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In classical computing, error-correcting
codes are well established and are ubiquitous
both in theory and practical applications. For
quantum computing, error correction is es-
sential as well, but harder to realize, com-
ing along with substantial resource overheads
and being concomitant with the need for sub-
stantial classical computing. Quantum error-
correcting codes play a central role on the av-
enue towards fault-tolerant quantum computa-
tion beyond presumed near-term applications.
Among those, color codes constitute a partic-
ularly important class of quantum codes that
have gained interest in recent years due to
favourable properties over other codes. As in
classical computing, decoding is the problem
of inferring an operation to restore an uncor-
rupted state from a corrupted one and is cen-
tral in the development of fault-tolerant quan-
tum devices. In this work, we show how the de-
coding problem for color codes can be reduced
to a slight variation of the well-known Light-
sOut puzzle. We propose a novel decoder for
quantum color codes using a formulation as a
MaxSAT problem based on this analogy. Fur-
thermore, we optimize the MaxSAT construc-
tion and show numerically that the decoding
performance of the proposed decoder achieves
state-of-the-art decoding performance on color
codes. The implementation of the decoder,
as well as tools to automatically conduct nu-
merical experiments, are publicly available as
part of the Munich Quantum Toolkit (MQT)
at https://github.com/cda-tum/mgt-qgecc.

1 Introduction

In classical computing, error-correcting codes are
ubiquitous both in theory and practical applications.

Lucas Berent: lucas.berent@tum.de
Lukas Burgholzer: lukas.burgholzer@jku.at

Peter-Jan H. S. Derks: peter-janderks@hotmail.com
Jens Eisert: jense@zedat.fu-berlin.de
Robert Wille: robert.wille@tum.de

The main idea is to add redundancy to data that
needs to be protected from errors in order to tolerate
noise and enable the correction of errors. A famous
class of codes are so-called linear codes, which are
defined as a vector space that allows to encode k log-
ical bits (that hold the information) into n physical
bits, where n > k. The simplest form of an error-
correcting code is the n-repetition code, which en-
codes 0 — 000 and 1+~ 111 (for n = 3). In quantum
computing [44], a similar need for error-correction ex-
ists: qubits are fragile in nature and experience deco-
herence over time. Moreover, operations on qubits are
imperfect and thus introduce additional errors. As a
consequence, running a quantum algorithm consisting
of thousands of operations on such a noisy machine
produces results that are almost completely random.
Thus, to realize large-scale quantum computers, it is
necessary to protect quantum systems from inevitable
noise occurring during computation.

To overcome this issue of noise, quantum error-
correction (QEC) and — building upon this, allow-
ing each step to be imperfect — fault-tolerance (F'T)
will ultimately be needed. The general idea—similar
to classical coding theory—is to use quantum error-
correcting codes (QECCs) to encode quantum infor-
mation by using additional, redundant information.
However, due to the laws of quantum physics, for in-
stance, the famous no-cloning theorem, naive mech-
anisms such as copying quantum data are not pos-
sible. In order to conduct computations on encoded
data, referred to as the logical information, universal
sets of noise-resilient quantum operations need to be
designed, which is the goal of research in quantum
fault-tolerance [47, 56].

The general idea behind QEC is to conduct specific
measurements on the (possibly corrupted) encoded in-
formation without destroying the encoded logical in-
formation. This process allows inferring whether an
error occurred and approximately “where” this error
occurred while acquiring no information whatsoever
about the encoded logical information. Given this
classical measurement information, the aim is to de-
rive a recovery operation that, when applied to the
corrupted state, restores the encoded information to
an uncorrupted state. The process of inferring such
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a recovery operation is called decoding and is highly
non-trivial—as in classical coding theory. In fact, no-
tions of decoding are moving much to the centre of
the discussion of quantum error correction. This is for
good reason, as the classical software needs to keep up
with the time scales of the quantum noise and has to
offer correction steps in real time while the noise is
acting on the system. For this reason, decoders must
not only have high decoding performance but also be
fast.

An important class of quantum codes is consti-
tuted by Calderbank-Shor-Steane (CSS) codes [12,
59], which can be defined as a suitable combina-
tion of two classical linear codes. Out of CSS codes,
planar color codes [9, 31, 38, 62] form an essential
class. They are defined on a two-dimensional lat-
tice that is required to be three-valent and three-
colourable with respect to its faces. There are var-
ious properties such as lower resource requirements,
or the realization of logical operations that render
color codes favourable over the currently widely re-
searched surface code [1, 33, 35]. Moreover, there
have been first advances of physical implementations
of FT-quantum computation with small instances of
color codes [46, 51]. One of the central open problems
towards FT is scalable, accurate and fast decoding.
After all, in any real implementation, decoding has to
be faster than the quantum noise can compromise the
coherence of the quantum information stored.

In this work, we show that the decoding problem
can be formulated as a slight variation of the well-
known LightsOut-puzzle. LightsOut is a famous
combinatorial puzzle and has various connections to
linear algebra and graph theory. Based on this anal-
ogy, we propose a MaxSAT encoding that allows to
determine minimal solutions to the underlying prob-
lem. By this, we aim to bridge the gap between power-
ful classical constraint satisfaction solving approaches
and quantum computing and thereby inspire new re-
search in this direction.

Numerical evaluations of the resulting MaxSAT
decoder for color codes show that it achieves near-
optimal decoding performance for the considered
noise model (bit-flip errors with noiseless syndrome
measurements). Our decoder outperforms all color
code decoders in terms of accuracy, except the tensor
network decoder [13], which it outperforms in runtime
below the threshold. Figure 1 shows a classification
of color code decoders. To achieve these results, we
improved the performance as well as the re-usability
of the proposed encoding by carefully optimizing all
constraints. Moreover, we compared the runtime of
different MaxSAT solvers for the proposed satisfiabil-
ity encoding. The results show that the implementa-
tion with Z3 outperforms other solvers.

Finally, both the implementation of the proposed
decoder and means to conduct numerical simulations
are provided as an open-source Python package as

part of the Munich Quantum Toolkit (MQT) [66]
at https://github.com/cda-tum/mgt-qgecc.

The remainder of this work is structured as fol-
lows. In Section 2, a high-level overview on quantum
color codes is given to provide some background on
quantum CSS codes. Then, in Section 3 we give an
overview of the main problem and discuss prior work.
In Section 4, the LightsOut puzzle and the analogy
to color code decoding are discussed. The correspond-
ing MaxSAT formulation is presented in Section 5.
Then, numerical experiments and results are given
in Section 6. Finally, a summary and brief outlook
on future work is presented in Section 7.

2 Background

In this section, a brief introduction to quantum er-
ror correction and color codes is given. For the sake
of simplicity, the fundamental notions are explained
in a high-level manner and we refer the reader to
introductions on quantum error-correction and color
codes [30, 31, 38, 44, 48, 62] for more details.

A classical linear code C that encodes k logical
bits into n physical bits with distance d, written as
an [n, k,d]-code, is defined as a k-dimensional vector
space

C={ceF}:Hec=0},

i.e., the kernel of a matrix H € Fénfk)xn, called the
parity-check matriz of C. Intuitively, the rows of H
correspond to parity checks and a vector ¢ € Fy is
a codeword iff all checks are satisfied, i.e., all checks
are equal to 0. The distance d of the code is the
minimum Hamming weight of a non-zero codeword.
In principle, a code with distance d can correct up to
(d —1)/2 errors.

Example 2.1. Consider the parity-check matriz
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which defines a [7,4,3]-code.  The wvector © =
(1,0,0,0,0,0) is not a codeword, since the first check
To+T3+T5+T6 20 s violated, i.e., H-x = (1,0,0) #
(0,0,0).

A quantum CSS code is defined as a combination
of two classical linear codes with parity-check matri-
ces Hx € FiX*" and Hz € Fy?”" that fulfill the
orthogonality condition

HyHY =0 (or equivalently Hx HY = 0).

In quantum error correction two types of errors need
to be corrected: phase and bit flip errors, denoted as
Z and X. These errors can be detected using two
sets of checks, X and Z checks, which correspond to
a certain type of measurement of the encoded state.
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Figure 1: Abstract comparison of the decoding accuracy and runtime of several color code decoders. This figure is inspired by

a figure comparing surface code decoders in Ref. [43].

Analogously to the classical case, these checks can
be understood as parity measurements of subsets of
qubits and thus be written as parity check matrices.
The indices of the 1 entries in the rows of Hx (Hyz)
prescribe which qubits to include in X (Z) checks.

Planar color codes form a subclass of CSS codes
that have the same Hx and Hz checks (i.e., they are
self-dual CSS codes). Thus, both sets of checks can
be treated analogously and, for the rest of this work,
without loss of generality, only a single set of checks
is considered, which is referred to as H.

A planar quantum color code is defined on a two-
dimensional lattice that is three-valent and three-
colorable with respect to its faces. Let V and F de-
note the set of vertices and faces of the lattice, respec-
tively. The qubits are placed on the vertices v € V
and checks are associated with each face of the lattice
f € F. Each check acts on the qubits around it, es-
sentially computing the parity of the qubits. Besides
the checks, a crucial set of operations on the code
are logical operators (which are analogous to code-
words in classical coding theory). It is important to
note that logical operators change the encoded infor-
mation, which is vital when the decoding problem is
considered. For triangular color codes, logical opera-
tors that act on the encoded information pictorially
look like strings that (i) run along a side of the trian-
gle, (ii) connect a boundary to the opposite vertex of
the same color, or (iii) strings that connect all three
boundaries of the triangle.

Example 2.2. An important family of color codes
is the so-called 6.6.6 triangular color code, which is
defined on a hexagonal lattice with a triangular shape
(with boundaries), as depicted in Figure 2 (for d =
11). Checks involving four or siz qubits are associated
with the faces of the lattice and the qubits are put on
the vertices of the lattice. The checks associated with
the hexagonal faces act on the qubits around the faces.
A logical operator acting on 11 qubits is shown.

Figure 2: Triangular color code on a hexagonal lattice with
boundaries. a) The two kinds of checks of the code, b) a
logical operator of the code.

In general, the distance d of a quantum CSS code
is the minimum Hamming weight of a non-trivial log-
ical operator. In the case of triangular color codes,
for example, the distance is given as the number
of qubits in a string along a side of the triangle.
The overall parameters of the triangular color code
are [[(3d? + 1)/4,1,d]]. Hence, the distance can be
increased by simply considering triangles featuring
larger side lengths. In case of an error occurring on
a qubit, the checks of the adjacent faces are used to
“detect” the error and the collection of faces that are
“triggered” by an error is called the syndrome of an
error. Pictorically this can be depicted as highlight-
ing the triggered faces accordingly. Thus, an error on
a single qubit triggers the adjacent faces around it.
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Figure 3: Example of a single-qubit error on a distance-3
triangular color code.

3 Decoding color codes

In this section, an overview of the considered problem
and a brief review of prior work on decoding color
codes is given.

3.1 Considered problem

In the remainder of this work, we consider the decod-
ing problem for quantum color codes and for that, we
use the triangular color codes as a suitable represen-
tative. However, the proposed decoder is applicable
to any color code and can even be applied to CSS
codes in general. We focus on the bit/phase-flip noise
model, where each qubit is independently affected by
an error with probability p—the physical error rate.
Since each face of the lattice corresponds to a check,
an error on a qubit (a vertex in the lattice) leads to a
violation of adjacent checks. Note that this is a rather
simple noise model. However, it is well-established for
determining the principle capabilities of codes and de-
coders.

An error on n qubits can be represented as a bi-
nary vector e € Fy, which is simply the indicator vec-
tor for the support of the error, i.e., ¢; = 1 iff qubit
1 is affected by the error. The syndrome s = H - e
corresponds to a vector indicating the violated checks
(faces on the lattice) and is used as input to the de-
coder. The goal of the decoding procedure is to infer
an estimate € for e that is consistent with the syn-
drome, i.e., s = H - e. In fact, for quantum codes it
is only required to find an estimate up to stabilizer,
which means that the residual error » = e + ¢ is in
the rowspace of the parity-check matrix. Moreover,
to reduce the probability of a logical error, it is re-
quired that the estimate € involves a minimal number
of qubits, i.e., has minimal support.

Example 3.1. Consider again the parity-check ma-
triz from Example 2.1. This corresponds to a parity-

check matriz of a T-qubit triangular color code, as de-
picted in Figure 3. Assume that the qubit ordering
induces index 0 for the qubit on top of the triangle
and the indices of the faces are blue = 0, green = 1,
and red = 2. A single-qubit error happens on the top-
most qubit of the triangle, which leads to a violation
of the check on the adjacent face, (indicated by the
blue circle). The error on the first qubit corresponds
to the binary vector shown on the right-hand side of
the figure. The syndrome vector then indicates that
the blue face is “triggered” by the error. The result of
all other checks is equal to 0.

3.2 Related work

Several decoders for (triangular) color codes exist
to date. Apart from generic decoders for CSS
codes such as localized statistics decoding [28], union-
find [16, 17], and the trellis decoder [52], one of the
most studied algorithms (including several extensions
and variations) is the projection decoder [8, 10, 15,
38, 41, 42, 60]. The main idea of the projection de-
coder is to map the color code onto copies of sur-
face codes [37] and to decode these separately using
a matching-based decoder, which pairs up syndromes
using the lowest-weight correction possible. Similarly,
in Ref. [53], a minimum-weight perfect matching ap-
proach has been applied to lattices embedded on a
Mobius strip, which has recently been implemented
in [24] while this manuscript was in preparation for
publication. Similarly, in Ref. [40], a matching-based
approach was proposed that combines two matching
decoders per color. Other types of decoders, whose
performance for the color code has been benchmarked,
are neural network decoders [42] and renormalization
group decoders [55]. A slightly different approach,
which has been introduced in Ref. [54], makes use of
a cellular automaton decoder [26] for a variant of the
color code for biased noise.

In comparison to existing decoders, an important
aspect of the proposed MaxSAT decoder is that it is
versatile and can be applied to an arbitrary color code
(in fact, an arbitrary quantum CSS code). A clear
limitation of using an underlying MaxSAT solver to
do the desired computation is that there are, in gen-
eral, no clear runtime guarantees. In the worst-case,
the runtime is exponential (under standard hardness
assumptions in computational complexity). A po-
tential solution is to set a timeout for the decoder,
as is done in, for instance, belief-propagation decod-
ing [21, 36]. The timeout could be, depending on the
underlying MaxSAT solving algorithm, a maximum
number of iterations or similar. On the other hand,
as we observe in the numerical simulations presented
below, the runtime of the proposed MaxSAT decoder
scales with the physical error rate. As the low error
rate regime is where the decoder would be applied in
practice, this is a highly favorable property.
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4 LightsOut analogy

In the following, we demonstrate how the problem
of decoding color codes (under the considered noise
model) can be reduced to a variation of the well-
known LightsOut puzzle [3-5, 20, 22] on the re-
spective color code lattice. An instance of Light-
sOut consists of a lattice whose faces are associated
with switches and lights that can either be on or off.
Toggling a switch on the lattice (considered a single
move) toggles all neighbouring lights, i.e., any adja-
cent light that was on before toggling the switch is
off afterward, and vice versa. The goal of the puzzle
is, given an initial configuration of lights, to find a
sequence of moves—called a solution set—that turns
off all the lights.

Example 4.1. Consider the LightsOut puzzle on
a 3 X 3 square lattice as illustrated in Figure 4. In
the initial configuration (the left-most lattice), a sin-
gle light indicated as a yellow box, is turned on. Tog-
gling the switch of the middle light, indicated by a
green circle, turns on the middle light and all adja-
cent lights, while the light that was previously on is
turned off. Mowving on, as tllustrated in the figure,
eventually turns off all the lights and, thus, yields a
solution to the LightsOut puzzle with four moves.

o

@) @) @)

Figure 4: LightsOut puzzle and a solution on a 3 x 3 square
lattice.

This type of puzzle has two interesting proper-
ties [4]:

1. Toggling a switch twice is the same as not touch-
ing it at all. As a result, each switch has to be
toggled at most once for any solution to a given
LightsOut puzzle.

2. The state of a light only depends on how often
the corresponding switch and its neighbors have
been toggled, i.e., the order in which the switches
are toggled does not matter.

Based on these observations, it can be concluded
that any solution to a LightsOut puzzle must tog-
gle the lights that are on in the initial configuration
an odd number of times and the lights that are ini-
tially off an even number of times. The LightsOut
puzzle on an n x m grid can be solved with Gaussian
elimination in polynomial time, in fact, in O(n?) time
and O(nm) space, where n < m [4]. Using this in-
sight, one can also bound the runtime of the decoder
in a polynomial fashion. For general graphs finding a

Figure 5: Color code decoding as an instance of the Light -
sOut puzzle. The lattice for the d = 11 triangular color code
is shown. An initial configuration is indicated by marked
faces. A possible (not necessarily minimal) solution set is
marked in green.

minimum-weight solution to the LightsOut puzzle
is NP-hard in worst-case complexity [7].

Now consider an instance of the decoding problem
for a color code C given the syndrome s = He of an
(unknown) error e. Then, the question of computing
an estimate € of e such that He = s can be turned into
a variation of the Light sOut puzzle described above
as follows: Instead of identifying lights and switches
with the same entities (i.e., the faces of the underlying
lattice) consider the following variation:

e Each face of the color code lattice corresponds to
a light and

e cach vertex (qubit) of the lattice corresponds to
a switch that toggles all adjacent lights.

Moreover, choose and fix an ordering of the lights and
switches such that the set of lights that are turned on
can be described as a binary vector whose length is
equal to the number of lights (and analogously for
switches). The syndrome s describes the initial con-
figuration of the lights in the puzzle.

Example 4.2. Consider the LightsoOut illustration
for the d = 11 color code lattice depicted in Fig-
ure 5. Vertices correspond to switches, while faces
correspond to lights. The figure shows an initial con-

figuration with five lights on (highlighted in yellow).

Although the problem formulation is slightly differ-
ent from the classical LightsOut puzzle, the obser-
vation made above still holds. As such, the goal for
the decoding problem in this analogy is to find a set
of switches ¢ such that toggling them turns off all the
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lights. Such a set corresponds to an estimate € that
is consistent with the syndrome, i.e., He = s. Here,
the size of the set corresponds to the weight of the
estimate (i.e., the number of qubits involved). As de-
scribed in Section 3.1, the goal of the decoding process
is to determine an estimate with minimal (Hamming)
weight. The following table provides a summary of
the LightsOut analogy described throughout this
section:

QEC LightsOut
Qubits/vertices Switches
Checks/faces Lights

Syndrome Initial configuration

Solution set
Minimal solution set

Valid estimate
Min-weight estimate

5 MaxSAT decoding

In the following, we propose a MaxSAT formulation
of the LightsOut analogy for the color code de-
coding problem that allows to determine minimum-
weight solutions. Note that even though the Light -
sOut description above assumes a bit/phase-flip noise
model with perfect syndrome measurements, the anal-
ogy can readily be applied to more general noise mod-
els, where the LightsOut puzzle corresponds to a
three-dimensional stack of the planar version with ad-
ditional switches between two consecutive layers that
represent so-called “time-like” errors. For the sake
of simplicity, we focus on the simpler, bit/phase-flip
noise model in the following and discuss the more gen-
eral case in Appendix A.

5.1 General idea

In order to formulate the LightsOut analogy of
the decoding problem as a MaxSAT problem, a de-
scription of the underlying lattice (F,V) is needed.
To this end, we first introduce Boolean variables
switchy, . . ., switch)y|, where |V| denotes the number
of vertices in the lattice, associated with the number
of qubits in the code. In addition, a discrete function
Fswitches: F — V* is introduced (and realized as a
dictionary), that takes a face f € F as input and re-
turns the set of vertices Fiwitches(f) = {v1,...,Vn,}
surrounding the face. Finally, a Boolean function
Finit: F — {true, false} describes the syndrome that
has been measured and shall be decoded. In the
LightsOut analogy, Fswitches returns the switches
that toggle a given light, while F;,;; describes the ini-
tial configuration of the lights.

As observed above, any valid solution to the
LightsOut puzzle toggles an odd number of switches

around a light that is on in the initial configuration,
while an even number of switches surrounding a light
that is initially off is toggled. This can be formulated
as parity constraints

switchy = Finat(f), (1)

VfeF: @

VE Fawitches (f)

where € denotes the exclusive-or (XOR). Satisfying
these constraints, i.e., solving the satisfiability prob-
lem under these constraints, guarantees a valid solu-
tion to the LightsOut puzzle and, hence, the de-
coding problem. Moreover, the formulation can be
easily adapted to a mazimum satisfiability problem
(MaxSAT) by adding the following soft constraints

Yo € Vi not(switchy). (2)

The general MaxSAT problem is NP-hard in worst-
case complexity, as its solution leads to the solution
of the Boolean satisfiability problem, which in turn is
NP-complete. Maximizing over these soft constraints
minimizes the switch variables that are set to true
in the solution and, hence, yields a minimum-weight
estimate for the decoding problem.

5.2 Implementation details

The encoding in the previous section has a rather sim-
ple form. For a given lattice (V, F') representing some
code, it introduces |V| Boolean variables and |F'| par-
ity constraints that involve at most

I}lg}( |]:switches(f>| (3)

variables. For the example of the triangular color
code discussed before in Section 2, each parity con-
straint involves either four or six variables (due to the
hexagonal tiling of the triangle). However, it is well
known that the way in which multi-variable parity
constraints are realized heavily influences the perfor-
mance of SAT solvers [25, 39, 58].

Thus, for the resulting decoder to be efficient, a
suitable encoding must be found. Furthermore, the
decoding problem is not a one-and-done task, but
rather has to be solved over and over with different
syndromes as input during the operation of an error-
corrected quantum computer. Hence, it is also impor-
tant to allow for efficiently re-using an existing SAT
instance instead of always constructing a new instance
from scratch. The straight-forward linear encoding is
given by
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@ switchy, = Finie(f) | = [(((switchy @ switche) & switchs) - -+ ) = Finir(f)] (4)

VE Fswitches (f)

satisfies none of the above criteria. Such an encod-
ing is known to cause problems for SAT solvers and
there is no direct way of adjusting these constraints
to new values of Fjp;:(f) despite recreating them as a
whole.

To overcome this issue, the proposed formulation
introduces k = |Fswitches(f)] — 1 helper variables
hi,...,h, and splits the overall constraint into k£ + 1
separate constraints

switchy @& hy = finit(f)7
hi swz’tchiJrl @ hi+1, (5)
hi = switchy,

fori=1,...,k— 1. It is easy to verify that this still
realizes the parity constraint on the switch variables.
Observe how only the first of those constraints de-
pends on the value of Fyi(f). All other constraints
can be pre-computed independently. As confirmed by
numerical evaluations, which are summarized next,
this yields an efficient and re-usable MaxSAT decoder
for quantum color codes that achieves state-of-the-art
decoding performance (for the considered noise model
and code).

6 Numerical evaluation

To evaluate the proposed approach, the decoder per-
formance, as well as the runtime (scaling) of the pro-
posed approach, have been comprehensively investi-
gated using numerical simulations. The results will
be presented in two parts. First, the decoder per-
formance and the threshold—a well-established figure
of merit—are discussed. In a second series of exper-
iments, we focus on the runtime scaling of the pro-
posed approach. In addition to all numerical data, the
implementation of the decoder as well as the means
to conduct numerical simulations are made available
at www.github.com/cda-tum/qecc.

6.1 Decoding performance

In this section, findings related to the decoding per-
formance are presented. To this end, the proposed
decoder has been implemented using the MaxSAT
engine of Microsoft’s Z3 [14] solver. All simulations
have been conducted on a machine equipped with an
AMD Ryzen 9 5950X CPU and 64 GiB RAM running
Ubuntu 22.04. As previously stated in the paper, the
error model under consideration is bit-flip noise. In
a first round of experiments, the logical error rate of
triangular color codes is investigated. Recall that a

logical error is an error that changes the logical infor-
mation. Thus, if a decoding estimate (the resulting
residual error) induces a logical error, the decoding
process is considered to have failed, since the proposed
estimate (together with the actual error) has altered
the logical information. A widely used figure of merit
of a code + decoder + error model combination is
the threshold py,. Intuitively, this is an estimate of
a physical error rate up to which the code is benefi-
cial. For p < psp, the logical error rate can be ex-
ponentially suppressed by scaling the code (inducing
a potentially large overhead). The optimal threshold
of color codes on a hexagonal lattice under bit-flip
noise is & 10.9% [29], which is achieved by the tensor
network decoder [13] as mentioned in Section 3.2.

In order to investigate the logical error rates and
estimate the threshold, we run Monte-Carlo simula-
tions for increasing physical error rates p and code
distances up to d = 21. A single sample is obtained
by means of the following steps:

e Sample an error e € F,

e compute the syndrome s = H - e,

e use the proposed decoder to get an estimate ¢,

e compute the residual error r = e + ¢, and

e check if r is a logical operator.

If r is a logical operator, the correction, together with
the original error, has altered the encoded informa-
tion, which is recorded as a logical error. The logical
error rate (LER) is then computed as the number of
logical errors over the number of samples.

The results are shown on the left-hand side in Fig-
ure 6. Our results show that the proposed decoder
achieves a threshold of p;, ~ 10.1%, outperforming
many other state-of-the-art decoders. The threshold
is computed using the critical exponent method de-
scribed in Ref. [65]. The logical error rate close to the
threshold is shown on the right-hand side in Figure 6.

In order to put this in context, the following ta-
ble shows a comparison with other state-of-the-art de-
coders and their threshold for color codes on a hexag-
onal lattice under the same noise model as considered
in this work.

Accepted in {Yuantum 2024-10-15, click title to verify. Published under CC-BY 4.0. 7


www.github.com/cda-tum/qecc

051 —4— d=3
—— d=5
—— d=7
0.4
—— d=9
9 —— d=11 2
? 0.3 - —+— d=13 g
o d=15 o
et —— d=17 et
802 d=19 S
[@)] [@)]
S —— d=21 9
0.1
0.0 %
0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

Physical error rate

1
1
1 HiHl
i
--imHHHlHHHHmmHH
1074 IS
i ”H”‘ I
T,
I s
il R
10-2-"',:."':"" | | d=7
i i ! | d=9
i : | d=11
-3 : I d=13
1074 ! d=15
] | d=17
i d=19
10-4 4 : | d=21
1
0.06 0.07 008 009 010 011 012 0.13

Physical error rate

Figure 6: Logical error rates of triangular color codes with distances ranging from 3 to 21 under bit-flip noise. The right plot
shows the logical error rate scaling on a logarithmic y-axis around the threshold of p;;, & 10.1%. The error bars in the right

plot correspond to one standard deviation.

Decoder Threshold Source
Optimal 10.9% [29]
Tensor network 10.9% [13]
MaxSAT* 10.1%  This work
Trellis 10.1% [52]
Neural network 10.0% [42]
Mébius MWPM 9.0% [53]
Restriction MWPM 8.7% [15]
Union-find 8.4% [16]
RG 7.8% [55]

A fundamental theorem of FT, the threshold theo-
rem intuitively states that if errors can be exponen-
tially suppressed below some constant threshold pyp,
arbitrarily long quantum computations can be con-
ducted fault-tolerantly [2, 32, 34, 47]. To demonstrate
exponential sub-threshold scaling, we plot the logical
error rates as a function of the distance for different
physical error rates in Figure 7. For error rates be-
low the threshold p < py, it can be verified that for
increased distances, the logical error rate decreases ex-
ponentially, while naturally, above the threshold, this
is not the case.

Recall that the distance of an [[n, k, d]]-code is the
minimum weight of a (non-trivial) logical operator.
In general, the distance is an indicator of how many
errors t a code can, in principle, correct: ¢ < (d—1)/2.
In the best case, the decoder performance matches
this upperbound. In our numerical experiments, we
observe that the minimum weight logical operators
induced by the decoder always have weight equal to
the distance d for the investigated distances. Note
that it is common for decoders to be only able to
correct up to a polynomial fraction of d.

10-14

1072 4

Logical error rate

1074 4

10.0 12.5 15.0 17.5 20.0

Code distance d

25 50 75
Figure 7: Logical error rate per distance for various physical
error rates p. Note that p = 0.11 and p = 0.13 are above
threshold.

6.2 Runtime scaling

To estimate the time needed to decode and to deter-
mine how the runtime performance scales as the codes
under consideration get larger, numerical simulations
to measure the time needed to solve the MaxSAT in-
stance were conducted. Since the MaxSAT instance
and most of the needed information concerning the
code can be precomputed, the dominant bottleneck of
a single correction cycle is the MaxSAT solver. Thus,
we only record the time needed to solve a given in-
stance, which we indicate as runtime of the solver.
The results are summarized in Figure 8. Overall the
runtime for a single decoding takes up to a hundred
milliseconds for distances smaller than 21 and a few
hundred milliseconds for larger distances. What is es-
pecially interesting is that the runtime scales propor-
tionally with the physical error rate, hence for lower
physical error rates the runtime is better. This is sim-
ilar to the runtime behaviour of matching-based de-
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Figure 8: Average runtime in microseconds for a single decoding run of the MaxSAT decoder on triangular color codes and
runtime per distance for several physical error rates p. Every data point has been obtained from 10* samples.

coders and beneficial since in practice the lower phys-
ical error rates are the more relevant ones.

To put the obtained estimates in context (without
arguing that the proposed approach is directly appli-
cable to be employed for physical devices), consider
that for realizations of quantum error-correction, a
quantum device built on a superconducting architec-
ture has cycles times in the micro-second regime [1,
61]. This means that the decoder would need to be
able to decode single instances in such time regimes as
well in order not to slow down the whole computation.
For ion-trap based devices, it is known that opera-
tions are slower and cycle times are in the millisecond
regime [51]. Note that for such practical settings, the
decoder needs to be able to take a more involved noise
model into account. Additionally, since the runtime
is highly dependent on the MaxSAT formulation, how
the constraints are exactly formulated, and the solver
itself, we expect that the obtained runtimes can be op-
timized further. However, we leave more fine-grained
runtime optimizations for future work.

Since MaxSAT solvers and their optimization are
vibrant areas of research, we conducted simulations to
compare the original implementation that uses Z3 and
other state-of-the-art MaxSAT solvers. More specifi-
cally, we conducted simulations to compare the run-
time performance of all MaxSAT solvers that partic-
ipated in the MazSAT Evaluation 2022 (MSE22) [6].
Preliminary evaluations indicated that all solvers from
the MSE22 have comparative runtime performance—
running within ~ 4% of each other. Consequently, we
chose the winner of the MSE22 (CASHWMaxzSAT-
CorePlus) and compared its runtime against the orig-
inal implementation that uses Z3. The results, which
are depicted in Figure 9, show that the Z3-based solu-
tion outperforms the other MaxSAT solver in all but
one case. The most vital insight, however, is that only
the performance of the original implementation that
uses Z3 as solver has runtime performance that scales

proportionally with the physical error rate. This is
not true for all other investigated solvers. Since the
sub-threshold regime (low physical error rate) is the
one relevant in practice, this behaviour is desirable
and, overall, the Z3-based implementation outper-
forms all other solvers in this regime. One reason
for this phenomenon could be that Z3 (as an SMT
solver) performs a diverse set of optimizations on the
constructed MaxSAT formulations, while, in order to
use the other MaxSAT solvers, the formulation had to
be converted to weighted CNF (WCNF)—for which
we used the automatic conversion methods built into
Z3). This conversion might limit the potential for op-
timization that is performed by the solvers.

140000
- L______ﬂéfij
—e— p=0,051, CASHWMaxSAT-CorePlus

100000 7
80000
~&— p=0.131, CASHWMaxSAT-CorePlus

o A

Distance

- p=0.001, 23
p=0.051, 23

—e p=0.131,73
p=0.001, CASHWMaxSAT-CorePlus

Average time per run (s)

s a
8 8
8 S
S S
5 3

Figure 9: Comparison of the runtime performance of a state-
of-the-art MaxSAT solver for different physical error rates on
triangular color codes.

6.3 Comparison with the tensor network de-
coder

To draw a comparison to implementations of existing
decoders, we compare the runtime and the decoding
performance of the proposed MaxSAT decoder to the
tensor network decoder [13], as this is the only known
state-of-the art decoder that has a higher threshold
than the proposed MaxSAT decoder. We use the
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tensor network decoder implementation provided in
the QECSIM tool [63] (which—to the best of our
knowledge—is the only open-source implementation).

We run the decoder on the same machine used for
the MaxSAT decoder simulations. The decoder takes
as an input parameter the maximum bond dimension,
which we set to x = 6. Note that, however, both the
logical error rate and the runtime of the TN decoding
algorithm depend on x. We have investigated the log-
ical error rate saturation of the TN decoder and have
chosen x accordingly. A more in-depth discussion in
presented in Appendix B.2. The runtime includes the
time QECSIM takes to sample an error and check if a
logical error occurred, but the obtained estimates are
enough to draw reasonable comparisons, as the overall
time is dominated by the decoding time. The results
are shown in Figure 10. Our results indicate that the
runtime of the tensor network decoder does not scale
with the physical error rate. This agrees with the
known runtime of the tensor network decoder, which
is O(nx?), where n is the number of qubits and x is
the bond dimension. The MaxSAT decoder runtime
does scale with physical error rate and it therefore
performs better for sub-threshold error rates. To be
specific, for a distance 21-code at a physical error rate
of 1073 the MaxSAT decoder is approximately 2 times
faster than the tensor network decoder (& 25 vs & 50
milliseconds).

We are unable to compare the runtime of the
MaxSAT decoder to that of the trellis decoder, as
there is no open-source implementation of the latter.
Similar to the tensor network decoder, the runtime of
the trellis decoder does not scale with the physical er-
ror rate [52]. Therefore, we expect that although the
threshold of the MaxSAT decoder is equivalent to that
of the trellis decoder, it is favorable to use the former
due to its expected shorter runtime for low physical er-
ror rates. We leave a numerical investigation compar-
ing the runtimes of the two decoders to future work.
Furthermore, we emphasize that the runtime compar-
isons presented here are not fully representative and
strongly depend on the implementation and underly-
ing hardware. Hence, the presented results are not
meant to reflect the expected runtime of the decoder
for a hardware experiment. The conducted numerical
simulations are merely meant to provide a rough esti-
mation of the decoder’s behaviour and relate it to an
existing and publicly available implementation.

7 Conclusions and outlook

In this work, we have proposed a novel decoding ap-
proach for quantum codes. Based on an analogy of
the decoding problem for color codes and the well-
known mathematical puzzle, LightsOut, we have
introduced a MaxSAT solution to the corresponding
problem. Moreover, an efficient construction of the
corresponding satisfiability instance through various
constraint optimizations has been proposed. In sev-

eral numerical simulations, it has been shown that
the proposed decoder achieves near-optimal decoding
performance. Moreover, the experimental evaluation
signifies that the runtime performance of the decoder
scales proportionally with the error rate and thus out-
performs state-of-the-art decoders, such as the ten-
sor network decoder for low error rates. In addition
to the high performance and good runtime scaling,
an advantage of the proposed decoder is that it is
very general and not limited to color codes. The de-
coder implementation, as well as all the obtained data
are integrated into the open-source software package
QECC https://github.com/cda-tum/mgt-qecc as
part of the Munich Quantum Toolkit (MQT) [66].

Concerning future work building on the findings
laid out here, one of the most exciting directions is
to extend the considered noise model to the more re-
alistic scenario of circuit-level noise. It would be in-
teresting to see what the exact limitations of the de-
coder performance for such noise models are. More-
over, since for low-weight syndromes, the runtime
performance is good, a combination with other de-
coders such as union-find or belief-propagation (belief-
MaxSAT, union-MaxSAT) might result in a better
overall performance for larger codes. Furthermore,
it is reasonable to assume that the runtime perfor-
mance can be further improved through optimizations
regarding the MaxSAT solver. In particular, there
exist MaxSAT solvers such as GaussMaxHS [58] that
allow optimizations for XOR constraints. Overall, a
general goal of this work is to highlight that funda-
mental problems in quantum computing are still open
and to foster interest in solving these problems with
known and well-established tools from the field of SAT
solvers and constraint satisfaction research. In turn,
these tools may help ongoing research in tackling the
decoding problem that to date is one of the roadblocks
against fault tolerant quantum computing.
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A Three-dimensional LightsOut

In this section, we discuss the LightsOut analogy
for the phenomenological noise model, which extends
the bit/phase-flip noise model considered in the main
text by additionally assuming syndrome noise.

To obtain the parity values of the checks from the
encoded quantum state, a syndrome extraction circuit
is applied [44, 48]. Intuitively, for each check, an addi-
tional auxiliary qubit that is entangled with the data
qubits corresponding to its support is measured to ob-
tain the corresponding X or Z parity value. In the
bit/phase-flip noise model, we assume that the syn-
drome extraction circuit is noise-free, i.e., only the
data qubits are prone to X or Z Pauli errors. In
the phenomenological noise model, we additionally as-
sume that the syndrome extraction process is prone
to errors, which is why the syndrome measurements
need to be repeated. Phenomenological noise can be
modeled as having X or Z errors on data qubits with
probability p and classical bit flip errors on measure-
ment outcomes with probability q. We assume p = q.
Traditionally, the number of rounds of repetition is
proportional to the distance of the code [18]. Intu-
itively, the repeated rounds can be thought of as an
additional time dimension that is added to the decod-
ing problem, which is why the corresponding decoding
graph is three-dimensional.

In Ref. [23], a convenient representation of the cor-
responding syndrome measurement circuit, called the
detector error model was introduced. This model al-
lows us to formulate the decoding problem for more
general noise models such as phenomenological noise
and circuit-level noise in a similar fashion as the classi-
cal decoding problem. For an illustrative explanation,
we also refer the reader to Ref. [19, 27].

Intuitively, we can thus indeed model this prob-
lem as an instance of a three-dimensional Light-—
sOut puzzle that is constructed from copies of the
planar LightsOut lattice, such that there are addi-
tional switches between pairs of corresponding faces
of consecutive layers that we call time-like switches.
Each layer represents a round of syndrome extrac-
tion (i.e., measuring all checks once) and the time-
like switches represent measurement errors and thus
toggle the lights of the two adjacent faces of two con-
secutive layers in the three-dimensional stack. This
idea is illustrated in Figure 11.

B Additional numerical simulations

In this section, we present the results of additional
numerical simulations.

B.1 Phenomenological Noise Decoding

We have simulated the color code subject to phe-
nomenological noise by constructing Stim [23] cir-

’ ’ ’
; ‘ , 4
7 H/’ 7 =
P | LA

Figure 11: Sketch of the three-dimensional Light sOut puz-
zle for the 2D color code, corresponding to time-domain de-
coding of a d = 3 planar color code under phenomenological
noise. Each copy of the lattice corresponds to a time step and
the additional time-like switches are illustrated as black dots
between consecutive layers. The incidence between time-like
switches and faces is illustrated by circles on the respective
faces.

cuits. We have integrated our decoder with Stim’s
sampling tool “sinter”. Therefore, our decoder can,
in principle, be used to decode any stabilizer circuit
written as a Stim circuit. These Stim circuits can
be subject to more general noise models than the
bit/phase-flip noise model discussed in the main body
of the paper.

We conduct logical error rate simulations for
small-distance color codes under phenomenological
noise using the proposed MaxSAT decoder. More-
over, we have used the BP+OSD Stim integration
by Higgott https://github.com/oscarhiggott/
stimbposd to compare the decoding performance of
the MaxSAT decoder to the BP+OSD decoder [45, 49,
50], the golden standard decoder for general QLDPC
codes. The results are presented in Figure 12.

For small distances, we observe that the decoding
performance is comparable to BP4+OSD and that the
decoder exhibits a psuedothreshold. However, our
simulations also clearly indicate the limitations of the
decoder. In particular, for larger distances, it is not
guaranteed that the employed MaxSAT solver con-
verges, i.e., finds the optimal solution within a certain
timeout, t,,4, = 1500ms. In that case, we declare a
failure (“non convergance”) and return the all-zeros
vector as the recovery operation. We observe that
for larger distances, this leads to the fact that the
decoder (for the considered code and phenomenolog-
ical noise) does not have a threshold in general. This
aspect is made apparent in Figure 13, which shows
that the convergence rate drops significantly for larger
distances.

However, there are multiple potential avenues for
how this can be amended. The most apparent is to
make further optimizations of the underlying solver
and the satisfiability instance formulation. We expect
that the performance can be boosted considerably by
optimizing various aspects on the solver level. More-
over, in windowed decoding [18, 57] the size of the de-
coding problem considered at a time is considerably
reduced, making it more amenable for the MaxSAT
decoder. Moreover, also belief propagation (BP), in
general, has the problem of not necessarily converg-
ing due to loops in the decoding graph. For BP this
can be amended by using ordered statistics decoding
post-processing [45, 50]. In a similar spirit, it would
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Figure 12: Logical error rate comparison of BP4-OSD and the MaxSAT decoder under phenomenological noise for small color
codes. Each data point corresponds to collecting up to 10® samples or at most 500 logical errors. Left: Pseudothreshold—the

point at which the logical error rate is equal to the physical error rate—for small color code instances.

distances, the decoder performance diverges from BP+OSD.
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Figure 13: Convergence rate, i.e., the percentage of
converged runs of the MaxSAT decoder with timeout
tmaz = 1500ms for distance d € {3,4,5} 2D color code in-
stances under phenomenological noise. Each data point was
obtained from 10* samples and at most 100 logical errors
were sampled.

be interesting to see how the proposed decoder can be
used in combination with another decoder. We leave
such optimizations of the decoder and its application
in more general scenarios open for future work.

B.2 Comparison of different tensor network de-
coder parameters

In the main text, we use the tensor network (TN)
decoder [63] with bond dimension x = 6 (cf. Fig-
ure 10). As done previously in related work that uses
the TN decoder [11, 64], we observe that for bond
dimension x = 6, the logical error rate essentially sat-
urates. Hence, further increasing y does not yield sig-
nificant decoding performance improvements (within
error bars) as shown in Figure 14.

Right: For larger
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Figure 14: Relative logical error rate |f, — fio| for the TN
decoder under varying bit/phase-flip noise strength. Each
data point was obtained from 10* samples.

We have furthermore conducted numerical simula-
tions to roughly estimate the runtime performance of
the TN decoder for varying bond dimensions. The re-
sults are made publicly available on Github https://
github.com/cda-tum/mgt-qecc along with all data
used in this manuscript. Finally, we would like to
highlight that the investigated runtimes for both the
MaxSAT and TN decoder are implementation-specific
and, thus, are merely meant to provide a rough frame
of reference. The exact numbers are far from being
able to be considered representative or even “practi-
cal”. The conducted numerical evaluations, however,
give a perspective on the MaxSAT decoder’s runtime
performance relative to the well-established TN de-
coder.
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