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Abstract—Trapped-ion quantum computers exhibit promising
potential to provide platforms for high-quality qubits and reliable
quantum computation. The Quantum Charge Coupled Device
(QCCD) architecture is a leading example that offers a modular
solution to enable the realization of scalable quantum computers,
paving the way for practical quantum algorithms with large qubit
numbers. Within these devices, ions can be shuttled (moved)
throughout the trap and through different dedicated zones, e.g., a
memory zone for storage and a processing zone for the actual
computation. However, due to decoherence of the ions’ quantum
states, the qubits lose their quantum information over time.
Thus, the required time steps of shuttling operations should be
minimized. In this work, we propose a heuristic approach to
determining an efficient shuttling schedule, which orchestrates
the movement operations within the device. Given a quantum
algorithm and a device architecture, the proposed approach
produces shuttling schedules with a close-to-minimal amount of
time steps for small-size QCCD architectures. For large-scale
QCCD devices, empirical evaluations show promising results with
respect to quality of the solution as well as performance. An
implementation of the proposed approach is publicly available
as part of the open-source Munich Quantum Toolkit (MQT, [1])
at https://github.com/cda-tum/mqt-ion-shuttler.

Index Terms—quantum computing, design automation, ion
shuttling, trapped ions

I. INTRODUCTION

QUANTUM computing promises to utilize fundamental
quantum mechanical phenomena to tackle problems that

are beyond the reach of classical computers. Famous example
include Shor’s algorithm to factorize integers [2], Grover’s
search for unstructured data [3], as well as the simulation
of quantum systems to advance the field of quantum chem-
istry [4].

Over the past few decades, different physical platforms
have been explored to realize quantum computers, such as
superconducting quantum computers [5], neutral atom quan-
tum computers [6], [7], or optical quantum computers [8].
Among these, trapped-ion quantum computers have emerged
as a leading candidate due to their high-fidelity qubits and long
coherence times. In a trapped-ion system, ions are confined
and manipulated using electromagnetic fields, allowing precise
control over qubit states and interactions.

One of the main strengths of trapped-ion quantum com-
puters is their ability to physically move ions in space.
The Quantum Charge Coupled Device (QCCD) architecture
proposes to exploit this to enhance the scalability and enable
the construction of large-scale devices. The ability to shuttle
the ions within the device allows for all-to-all connectivity
of the system’s qubits, since all ions can be addressed by

changing the routing of the qubits, i.e., moving the ions in
such a way, that the respective ions are coupled. Furthermore,
individual trap regions can be optimized towards specific
tasks, e.g., for processing or storing, between which ions are
efficiently shuttled.

Despite these promises, several challenges remain in the
development of practical and scalable quantum computers.
One of the most pressing issues is the decoherence of qubits,
i.e., the fact that the fragile quantum states lose information
over time due to interactions with their environment. To
address these challenges, interdisciplinary efforts are neces-
sary, combining insights from quantum physics and computer
science. From the perspective of computer science, the re-
sulting expertise of decades of classical computing should be
used to provide tools that compile, evaluate, and help in the
development of new devices. Without proper support, there is
the possibility that powerful trapped-ion quantum computers
will be available but there will be no means to use that
power. Indeed, this holds true for all quantum computing
technologies.

In trapped-ion systems, especially in large architectures,
a major part of the execution time may be consumed by
shuttling operations. Thus, a high-level quantum circuit has
to be compiled in a way that not only permits the execu-
tion of the circuit’s quantum gates, but also orchestrates the
efficient movement of all ions in the system to ensure fast
execution times. This makes determining optimized shuttling
schedules paramount for useful computations in trapped-ion
quantum computers. First solutions addressing this problem
have been proposed, e.g., in [9]–[13]. However, the considered
architectures are comparatively simple and do not cover a wide
range of possible QCCD architectures.

In this work1, we propose a heuristic approach to determin-
ing efficient shuttling schedules for grid-type QCCD architec-
tures. To this end, the compilation process from a high-level
quantum circuit to a precise shuttling schedule is divided into
two parts: first, we discuss the compilation of the quantum
circuit to the specifics of the device. This process involves
removing all SWAP gates, translating the high-level gate
instructions to the native gate set of the device, optimizing the
resulting circuit and mapping the logical qubits in the quantum
circuit to the individual ions. Second, we introduce a graph-
based abstraction of the underlying physical hardware that
represents linear ion traps and junctions. Based on this graph,
we generate efficient shuttling schedules without conflicts by

1Preliminary versions of this work have been published in [14].
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exploiting cycles in the graph representation. This enables
movement on shortest paths without expensive backtracking
to move potentially blocking ion chains out of the way. To
improve the efficiency of the resulting shuttling schedules,
this step is intertwined with an additional compilation step
that selects the next gate at runtime depending on the state of
the system.

Empirical evaluations confirm the efficacy of the proposed
approach with a close-to-minimal amount of time steps for
small architectures and promising results for larger ones.
This includes both the resulting schedule (i.e., the number
of time steps required to execute the quantum algorithm)
as well as the classical generation of the schedule in the
first place. An implementation of the proposed approach is
publicly available as part of the open-source Munich Quantum
Toolkit (MQT) at https://github.com/cda-tum/mqt-ion-shuttler
under the MIT license.

The remainder of this paper is structured as follows:
Section II provides the background on trapped-ion quantum
computers and QCCD architectures. Section III motivates the
problem and outlines the general idea of the proposed solution.
Section IV details the additional compilation step that selects
the next best gate. Section V describes the proposed scheduling
approach, with the corresponding implementation provided
in Section VI. Section VII summarizes the obtained results.
Finally, Section VIII concludes the paper.

II. BACKGROUND

This section provides a brief overview of trapped-ion
quantum computing and the challenges that have to be ad-
dressed to realize scalable devices. A potential solution, the
Quantum Charge Coupled Device (QCCD) architecture, is ex-
plained and the costs associated with shuttling ions through a
device are discussed. For a more physics oriented description
of the technology, the interested reader is referred to the
provided references.

A. Trapped-Ion Quantum Computing

Trapped-ion quantum computers [15]–[17] utilize ions as
qubits, where the quantum state of each ion is manipulated
using electromagnetic interactions, either in the optical or
microwave domain [16]–[18]. To this end, ions are isolated
and held in a controlled environment by a combination of
radio-frequency and quasi-static electric fields. These fields
generate an electric potential that confines the ions at a specific
location. Within the confines of a trap, multiple ions can be
arranged in a chain-like configuration.

Example 1. A popular type of an ion trap is the so called Paul
trap. Figure 1 sketches a realization of a Paul trap that holds
a single ion chain. Ions are held in an electric field generated
by radio-frequency (RF, light-blue) and quasi-static (DC,
dark-blue) control elements. The trap can also be fabricated as
a two-dimensional surface trap as shown in Figure 1b, which
we refer to as a single linear trap site. In both realizations, ions
are illustrated by orange spheres representing three individual
ions. This kind of an ion chain has been coined an ion

(a) Paul trap

Ion

RF

DC

(b) Surface trap

Fig. 1: An illustration of two possible linear trap realizations.
A correct combination of radio-frequency (RF) and quasi-static
(DC) electric fields produced by control electronics (light-blue
and dark-blue) creates a potential that confines the ions (or-
ange) at their current position.

register, because the chains may be used similar to registers
in classical computers. Gate-based quantum computations can
be performed on each ion individually, which means that each
ion represents one qubit.

However, while a single trap suffices for smaller quantum
computers, the gate speed Rgate decreases approximately by
Rgate ∼ 1√

N
with an increasing number of ions N . Longer gate

times give rise to different types of background errors, making
it challenging to scale to more practical quantum algorithms
that require more qubits. As of now, trapped-ion quantum
computers have been realised using up to tens of qubits [19],
[20].

B. Quantum Charge Coupled Device Architecture

An intuitive way of the limited scalability is to build systems
with multiple ion chains. In fact, single linear trap sites can
be connected to one large trap, which may hold one chain at
each site. By exploiting the fact that ions can be physically
moved in a trap, such modular architectures allow all-to-all
connectivity of the system’s ions. The leading candidate for a
modular trap design is called the Quantum Charge Coupled
Device (QCCD) architecture [21]. The main idea of the QCCD
architecture revolves around designating specific regions of
the trap for specific functionalities. For instance, all quantum
operations are performed in a dedicated processing zone
that is specifically constructed for efficient qubit operations.
The acquired quantum information may then be stored in a
memory zone, which is shielded from potential disturbances
and sources of decoherence. Further optimized areas may
include regions for qubit readout (measurement zone) or ion
initialization (loading zone). Linear QCCD architectures have
already been realized, e.g., in [17], [22]. A linear system

https://github.com/cda-tum/mqt-ion-shuttler
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(a) Linear QCCD architecture

(b) 2D QCCD architecture

Fig. 2: An illustration of two QCCD architectures. In a a
device with a linear trap design is sketched. A 2D QCCD
architecture is displayed in b, wherein an “X”-junction and a
linear region are indicated.

is built from multiple sites, each able to confine one chain,
connected in a straight line.

Example 2. Figure 2a illustrates the concept of a linear
QCCD device. Each site is marked by three control electrodes
(dark-blue), which trap the ions and may perform shuttling
operations to move an ion register to a neighbouring site.

In linear traps, ion chains may block the way of each other,
which would require slow interactions like chain reordering
and reconfiguration to resolve this issue. To address this prob-
lem, junctions are implemented into the systems, connecting
linear regions to form two-dimensional (2D) architectures. The
extension to a second dimension allows ions to avoid the
path of other ions without swapping or reconfiguration. Linear
regions can be connected in several ways. One may connect
large linear regions with only a small amount of junctions, or
increase the number of junctions and connect several smaller
linear regions. Furthermore, the combination of different types
of junctions (e.g., termed “T”-, “Y”- or “X”-junctions, where
the capital letter is referring to their shape) can also completely
change the layout and connectivity of the system. A first type
of a two-dimensional QCCD device has recently been realized
in [20], where a linear trap was connected to form a loop.

Example 3. Figure 2b shows one possible layout of a 2D
QCCD device. All inner linear regions are connected via
“X”-junctions, which produces a system in a grid structure.
Each linear region can hold up to two chains. In this archi-
tecture, the square grid on the left-hand side is dedicated as a
memory zone which is connected to a linear processing zone
on the right-hand side.

C. Shuttling Costs

Conducting the shuttling operations of ion chains in a
QCCD architecture comes with certain costs. Depending on
the architecture, different amounts of energy have to be
invested into the system to trap and move the ions. The
underlying physics allow comparatively fast shuttling through
linear traps, however, shuttling through junctions is more
difficult and dominates the overall time needed for moving
ion chains [23]. Over time (and through the movement), the
ions collect energy through acquisition of phonons [24], a
process known as motional heating. These fluctuations of the
ions’ vibrational modes are typically caused by electric-field
noise, which often originates from imperfections in the trap
electrodes. The increase in the motional amplitude of the ions
is problematic, as it leads to the decoherence of quantum
information. Therefore, ions must be cooled to or close to the
ground state—often by a combination of Doppler and side-
band cooling (see [25] for more information) to preserve their
quantum states. It still remains challenging to integrate the
required optical control elements, especially for large systems.
To limit the amount of control elements needed and enable the
development of large-scale devices, it is therefore crucial to
find shuttling schemes that minimize the time ions have to be
moved through the system.

III. SHUTTLING FOR
SCALABLE TRAPPED-ION QUANTUM COMPUTERS

This section reviews the shuttling problem specific to
trapped-ion quantum computers, that is abstracted and solved
in the following sections. To this end, we first provide a
comprehensive overview of the compilation flow that prepares
a high-level quantum circuit to be executed on actual hardware
and, with that, provide the necessary context. In the second
part, we then describe the steps involved in the shuttling
process and the corresponding problem instance. Based on
that, the remainder of this work proposes an automatic solution
for this problem.

A. Compilation Flow and Context

To provide a consistent description of the problem, we
start with a review of the compilation process that leads
up to the shuttling problem. At the start of every computa-
tion, the compiler is given a quantum circuit, usually as a
high-level description, i.e., consisting of quantum gates that
the machine is not necessarily able to execute directly. Besides
that, the compiler must also know the specific architecture of
the considered QCCD device with its corresponding starting
configuration.

Example 4. The compilation flow is illustrated using Figure 3.
Here, the compiler is given the quantum circuit of the 3-qubit
quantum Fourier transform [26] illustrated in Figure 3a as
input. Further input to the compiler consist of information
about the employed QCCD device, namely the type of archi-
tecture and number of ion chains, as well the position of the
ion chains at the start of the execution, which are depicted in
Figure 3b and Figure 3c.
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(d) Compilation flow

Fig. 3: Input and intermediate steps for the generation of a shuttling schedule. The top layer shows the necessary input for the
proposed approach. Below, all consecutive steps of the compilation that generate the final shuttling schedule are displayed.

As mentioned before, the QCCD device may not be able
to natively run the high-level description of the quantum
circuit. To resolve this, the circuit has to be compiled to
satisfy the restrictions of the architecture. For the specifics
of a shuttling-based trapped-ion hardware, we break the com-
pilation down into the following four steps:

• Eliminating SWAP Gates
Corresponding to its name, a SWAP gate swaps the
considered qubits of the gate within the circuit. In a
shuttling-based trapped-ion quantum computer, however,
swapping qubits can be achieved through computational
remapping rather than physically moving the ions. Since
the shuttling architecture allows for full connectivity
between qubits, the compiler eliminates SWAP gates
by logically relabeling qubits, avoiding the need for a
physical SWAP operations.

• Translating to Native Gate Set
A high level quantum circuit is usually constructed by
abstract quantum gates, that are not necessarily exe-
cutable on a quantum machine. Each realization of a
quantum computer only supports a very specific set of
quantum gates, called the native gate set. Accordingly,
the compiler has to translate the high level description of
a quantum circuit into the native gate set of the considered
quantum device.

• Optimizing Resulting Circuit
Translating a quantum circuit to the native gate set usually
introduces multiple gates for each gate of the original
circuit. The task of a compiler is then to reduce this
overhead and, thus, minimize the amount of shuttling that
has to be done later to execute the circuit on the machine.

To achieve this, the compiler removes redundant gates or
gate sequences. One can also make use of the fact that
quantum gates may commute and change the execution
order of gates in a way that is favorable for later stages of
the shuttling compilation or introduce more redundancies
that can be removed.

• Mapping Qubits to Ions
The initial configuration of ion chains provides the loca-
tion of each ion chain within the device and the amount of
ions that each chain holds. The compiler maps the qubits
of the quantum circuit (logical qubits) to the individual
ions that act as physical qubits.

The final step above is essential for the shuttling process
considered in this work. In the remainder of this work, we are
using the following terminology.

Definition 1. We denote the set of ions as I = {i0, · · · , im}.
Multiple individual ions can be hold in one ion chain from
the set C = {c0, · · · , cl}, where each ion carries the infor-
mation for one qubit. The chains also do not share ions, i.e.,
∀i,j : i ̸= j → ci ∩ cj = ∅.

Overall, the steps reviewed above are illustrated using the
following example.

Example 5. Consider again the example covered before using
Figure 3. To execute the quantum Fourier transform on three
qubits, the circuit has to be prepared and mapped to the
architecture of the provided quantum device. The compiler first
removes the SWAP gates at the end of the circuit. Since the

2Rn gates are defined by Rn =
(

1 0

0 e2πi/2n

)
.
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SWAP gates are not in between other gates, no relabeling of
gates has to be done. As a next step, the compiler translates
each gate of the original circuit into the set of gates that are
native to the QCCD device, removes redundancies introduced
by the mapping, and executes possible circuit optimizations.
The first part of the resulting circuit is given in Figure 4a.
This part of the compilation is then finished by mapping the
logical qubits of the circuit to the physical qubits of the device.
In this case, we map the circuit in the most simple way, i.e.,
mapping the first qubit to the first ion i0, the second qubit to
the second ion i1, and the third qubit to the third ion i2.

After completing these first four steps, the quantum circuit
is compiled to the native gate set of the device and mapped
to the corresponding physical qubits. In principle, the actual
execution of the quantum circuit and, with that, the shuttling,
can start.

B. Shuttling

The role of a compiler for QCCD devices is paramount to
ensure the effective shuttling of ions between different system
zones. Fundamentally, quantum gates can only be operated
in the processing zone. As a consequence, it is essential that
qubits on which operations shall be employed are shuttled
(moved) through different zones (e.g., from the memory zone
where they are stored to the processing zone).

With an executable circuit given, the order in which the ions
have to be shuttled to the processing zone can in principle be
determined. Since the possible movement inside the processing
zone is immediately given by the architecture, we put the focus
of this paper on the movement inside the memory zone and
at the interface to the processing zone.

To approach this in an efficient way, we separate the
problem into two intertwined parts, one selecting the next gate,
and one generating the paths for all ion chains to execute the
respective gate, i.e., orchestrating the actual shuttling of the
ions:

• Gate Selection
The idea is, analogous to the previously discussed circuit
optimizations, to exploit commutation relations of quan-
tum gates. More precisely, because of the commutation of
gates, multiple gates may be executable as the next gate,
which allows the compiler to choose the most favorable
one for the construction of a shuttling schedule. This is
discussed in more detail in Section IV.

• Actual Shuttling
Once all previous steps are complete, the next gate
and corresponding ion chains, which are needed in the
processing zone, are determined. With that, a schedule of
all movement operations can be generated. The compiler
must orchestrate the shuttling paths of ion chains to and
from the processing zone as well as the repositioning of
other, potentially blocking, ion chains within the memory
zone to enable efficient shuttling. This schedule should
not only ensure the correct execution but also aim to
minimize the total execution time of the quantum circuit.

Solving this shuttling problem is the main topic of this work
and will be discussed in detail in the next two sections, i.e.,

Section IV will cover the Gate Selection part, while Section V
will cover the Actual Shuttling part.

IV. GATE SELECTION

The core of the Gate Selection part lies in a strategic
selection of subsequent gates, particularly prioritizing those
with ions nearest to the processing zone. Since gates of a
quantum circuit may commute, there exist multiple possible
ways that execute the circuit without affecting the overall
outcome of the quantum computation. In other words, the
order of gates is not necessarily fixed at the start of the
execution. To exploit this, we first translate the quantum circuit
to a so called Dependency Graph. This allows us to isolate a
front layer of gates, i.e., gates that are ready to be executed
next. With that, we are able to choose the gate from the front
layer that is optimal for the shuttling process.

A. Dependency Graph

Every quantum circuit can be represented as a Directed
Acyclic Graph (DAG). Each gate in the circuit constitutes
a node of the graph, with directed edges between the nodes
corresponding to gate dependencies, i.e., lack of commutation.
The resulting graph is referred to as a Dependency Graph of
the respective quantum circuit. A directed edge from node A
to node B means that gate A does not commute with gate B,
and thus, has to be executed beforehand. Therefore, the set of
predecessors of a node include all gates that must be executed
before the respective gate can be considered.

B. Front Layer

To exploit the fact that gates commute, we use the De-
pendency Graph to delineate a front layer of gates. The front
layer consists of all gates without preceding dependencies. As
a result of the construction of the Dependency Graph, all gates
in the front layer commute with each other, do not depend on
the execution of other gates and, therefore, can be executed as
the next gate. This way, we can choose the most favorable one
from the front layer to be the next gate in the execution order.
As such, gates acting on ions closest to the processing zone
are executed first, allowing the immediate execution of certain
gates and significantly reducing the necessity for extensive ion
shuttling.

Example 6. Recap the state of the compilation flow at the
end of Example 5. The 3-qubit quantum Fourier transform
given in Figure 3 is compiled to the respective QCCD device
and its qubits are naively mapped to the ions. The first part
of the compiled circuit is displayed in Figure 4a. Given this
circuit, the corresponding Dependency Graph in Figure 4b
can be constructed. The front layer of gates is given by the
nodes without preceding dependencies or in other words, the
nodes to which no edges are directed towards. Consequently,
the front layer consists of node 0, 6, and 11.
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Fig. 4: Circuit and Dependency Graph of the compiled 3-qubit
quantum Fourier transform. The front layer of the Dependency
Graph is indicated (grey).

C. Best Gate

Since all gates in the front layer are qualified to be the
next gate in the execution order, we may pick the gate that
is optimal for the shuttling scheme. The shuttling schedule
consequently evolves around the chosen gate, as the ions of
this gate are the ones that have to be moved to the processing
zone next. Since we consider a shuttling based device, a
favorable gate requires qubits that are close to or, at best,
already present in the processing zone. In this approach, the
gate with the minimal combined distance to the processing
zone of its qubits is considered the best gate.

Example 7. Consider again the circuit of the quantum Fourier
transform on 3 qubits provided in Figure 3a. The correspond-
ing Dependency Graph is given in Figure 4. Let ion i1 be
closest to the processing zone. Since qubit q1 has been mapped
to i1 before and node 6 of the front layer is acting onto
that qubit, this node and the respective RX gate on qubit
q1 is chosen as the next gate. This means that the shuttling
schedule now produces shuttling operations to move the ion
chain holding ion i1 to the processing zone.

After the successful shuttling of the ions and execution of
the respective gate, the node of this particular gate is removed
from the Dependency Graph. With that, a new front layer
is created and the most favorable next gate can be chosen
depending on the new state of the ions in the system. This

is repeated until the complete quantum circuit is executed.
To efficiently manage the ion chains in such a way, that the
selected ions arrive at the processing zone, we discuss an
approach to generate paths and manage all ions of the system
in the next section.

V. ACTUAL SHUTTLING

With the completion of the compilation steps above, the
compiler now has access to a compiled quantum circuit and,
crucially, a Dependency Graph that determines which ions
have to be in the processing zone next. With this information, a
shuttling schedule has to be created that orchestrates the move-
ment operations of all ions in the device, such that the given
quantum circuit is executed. An efficient shuttling schedule
moves ions in a way that minimizes the overall time to execute
the given circuit. We propose to construct an efficient shuttling
schedule by first abstracting the architecture of a QCCD device
as an undirected graph and, afterwards, exploiting cycles in
that graph to guarantee conflict-free movement. To provide a
complete description for the discussed architecture, this section
also covers the shuttling through a processing zone.

A. Graph Description

To find an appropriate shuttling schedule, we represent
the architecture of a memory zone and the interface to the
processing zone in a QCCD device as an undirected graph.
The edges of the graph represent the individual sites of linear
traps (each site holding one ion chain). The nodes represent
either junctions (termed major nodes) or connections between
sites in one linear trap (termed minor nodes). On this graph, the
physically continuous movement of ion chains is discretized
into time steps. At every time step, each chain is present at
exactly one edge of the graph. With this representation, the
task at hand becomes a combinatorial optimization problem.

Definition 2. Consider a graph G = (V,E) that represents
the architecture of the memory zone and the interface to the
processing zone on the QCCD device.

The set of nodes V contains two different types: major nodes
representing junctions and minor nodes that separate adjacent
individual sites.

The set E = {e0, . . . , ek} denotes the edges of the graph,
representing all possible positions of the ion chains. There are
two special edges: the (i) outbound edge for ion chains exiting
the memory zone for processing in the processing zone and the
(ii) inbound edge for ion chains returning to the memory zone.
Edges can connect two major nodes (when there is only one
site between junctions), a major and a minor node, as well as
two minor nodes.

Since, in this particular architecture, individual ions within
an ion chain are not directly reconfigured or split from
their chain, ion chains represent the individual objects that
are managed by the shuttling schedule. While the previous
discussions can be adapted to the scheduling of individual ions,
from this point on, this work focuses on the movement of ion
chains instead of individual ions.
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Fig. 5: Illustration of a 2D QCCD architecture and its corre-
sponding graph abstraction

Example 8. Consider the QCCD architecture in Figure 5a.
All linear regions between two junctions can hold up to three
individual ion chains. A corresponding graph is illustrated
next to the device where the major nodes (green) form a grid of
size 3×3. Minor nodes (black) mark the three individual sites
between two junctions. One inbound edge leads to the edge of
the processing zone, which is connected back to the memory
zone by one outbound edge. The inbound and outbound edge
connecting the processing zone to the memory zone are marked
in the graph of Figure 5b.

On the graph representation, the state of the memory zone
is fully described at any time step. At time step zero, each
ion chain is located at the edges according to the starting
configuration. Given the information of which chains are
needed in the processing zone, the next step in the compilation
process is to find a schedule of shuttling operations, which
efficiently moves the respective chains. Moving an ion through
a junction takes considerably more time time than moving
withing a linear region. Thus, one time step passes whenever
an ion is moved through a junction. While one ion chain is
shuttled through a junction, all other junctions may shuttle
other ions at the same time. This means all junctions can be
used in parallel within one time step. An example illustrates
the concept.

Example 9. An ion chain configuration of the memory zone is
illustrated in Figure 8a. In a naive approach, all chains (black
boxes) travel on their shortest path, given they are needed in
the processing zone as dictated by the Dependency Graph.
For each chain, the shortest path to the processing zone is
indicated in Figure 8a.

B. Cycle-based Shuttling

The defining problem of shuttling arises if an ion chain
meets other chains on its path. In a trap filled with multiple
ion chains, the shortest path to the processing zone may be
blocked, since the chains can not directly swap places in a
memory zone. These conflicts have to be resolved by moving
the blocking chains away from the paths or change the path of
the moving chains. For an increasing number of ion chains in
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Fig. 6: Comparison of individual consideration of ion chains
with conflicts and conflict-free movement with cycles

the system this problem becomes increasingly more difficult
to solve exactly.

Example 10. Consider Figure 6a, which displays one rect-
angle within a grid graph, similar to the graph given in
Figure 5b. When trying to move the ion chains c0 and c2,
additional ion chains block the shortest paths to the processing
zone. The resulting conflicts are indicated, as chain c5 (c7) is
blocking the way of chain c0 (c2).

To tackle this issue, the topology of the considered modular
QCCD architectures offers an intuitive solution: exploiting
cycles. Cycles avoid conflicts and still move chains on their
shortest path within the memory zone. On the graph represen-
tation, we refer to cycles as connected edges that form closed
loops. If we form cycles along the shortest paths of the chains
and move every chain one step on that cycle, we are able
to shuttle individual chains along their optimal path while, at
the same time, moving blocking chains away from that path.
Additionally, because all junctions can be shuttled through in
parallel, one turn of all edges on a cycle only takes one time
step.

Example 11. Revisit the conflicts depicted in Figure 6a.
Moving all chains on a cycle around the shown part of the
graph, both c0 and c2 are able to move on their respective
shortest paths. To do that, we move all chains on that cycle
one edge further in the same direction. This is illustrated in
Figure 6b.

To better illustrate the concept of cycle-based shuttling, we
discuss the approach tailored to grid-type architectures from
this point on. Grid-type architectures are connected only by
“X”-junctions, i.e., the angles of all junctions are 90◦. This
means, that each face of the graph is a rectangle (i.e., bounded
by edges between four major nodes). This shape offers a
straightforward construction of cycles, since every rectangle of
the grid forms a closed loop. Depending on the direction of the
desired movement, two different cycles are being constructed.

Example 12. Since we consider a grid built out of
“X”-junctions, a movement through a junction can either
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Fig. 7: Cycle construction

be horizontal or vertical. The smallest possible cycle for a
vertical move requires exactly one rectangle of the grid, while
for the horizontal move the cycle has to be expanded to two
rectangles. These moves are exemplified in Figure 7a, in which
ion chain c0 is blocked by ion chain c1 both times, once
vertically (top) and once horizontally (bottom).

All move operations within the memory zone are covered by
these two cycles, since the memory zone is a symmetric grid.
To cover the shuttling operations for the whole architecture,
the shuttling through the processing zone is discussed next.

C. Shuttling through the Processing Zone

In this work, we consider the processing zone to be a
one-way pass that is separated from the grid-type memory
zone. Constructing cycles through this pass is undesirable,
because this may unintentionally move neighbor chains into or
out of the processing zone. This issue is resolved by creating a
path through the processing zone towards an unoccupied edge
in the memory zone. This way, all chains on that path may
move one edge further, which enables specific movement into
and out of the processing zone. The start point for searching
a free edge depends on where the chain is needed after being
processed. If the chain is needed in the processing zone again
at a later point in time, a breadth-first search starts at the
inbound edge, otherwise we employ the same search starting
from the edge with the largest distance to the inbound edge.

Example 13. Consider the state of the memory zone in
Figure 7b. Chain c0 is on its way to use the inbound edge
to move to the processing zone. The inbound edge is already
occupied by c1. Given c0 is not needed another time, a
breadth-first search for a free edge is performed starting from
the bottom left corner node, opposite to the inbound edge.
The resulting path from edge of c0 to the unoccupied edge is
indicated in Figure 7.

Besides the movement through the processing zone, a
shuttling schedule must also account for the time ions re-
main in the processing zone. The speed of quantum gates in
trapped-ion quantum computers is a focal point of ongoing

research and development efforts. While current implemen-
tations demonstrate notable progress [27]–[29], the execution
time of quantum gates still remains a major part of the overall
execution time. Notably, two-qubit gates typically exhibit
slower operation speeds compared to single-qubit gates. As a
consequence, a compiler for trapped-ion quantum computers
must be able to schedule different time slots, in which ions
remain in the processing zone. This may also temporarily
block the path from the memory zone to the processing zone,
in order to fully execute each gate.

As already discussed, ions have to be shuttled to the
processing zone in a specific order to perform the calculations
of a quantum circuit. To explain how to preserve the order
of the ions and decide which cycles to construct and execute,
details of the corresponding implementation are discussed in
the following section.

VI. IMPLEMENTATION

The concept of cycles works in all QCCD architectures, in
which closed loops can be formed. In the following, we discuss
how to implement a corresponding approach, again, focused
on grid-type architectures. Usually, not all ions are needed in
the processing zone at the same time and, thus, we need to
prioritize the ions that are needed immediately. To this end,
we discuss how to decide which ions are shuttled at the same
time and, with that, which cycles are performed.

We start by creating a ranking of the ion chains in the
system, which we will call priority queue. The priority queue
is determined with the help of the Gate Selection step ex-
plained in Section IV. As discussed before, the front layer of
the Dependency Graph contains all gates that are executable
next, which allows us to pick the most favorable next gate.
Accordingly, the corresponding ion chains of this gate will be
placed at the top of the priority queue. Then, the first gate is
disregarded and its node deleted from the Dependency Graph.
This leads to a new front layer, from which the next chains in
the queue can be determined. If the chain is already present in
the priority queue, it is not added again. The priority queue is
filled this way until either a maximum number of ion chains
is specified or there is no node left in the Dependency Graph.

Example 14. Revisit the state of the ion chains discussed
in Example 7 and the corresponding Dependency Graph in
Figure 4b. For simplicity, let all chains c0, c1 and c2 hold
exactly one ion i0, i1 and i2. Since node 6 was picked as the
next gate, ion chain c1 holds the first spot in the priority queue.
To find the next chain in the priority queue, we successively
remove all nodes which act on chain c1 and only depend on
the previous one (these are all colored blue in Figure 4b) from
the Dependency Graph. This continues until node 16 which
also depends on c2. At this point, depending on which chain
is closer to the processing zone, either c0 or c2 is taking the
next spot in the priority queue. The other one remains in the
last spot.

With the priority queue determined, we can start scheduling
movement operations for all ion chains. The goal of this
approach is to move as many of the required chains as possible
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Fig. 8: Possible movements for one time step

to the processing zone. As a first step, we determine the
shortest path of each ion chain in the priority queue. We then
move all chains within two junctions on their path as far as
possible. Afterwards, chains may traverse a junction to reach
a neighboring linear region.

Example 15. One time step is illustrated in Figure 8.
Figure 8a displays the first set of movement operations, which
shuttle all chains to the outer edge within their linear region.
The resulting configuration is indicated in grey, which is the
initial configuration in Figure 8b.

If the next edge of an ion chain is not occupied, the chain
can simply be shuttled through the respective junction on its
shortest path. In case the next edge is blocked by another
chain, cycles are formed along the shortest path of the shuttling
chains and all chains on the cycle are moved in the same
direction.

Example 16. As already discussed in Example 15, the re-
sulting configuration in Figure 8a (grey) provides the initial
situation for Figure 8b. Four of the six considered chains (c0,
c1, c2 and c3) move on their shortest path to the processing
zone, as indicated in the illustration. Within one time step, the
chains are allowed to move through one junction, if the path
is not blocked by another chain. In this case, chains c1 and c2
are free to move over their respective junction, while chains
c0 and c3 are both blocked by the additional chains c5 and
c4 (red).

Cycles may overlap and attempt to move chains in opposite
directions. To avoid this, we allow only non-overlapping cycles
to move at the same time, and, in case of conflicting cycles,
prioritize by the position of the chain within the priority queue.

Example 17. In Figure 8b, two cycles are formed along the
shortest paths of both c0 and c3, analogous to the description
in Figure 6. The two cycles result in a conflict, because they
are acting in opposite directions on their shared linear region
(indicated by red arrows). The ranking of c0 and c3 in the
priority queue then determines, which of the two cycles is

performed. Since c3 is needed in the processing zone before
c0, the left cycle in Figure 8b is prioritized and executed
accordingly. The resulting configuration after the completion
of one time step is provided in Figure 8c.

However, if all ion chains in the priority queue moved, the
chain closest to the processing zone would always be the first
one arriving. To ensure that chains move to the inbound edge
in the correct order, the priority queue of the algorithm has to
be refined further. Chains only move along their shortest path,
and potentially form cycles, if all chains which are needed
prior to the considered chain are closer to the inbound edge.
In other words, the first chain in the queue always moves, the
second only if it is further away from the inbound edge than
the first chain and so on.

As soon as the required ions are present in the processing
zone, the gate execution begins. Depending on the specifics of
the processing zone, the path towards and into the processing
zone may be blocked while the gate is being processed.
This can take up to several time steps, again, depending on
the specifics of the processing zone and the type of gate.
Once a gate is processed, the corresponding node is removed
from the Dependency Graph and the compilation returns to
selecting the next best gate. The compiler then constructs an
updated Dependency Graph by reevaluating the new positions
of ion chains in the system. This continues until the complete
quantum circuit is executed on the device.

Cycle-based shuttling provides an efficient heuristic to gen-
erate schedules even for larger QCCD architectures. To vali-
date this claim, the following section evaluates the proposed
implementation.

VII. EMPIRICAL EVALUATION

This section provides the results of an evaluation of the
proposed approach. The methods described above have been
implemented as part of the open-source Munich Quantum
Toolkit at https://github.com/cda-tum/mqt-ion-shuttler. In our
evaluations, we considered different architectures following
a grid structure. On each architecture, we generated shut-
tling schedules for four different circuits, each compiled to

https://github.com/cda-tum/mqt-ion-shuttler
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TABLE I: Results of the Empirical Evaluation

Architecture Full Register Access GHZ Graph QFT

Type m n v h |C|/|EM | G T̂min T̂ tCPU [s] G T̂ tCPU [s] G T̂ tCPU [s] G T̂ tCPU [s]

Racetrack

2 2 1 5 6/12 6 12.5 14.6 0.4 100 110.2 4.3 110 122.4 4.98 250 280.2 19.5
2 2 1 11 12/24 12 21.9 39.5 1.8 220 242.2 19.1 212 236.2 19.6 1039 1178.9 740.0
2 2 1 19 20/40 20 – 95.4 6.8 380 421.5 68.8 360 414.2 70.6 2901 3388.8 14502.6
2 2 1 29 30/60 30 – 185.3 18.9 538 655.8 216.4 538 650.5 214.8 6775 7984.0 189710.8
2 2 1 39 40/80 40 – 336.3 40.7 780 914.2 540.3 720 957.5 449.8 12315 ∗70470.4 ∗46012.2

Vertical Grate

2 4 1 1 5/10 5 11.1 12.9 0.4 80 89.7 3.2 91 103.5 3.7 168 321.9 10.4
2 6 1 1 8/16 8 14.9 18.5 0.7 140 158.0 8.4 144 162.0 8.7 463 526.4 244.7
2 8 1 1 11/22 11 – 28.1 1.3 200 232.1 17.2 197 224.0 17.3 873 995.2 1334.9
2 10 1 1 14/28 14 – 36.7 2.1 260 294.5 29.8 250 280.2 30.5 1411 1624.6 5310.6
2 10 5 5 70/140 70 – 360.1 139.8 1258 1422.2 2488.2 1258 1418.8 2490.0 29479 ∗187761.2 ∗82109.4

Horizontal Grate

4 2 1 1 5/10 5 10.7 11.4 0.3 80 88.3 3.1 91 103.1 3.5 168 214.5 6.6
6 2 1 1 8/16 8 15.7 24.4 0.8 140 154.0 7.6 144 160.0 8.1 463 520.4 239.5
8 2 1 1 11/22 11 – 33.7 1.4 200 220.3 29.8 197 220.1 15.8 873 987.2 1336.8
10 2 1 1 14/28 14 – 46.6 2.2 260 286.2 27.3 250 278.9 28.0 1411 1596.6 5291.8
10 2 5 5 70/140 70 – 599.1 24.8 1258 1448.7 2383.2 1258 1450.5 2382.9 29479 ∗205201.2 ∗364680.1

Lattice

3 3 1 1 6/12 6 11.0 11.5 0.4 100 110.8 4.3 110 122.2 4.9 250 280.2 56.1
4 4 1 1 12/24 12 20.2 26.6 1.3 220 245.6 19.4 212 239.0 19.6 1039 1182.0 2192.1
5 5 1 1 20/40 20 – 49.2 3.2 380 422.0 68.0 360 401.4 69.5 2901 3341.1 14802.8
6 6 1 1 30/60 30 – 62.3 6.3 580 650.2 204.6 538 602.2 205.5 6775 7904.6 192553.8

10 10 1 1 90/180 90 – 229.8 110.1 1780 1978.2 4821.1 1618 1815.6 4881.1 40919 ∗102394.2 ∗51662.0

*Benchmark without Gate Selection step

real hardware implementations of state-of-the-art trapped-ion
quantum computers. In line with the previous sections, we
first discuss the specific realization of individual steps in the
compilation flow. This is followed by the description of the
detailed setup that was used in the evaluation as well as the
obtained results.

A. Realization of Compilation Steps

After the removal of all SWAP gates, the quantum circuits
were translated to a common native gate set consisting of RZZ,
RZ, RY, and RX. This particular gate set also finds application
in real-world quantum computers, e.g., in QCCD devices of-
fered by Quantinuum [20]. The considered high-level circuits
are obtained via MQT Bench [30], which are translated and
compiled using existing functionality from the Python module
pytket [31]. To realize the circuit optimization step, the pytket
module also provides optimization routines to further transpile
and reduce the number of gates of each circuit. The Depen-
dency Graph used in the Gate Selection step is constructed
with qiskit [32] and uses the corresponding commutation rules.
In this evaluation, we only consider a single ion in each ion
chain and employ a direct mapping where qubit qj corresponds
to ion ij . This allows us to provide a clear and direct
assessment of the shuttling approach, without the complexities
introduced by multiple ions per chain. The proposed mapping
of qj −→ ij is also chosen for its simplicity and to ensure the
empirical evaluation actually evaluates the shuttling approach.
Depending on the capabilities of the underlying hardware
and the considered quantum algorithm, other mappings may
provide a benefit.

B. Setup

The important properties of the grid-like graphs are de-
scribed by four values m,n, v, h: the grid is of size m × n,
with m nodes vertically and n nodes horizontally. For the
architecture, this means at most v (h) ion chains can be trapped
vertically (horizontally) between to junctions. Accordingly,

the graph in Figure 5b is denoted as {3, 3, 3, 3}. The grid
is further extended by two additional edges which represent
one outbound edge to a processing zone and one inbound
edge leading back to the memory grid. Using a random
starting configuration of ion chains on these grids, we then
used the proposed approach to determine the number of time
steps T̂ that are sufficient to realize a given quantum circuit,
i.e., shuttling schedule.

For the evaluation, we consider four access patterns and
four different types of architectures. The access patterns are
(with each chain containing exactly one ion)

• “Full register access” where each ion chain is shuttled to
the processing zone once,

• “GHZ” where the ion chains are scheduled according to
a circuit that realizes the Greenberger–Horne–Zeilinger
state for all qubits,

• “Graph” where the ion chains are scheduled according to
a circuit that realizes the Graph state for all qubits, and

• “QFT” where the ion chains are scheduled according to
the quantum Fourier transform discussed before.

The different architecture types are described as follows:

• “Racetrack” which consists of one big ring in which the
ion chains can move,

• “Horizontal Grate” where there are only trap sites in
parallel to the processing zone except for the bordering
linear regions,

• “Vertical Grate” where there are only trap sites perpen-
dicular to the processing zone except the bordering linear
regions, and

• “Grid” which has has both parallel and perpendicular trap
sites inside.

All evaluations were conducted on a machine with an
Intel(R) Xeon(R) W-1370P CPU (running at 3.22GHz) and
32GiB main memory running Python 3.8.10 and averaged
over five runs with different random initial configurations.
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C. Results

Table I summarizes the results of the evaluation. The first
group of columns describes the architecture, providing the
general type, exact dimensions, and the fraction |C|/|EM | of
occupied edges (sites) to the total number of edges (sites) in
the memory zone. For every experiment, exactly half of the
edges were occupied by ion chains. The following four groups
of columns present the results for the benchmarks executing
“Full register access”, the “GHZ” state, the “Graph” state,
and the quantum Fourier transform “QFT”. Here, G is the
number of gates, T̂ is the number of time steps required for
the generated shuttling schedule, and tCPU is the time taken
to generate these shuttling schedules. For small instances of
“Full register access”, we also list the minimal number of
time steps T̂min. The largest instances of the “QFT” benchmark
were conducted without the “Gate Selection” step to allow the
evaluation of all circuits within a maximum time of 200 000s.
Excluding this step reduces the computation time at the ex-
pense of more time steps, i.e., a less efficient shuttling sched-
ule. The results show that the proposed approach is capable
of generating shuttling schedules for a variety of trapped-ion
hardware. Even for large architectures, the implementation is
able to produce efficient shuttling schedules. Compared to the
minimal results obtained by exhaustive search, the proposed
heuristic approach performs reasonably well. Even though the
complexity increases for larger architectures, we do not expect
the gap between the minimal and heuristic solutions to become
relatively larger, as larger architectures offer more potential for
finding cycles. Furthermore, increasing the number of ions per
ion chain may reduce the amount of necessary shuttling, thus
making it possible to support larger architectures and more
complex quantum circuits.

VIII. CONCLUSION

With the QCCD architecture, trapped-ion quantum comput-
ers provide a modular design that promises good scalability.
Still, efficient classical design tools are required to tap into this
potential. In this paper, we proposed such a tool for generating
efficient shuttling schedules. To this end, we discussed how to
compile a given high-level quantum circuit to the specifics of
a QCCD device and, then, use a graph-based abstraction of
the underlying hardware to discretize the problem of moving
ion chains. Further, we exploit the topology for conflict-free
shuttling through cycles in the graph, combined with choosing
the most favorable next gate after each gate execution. The
empirical evaluation confirms that the proposed approach
is able to generate efficient shuttling schedules, even for
large systems. The corresponding implementation is freely
available as part of the open-source Munich Quantum Toolkit
at https://github.com/cda-tum/mqt-ion-shuttler under the MIT
license. Since the proposed approach treats each ion chain as
a fixed unit, possibilities such as splitting or reordering the
chains are not taken into account in the current framework.
This restriction helps to keep the approach feasible and puts
the focus on minimizing circuit execution time. Future work
could explore the opportunities provided by chain splitting
and reordering. It could also incorporate more detailed cost

models that account for the complexity of different shuttling
operations and consider architectures with multiple processing
zones.
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