
required operations.
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FIG. 13. Shuttling Velocities: Depicted here is the mini-
mum necessary shuttling velocity to attain an error equivalent
to that induced by gate-based swapping for a single swap pair
for the Rubidium hardware setting. The x-axis indicates the
number of qubits n which must idle during the shuttling op-
eration. For more idle qubits, and therefore increased idle er-
rors, the shuttling speed must also increase to keep the overall
shuttling error the same. The steep increase of vsh is due to
the fact that the shuttling time has a lower limit by the trap
switching time ttrap. For an increased interaction radius rint,
the shuttling has to be performed faster due to the longer
shuttling distance. While shuttling is a suitable substitute
for SWAP gates with a current fidelity of 0.995, even for high
idle qubit numbers of 500, an increase in FCX favors the gate-
based swapping again.

4. Discussion - Shuttling

The approximations conducted in this section under-
score the substantial promise inherent to atom shut-
tling as a prospective substitute for gate-based mapping.
This particularly holds true for scenarios characterized by
large Teff and lower FCX. These insights can be beneficial
for hardware experts striving to enhance available hard-
ware capabilities. Considerations like the layer-based
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complete reconfiguration, as demonstrated in Figure 11,
underscore the latent advantages of employing mapping
strategies specifically tailored to shuttling.

For compiler developers, this introduces a range of im-
plications. Initially, compilation strategies must ascer-
tain the availability of shuttling operations, and subse-
quently devise mapping strategies that effectively lever-
age the capacity to perform qubit swaps over significant
distances in parallel. Recently, pioneering work in this
direction has been made [32, 116]. Our calculations indi-
cate, furthermore, that for the Rubidium hardware set-
ting with a single AOD, the shuttling and trap switch
process constitutes the central part of qubit idling. Ad-
ditionally, we show that using the capability of NAs to
completely rearrange all qubits after each gate layer can
reduce the total number of shuttling layers by up to 50%.
In this way, we delineate the prospective advantage of
adopting a fully reconfigurable mapping strategy instead
of the conventional nearest-neighbor methodology.

Furthermore, the evaluations presented in Figure 13
offer indications that hardware parameters such as Teff ,
FCX, rint, and the number of idling qubits n impact the
decision of whether a SWAP operation should be exe-
cuted using the slower yet accurate shuttling method or
faster gate operations, although error-prone. This ac-
centuates the need for a hybrid compiler strategy capa-
ble of making informed choices based on the underlying
hardware parameters, guiding the execution of remap-
ping through either of the two available capabilities. For
decision-making, a similar approach as proposed in this
work can be employed to find the optimal compilation
process, given the available hardware.

E. Discussion

In this section, we performed multiple selected case
studies using different hardware parameters to study the
compilation output error for the available NA capabili-
ties.
For the possibility of long-range SWAP gates, we focused
on comparing fidelity reduction due to SWAP gates and
decoherence on the other hand. Our considerations in-
dicate that for the Rubidium setup, the SWAP gate er-
rors dominate for all considered circuits. In this scenario,
high connectivity with rint ≥ 5d would be necessary to
get comparable error contributions from decoherence er-
rors. This also implies that SWAP gate minimization can
be considered a suitable figure of merit, making common
SC compilers such as SABRE and their techniques inter-
esting candidates. For the first hardware setup, based
on Strontium atoms, on the other hand, both errors con-
tribute equally, requiring simultaneous optimization of
the SWAP gate and idle-time minimization. This im-
plies the need for hardware adaptive compilers that can
optimize different figures of merit depending on given
hardware parameters and, therefore, the primary source
of errors.

For multi-qubit gates, the task of synthesis remains an
open question. In contrast, a simple error estimation can
be performed for circuits already containing multi-qubit
gates to decide if the gate should be executed natively or
decomposed.
For the shuttling capability, we make multiple simplify-
ing assumptions to illustrate the promising potential as
an alternative to regular gate-based swapping. We com-
pare the two swapping techniques concerning different
hardware parameters such as coherence times, CX gate
fidelity, shuttling velocity, and qubit number. As a result,
shuttling outperforms gate-based swapping for both con-
sidered hardware setups. Nevertheless, we also indicate
possible situations regarding high CX fidelity or a large
number of idle qubits, where the error-prone but faster
SWAP gates become interesting again. This would im-
ply the need for a hybrid compilation process, where the
mapping pass decides dynamically if gate-based swapping
or shuttling-based qubit rearrangement is favorable.
In summary, the evaluations performed in this section il-
lustrate the use of the capabilities discussed previously
and give multiple insights on how different hardware pa-
rameters affect the compilation output. This is helpful
for tool developers to build hardware-aware compilation
software based on optimization techniques based on valu-
able figures of merit and, this way, facilitates the devel-
opment of NA-specific compilers. At the same time, the
results can also give hardware experts insight into de-
vising future hardware, prioritizing hardware attributes
that yield the most likely output improvement. As an
advantage, this allows for the effective co-design of hard-
ware setups and compilation software, necessary to ex-
plore the full capabilities of the NAQC platform.

VII. SUMMARY AND OUTLOOK

In this work, we studied the overall compiler develop-
ment for the Neutral Atom Quantum Computing plat-
form and provided important groundwork to promote
further collaboration between hardware experts and com-
puter scientists.
Initially, we expounded upon the foundational physical

aspects integral to realizing quantum processors utilizing
neutral atoms, explicitly emphasizing the distinct com-
putational capabilities intrinsic to the platform. We pro-
vided abstraction layers that cater to the design automa-
tion community and software tool developers, facilitat-
ing their comprehension and abstraction of the physical
processes. Subsequently, we delved into the structural
organization of this spectrum of compilation strategies
and explored figures of merit for assessing the quality
of the resultant compilation outcomes. Furthermore, we
furnished an overarching view of the currently available
software tools and compilers, contextualizing their roles
within the previously discussed compilation overview.
Lastly, we performed multiple selective case studies and
fidelity analyses to investigate the implications of differ-
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ent hardware parameters on the final compilation out-
come. In particular, we evaluate and compare the dif-
ferent capabilities and match the results to two possible
hardware setups, giving insights to both hardware ex-
perts and tool developers. The results underscore the
imperative to develop hybrid and hardware-aware compi-
lation software capable of effectively addressing the broad
spectrum of capabilities offered by the neutral atom plat-
form.

We posit that this comprehensive overview can effec-
tively contribute to the development of top-tier compilers
and design automation tools, enabling the neutral atom
platform to catch up with comparable solutions available
for other hardware platforms. In particular, the next
steps entail the development of new compilation software,
based on the information gained within this work regard-
ing possible hardware capabilities and useful figures of
merit.

Furthermore, neutral atoms have been shown to be
promising candidates for fault-tolerant quantum com-
puting [8, 100] due to their extended range of capabil-
ities. This includes high gate fidelities, combined with
e.g. the ability to perform native multi-qubit gates, mid-
circuit measurements, and qubit shuttling. In particu-
lar, the qubit shuttling allows beyond nearest-neighbor
connectivity without breaking fault tolerance due to er-
ror propagation such as SWAP gates, and the simulta-
neous control of large qubit patches using parallel AOD
movements. The fundamental basics discussed in this
work also pave the way toward fault-tolerant compila-
tion, which will add another layer of complexity to the
compilation chain, and finding suitable automation tech-
niques is still an open question.
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M. D. Lukin, Logical quantum processor based on re-
configurable atom arrays, Nature , 1 (2023).

https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1038/s41586-023-06481-y
https://arxiv.org/abs/2304.05420
https://arxiv.org/abs/2304.05420
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.1007/s11128-011-0292-4
https://doi.org/10.1007/s11128-011-0292-4
https://doi.org/10.1038/s41586-023-06927-3


30

[9] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang,
S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara,
H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin,
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