
Minimizing the Number of Code Switching Operations
in Fault-TolerantQuantum Circuits

Erik Weilandt

erik.weilandt@tum.de

Chair for Design Automation

Technical University of Munich

Germany

Tom Peham

tom.peham@tum.de

Chair for Design Automation

Technical University of Munich

Germany

Robert Wille

robert.wille@tum.de

Chair for Design Automation

Technical University of Munich

Munich Quantum Software Company

Germany

Abstract
Fault-tolerant quantum computers rely onQuantumError-Correcting
Codes (QECCs) to protect information from noise. However, no sin-

gle error-correcting code supports a fully transversal and therefore

fault-tolerant implementation of all gates required for universal

quantum computation. Code switching addresses this limitation

by moving quantum information between different codes that, to-

gether, support a universal gate set. Unfortunately, each switch is

costly—adding time and space overhead and increasing the logical

error rate. Minimizing the number of switching operations is, there-

fore, essential for quantum computations using code switching. In

this work, we study the problem of minimizing the number of code

switches required to run a given quantum circuit. We show that this

problem can be solved efficiently in polynomial time by reducing

it to a minimum-cut instance on a graph derived from the circuit.

Our formulation is flexible and can incorporate additional consid-

erations, such as reducing depth overhead by preferring switches

during idle periods or biasing the compilation to favor one code over

another. To the best of our knowledge, this is the first automated

approach for compiling and optimizing code-switching-based quan-

tum computations at the logical level.

1 Introduction
Quantum computing [1] offers substantial speedups for certain clas-

sically hard tasks [2]. However, the noisy nature of physical qubits

requires the use of Quantum Error Correction Codes (QECCs) [3–5]
to protect information during a computation. Furthermore, compu-

tations have to be performed fault-tolerantly to avoid small errors

from affecting large parts of the encoded system.

One way to realize fault-tolerant computations is via transversal
gates, where logical gates are performed on an encoded system

by acting on each qubit individually, thus preventing errors from

spreading uncontrollably. Unfortunately, no QECC with an en-

coded universal transversal gate set exists [6], which means that

the transversal gates of a code can only be used for restricted com-

putations, which are not sufficient to solve problems of interest.

Two prominent proposals for overcoming these restrictions are:

• Magic-state cultivation [7–9] and distillation (MSD) [10–12],

in which multiple noisy states are iteratively refined to

produce fewer, higher-fidelity states that can then be used

to implement logical gates via gate teleportation, and

• Code switching [13–17], in which two QECCs with comple-

mentary transversal gate sets are used and logical qubits

are switched between them as needed.

In the context of logical quantum circuit compilation where the

task is to translate a given quantum circuit into instructions that

can be executed for the target QECC and hardware platform, MSD-

based computation in conjunction with lattice surgery [18–20] has

been a very active research field and many advances in compila-

tion techniques have been made [21–25]. However, despite some

estimates showing that code switching may have lower overhead

than magic state distillation in certain regimes [13], compilation for

code switching-based fault-tolerant quantum computing has hardly

been investigated. While improvements have been made to reduce

the overhead of the switching protocols themselves [14, 15], to the

best of our knowledge, no work exists that aims at optimizing code

switching on the logical level.

We formalize the minimal code switching problem, which aims to

identify the minimum number of code switches neededthroughout

the execution of a circuit. Because the gate sets supported by the

different QECCs involved in the code switching scheme are not

necessarily disjoint, i.e., there are some gates that can be executed

in either code, it is not immediately clear when and where qubits

should be switched to avoid unnecessary switching operations. We

show that this optimization problem can be solved in polynomial

time by reducing it to the minimum cut problem [26]. Furthermore,

we demonstrate that the min-cut formulation is highly flexible

as it can be extended to incorporate one-way CNOTs between

the QECCs, optimize circuit depth, and encode preferences for

prioritizing one code over the other.

We implemented the proposed min-cut and heuristic approaches

to the minimum code switching problem as part of the open source

Munich Quantum Toolkit (MQT) [27] (at https://github.com/munich-

quantum-toolkit/qecc) and conducted a series of empirical eval-

uations on circuits up to 1024 qubits and millions of gates. The

evaluations show that the minimum code switching problem can

be solved in a moderate amount of time, even for circuits with up

to 1024 qubits and millions of gates. We furthermore demonstrate

that the proposed extensions to the min-cut approach allow the

compiler to reduce circuit depth while preserving minimality with

regard to the number of switching operations, and to trade a small

number of additional switches for executing thousands more gates

in a preferred code—an advantageous trade-off when the improved

performance of that code outweighs the extra switching cost.

This work constitutes an important step in the compilation of

code switching based fault-tolerant quantum computing. We hope

that future developments in code switching compilation further

help to evaluate when code switching might be preferable to MSD.

https://github.com/munich-quantum-toolkit/qecc
https://github.com/munich-quantum-toolkit/qecc

Erik Weilandt, Tom Peham, and Robert Wille

(a)

...

(b)

...

(c)

Figure 1: Minimal code switching: (a) Transversal gates of the 2D and 3D color codes. CNOT gates are transversal in both codes.
(b) Circuit implementation requiring 6 switching operations. (c) Minimal solution requiring only 4 switches.

The rest of this work is structured as follows. Section 2 provides

the necessary background on code switching and introduces the

minimal code switching problem. Section 3 shows how the minimal

code switching problem can be reduced to min-cut and shows how

the formulation can be extended to incorporate further features

into the compilation process. We evaluate the performance of the

proposed algorithm in Section 4 and demonstrate how the model

can be tweaked to trade off minimality against other optimization

criteria. Finally, Section 5 concludes this paper.

2 Background and Motivation
This section introduces and motivates the minimal code switching

problem. To do this, we first revise the relevant background on code

switching itself.

2.1 Code Switching
Different Quantum Error Correction Codes (QECCs) support distinct
sets of gates that can be implemented transversally. Transversal

gates, which act on individual physical qubits of different logical

code blocks, are inherently fault-tolerant as they do not spread

errors uncontrollably through a quantum circuit. Code switching
has been proposed as a technique that employs multiple QECCs

whose respective sets of transversal gates complement each other

to achieve universality. Logical qubits are dynamically transferred

between these codes depending on which gate needs to be applied;

in other words, the logical information is switched from one code

to the other. For the remainder of the paper, we consider the com-

bination of a 2D [28] and 3D color code [29] as a possible QECC

pair for code switching.

Example 1. 2D color codes implement, among others, CNOT and

Hadamard gates transversally. On the other hand, 3D color codes

have CNOT and T gates in their transversal gate set. The union of

both sets provides a universal gate set {𝐻,𝑇 ,CNOT} as sketched
in Figure 1a.

Having identified two codes whose transversal gate sets comple-

ment each other, the next challenge is to leverage this combination

in an actual computation. Code switching allows a computation to

remain fault-tolerant throughout by temporarily encoding logical

qubits in the code that is needed for the next gate to be executed

transversally. In practice, this means the logical state must be trans-

ferred between codes whenever a gate outside the current code’s

transversal set is needed.

Example 2. Consider the input circuit shown in Figure 1b, which

has been synthesized to only contain gates from the universal gate

set. One can see that the single-qubit gates force the corresponding

logical qubits into the respective code: Logical qubits on which a

Hadamard gate acts have to be in the 2D color code (highlighted

in green), and conversely, T gates enforce the 3D color code (high-

lighted in red). Assuming that a CNOT operation forces both par-

ticipating qubits to be in the same code, we still have some degree

of freedom to choose between the two codes. This is indicated by

the switching symbols. So, for the first CNOT in Figure 1b we have

the choice to either switch qubit 1 from green to red code or, as

indicated, qubit 4 from red to green.

2.2 Resulting Problem
The process of switching between two codes introduces a non-

trivial overhead into a computation, and different approaches to

realize code switching have been proposed. It can be done by mea-

suring certain gauge operators of a common subsystem code of the

two codes in question [13, 14, 16, 17], which requires fault-tolerant

stabilizer measurements with flag circuits [30]. Recently, a different

technique has been proposed using doubled codes, which allows

for teleporting the logical information into the other code using

a one-way transversal CNOT [15, 31]. This requires fault-tolerant

preparation of a high-quality logical ancillary system, which intro-

duces additional overhead [32–34].

As a result, the frequency of switching operations directly in-

fluences both resource overheads and the overall logical error rate.

Consequently, a critical question arises at the logical level: how can
we minimize the total number of switches required in a computation?
While much of the existing research has focused on the physical

aspects of switching, the systematic optimization of switching pat-

terns for given quantum circuits remains unexplored.

Example 3. Consider Figure 1c, which realizes the same logical

circuit as the one in Figure 1b. However, this circuit utilizes the

degree of freedom that CNOT gates can be realized in either code.

In fact, performing all CNOT gates except the last one in the 2D

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

Cut

Edges with

infinite capacity

Edges with

capacity 1.0

Graph Node

Figure 2: Network of the circuit in Figure 1. Each qubit op-
eration is represented as a graph node. The terminal nodes,
depicted here as the green and red switches, represent the two
different codes. The dashed line represents the minimum cut
that separates the graph into two distinct subsets of nodes.

color code allows to reduce the number of switches from 6 to 4 (the

actual minimum), reducing the overhead associated with switching.

Finding such optimal switching configurations is a non-trivial

combinatorial challenge. Each possible assignment of logical qubits

to different codes can affect the number and placement of required

switches across multiple gates. As circuit size and connectivity

increase, the space of possible switching patterns grows rapidly.

Therefore, formally, we define:

Problem 1: Minimal Code Switching Problem

Input: Two quantum error correction codes with respective

transversal gate sets Γ1 and Γ2 as well as a circuit

composed of gates in Γ1 ∪ Γ2.
Problem: Determine the minimal number of switching oper-

ations and their locations required to execute the

circuit using the available transversal gate sets.

Note that there are some circuit structures for which solving

the minimal code switching problem is trivial. For example, the de-

composition of single-qubit rotations into 𝐻 - and 𝑇 -gates requires

potentially long sequences of alternating applications of 𝐻 and

𝑇 [35]. In such decompositions, the minimum number of switches

is obvious, as one has to switch after basically every gate. The opti-

mization potential lies in the part of the circuit that contains gates

that can be performed in either code. In the following, we show

how to exploit this optimization potential in polynomial time.

3 Solving Minimal Switching with Min-Cut
In this section, we demonstrate how to reduce the minimal code

switching problem to solving an instance of the min-cut problem.

To lay the groundwork for this reduction, we will first review the

necessary background on min-cut. Afterwards, the proposed solu-

tion, as well as possible extensions, are described in detail.

3.1 Min-Cut
A network is a (directed) graph 𝐺 = (𝑉 , 𝐸, 𝑐), 𝐸 ⊆ 𝑉 × 𝑉 with

nodes 𝑠, 𝑡 ∈ 𝑉 (often referrred to as source and sink) together with
a capacity function 𝑐 : 𝐸 → R. An 𝑠-𝑡 cut is a partition of 𝑉

into disjoint subsets 𝐶 = (𝑆,𝑇) with 𝑆 ⊔ 𝑇 = 𝑉 and a cut set

𝐸𝐶 = (𝑆 × 𝑇) ∩ 𝐸 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . In other words,

removing 𝐸𝐶 from 𝐸 yields a graph𝐺 ′ = (𝑉 , 𝐸 \𝐸𝐶) such that there

is no path from 𝑠 to 𝑡 in𝐺 ′
. The cost 𝑐 (𝐶) of a cut is the sum of the

capacities of edges in the cut, i.e.,

𝑐 (𝐶) =
∑︁
𝑒∈𝐸𝐶

𝑐 (𝑒).

There are usually many ways to construct an 𝑠-𝑡 cut. A minimum
cut (or min-cut) is a cut with minimal costs.

The minimum 𝑠-𝑡 cut problem is well studied especially due to its

connection tomaximumflow in flownetworks [26, 36, 37], and there

are numerous algorithms that solve the min-cut problem efficiently

in 𝑂 (|𝑉 | · |𝐸 |2) [38], 𝑂 (|𝑉 |2 · |𝐸 |) [39], or 𝑂 (|𝑉 |2 ·
√︁
|𝐸 |) [40] time,

and more efficient algorithms for specific classes of graphs have

been developed as well [41].

3.2 Reducing Minimal Code Switching to
Min-Cut

To utilize min-cut solutions for the code switching problem, we

first represent the input circuit as a graph.

Suppose we have a code-switching protocol between two codes

supporting gate sets Γ1 and Γ2. Let the circuit be

C = 𝑔𝑚 ◦ 𝑔𝑚−1 ◦ · · · ◦ 𝑔1,
where each gate 𝑔𝑖 ∈ Γ = Γ1 ∪ Γ2 acts on some subset of 𝑛 qubits.

We construct a network 𝐺 = (𝑉 , 𝐸, 𝑐) as follows:
(1) Add source and sink nodes. Create two special nodes 𝑠 and 𝑡

representing the two codes that qubits can be assigned to.

(2) Add gate–qubit nodes. For every gate 𝑔𝑖 and every qubit 𝑞 𝑗
it acts on, create a node

𝑣 (𝑔𝑖 , 𝑞 𝑗) ∈ 𝑉 .

(3) Add temporal edges. For each qubit 𝑞, connect the nodes

corresponding to consecutive gates acting on 𝑞. Add edges

in both directions with capacity 1:

(𝑣 (𝑔𝑖 , 𝑞), 𝑣 (𝑔𝑘 , 𝑞)) and (𝑣 (𝑔𝑘 , 𝑞), 𝑣 (𝑔𝑖 , 𝑞)) .
(4) Add gate edges. For every gate 𝑔 acting on qubits 𝑄 (𝑔) =

{𝑞1, . . . , 𝑞𝑘 }:
• If 𝑔 ∈ Γ1 \ Γ2: connect each 𝑣 (𝑔, 𝑞) ∈ 𝑄 (𝑔) to 𝑠 (and

vice versa) with infinite capacity.
• If 𝑔 ∈ Γ2 \ Γ1: connect each 𝑣 (𝑔, 𝑞) ∈ 𝑄 (𝑔) to 𝑡 (and

vice versa) with infinite capacity.
• In all cases, qubits acted on by the same gate must be in

the same code. Connect all nodes {𝑣 (𝑔, 𝑞) : 𝑞 ∈ 𝑄 (𝑔)}
to each other with infinite-capacity edges.

Example 4. Applying the procedure above to the circuit in Figure 1
results in the graph depicted in Figure 2. Here, Γ1 = {𝐻,CNOT} and
Γ2 = {𝑇,CNOT}. We see that the nodes corresponding to 𝐻 gates

are connected to the node representing the two-dimensional color

code (green), and the nodes corresponding to𝑇 gates are connected

to the node representing the three-dimensional color code (red).

Given this graph-based representation of the circuit, the opti-

mization task described in Problem 1 can be formulated as a graph

partitioning problem: determining how to divide the graph into two

subsets with the minimal number of cuts, which can be solved using

Erik Weilandt, Tom Peham, and Robert Wille

1.0

1.01.0

(a)

0.83

1.01.0

temporal edge
source/ sink

(b)

1.0

1.0 0.2

0.2

0.1

0.1

1.0

min-cut
bias edge

(c)

Figure 3: Modeling extensions to the min-cut formulation
and resulting impact on the min-cut. (a) One-way transversal
CNOT: cutting only a single edge separates source from sink.
(b) Prefer switching during qubit idling: a lower weight for
idling edges pushes the min-cut algorithm to include these
edges in the min-cut. (c) Code bias: adding additional bias
edges and choosing capacities such that cutting bias edges of
the 3D code results in lower overall costs, results in min-cuts
that put more gate nodes on the 2D color code side of the cut.

a min-cut algorithm. The resulting subsets indicate which nodes

belong to which terminal, or equivalently, which qubit operations

should be executed in which code. Since cuts are only allowed along

unit-capacity edges, i.e., before or after a gate, the resulting cut size

directly corresponds to the number of required code switches, i.e.,

𝑐 (𝐶) = |𝐸𝐶 |. The code switching locations are then determined by

the cut temporal edges corresponding to positions in the circuit

between gates.

Example 5. Consider the cut in Figure 2 (indicated by a dashed

line). All graph nodes below belong to the red code, and all nodes

above to the green code, respectively. Each time the cut crosses a

blue edge, it indicates a required cut of the edge, separating the

two connected graph nodes, or in other words, a switching oper-

ation from one code to another between the two gate operations

connected by the edge. This solution coincides with the solution

shown in Figure 1c c).

3.3 Extensions to the Min-Cut Model
The min-cut formulation introduced above can be extended to

incorporate additional aspects of the compilation process, enabling

further optimization in terms of both space and time overhead.

For instance under specific conditions, CNOT operations can be

implemented transversally even when the control and target qubits

are encoded in different codes [15, 31]. This property, however, is

directional. In the 2D-3D color code scheme, it holds only when the

control qubit is encoded in the 3D color code and the target qubit

in the 2D color code
1
.

To accurately model the one-way gates between different codes

in the graph representation, we remove one of the two infinite-

capacity edges in the encoding of CNOT gates. The cut set of an s-t

cut removes edges so that no path from s to t exists. Paths from t

to s are still allowed. If the edge is directed from control (source) to

target (sink), then the cut must separate these terminals. Conversely,

1
The direction depends on the exact definition of the 3D color code since the 𝑋 - and

𝑍 -stabilizers are not symmetric, but it is always only one-way.

if the edge is directed from target to control, no path exists from

source to sink, and no cut is needed. Thus, this modification does

not introduce unnecessary cuts—it merely avoids adding cuts where

they are not required, preserving the minimality of the solution.

Example 6. Figure 3a shows the effect of this directed constraint.

The CNOT nodes are connected by a directed edge that goes from

the control node to the target node. In this setup, the control node

is associated with a 3D color code (sink node), while the target node

is associated with a 2D color code (source node). In this example,

the source (green) can be separated from the sink (red) by cutting

a single edge. Since the edge between the nodes involved in the

CNOT is directed, no path exists from source to sink in the resulting

graph. If the CNOT edge were bidirectional, at least one more edge

would need to be cut.

As a result, circuits that exploit these one-way transversal in-

teractions can achieve further reductions in switching overhead

without requiring changes to the underlying optimization proce-

dure.

Besides theminimal number of switching operations, themin-cut

framework can also be extended to optimize additional circuit met-

rics. Consider, for example, the time overhead involved in realizing

a code switching operation. While code switching via transver-

sal CNOTs has low overhead for the actual switching operations

compared to switching via gauge measurements, it still requires

fault-tolerant preparation of an ancilla, which must be completed

before the switching takes place. Due to this time overhead, it

might be beneficial to perform switching operations during qubit

idling. We can achieve this behaviour by adding an idling bonus
to certain temporal edges. Specifically, temporal edges connecting

consecutive nodes of an idling qubit are assigned a slightly reduced

capacity.

Example 7. Consider the circuit in Figure 3 in which qubit 0 is

idling for one single-qubit gate operation. By assigning a lower

capacity of 0.83 to the edge connecting the node representing the

𝑇 -gate and the control of the CNOT gate as shown in Figure 3b,

the min-cut now has to cut this idling edge. Performing the switch

on the idling qubit 0 results in an overall shallower circuit as the

switching can already start during the execution of the 𝐻 gate on

qubit 1.

When altering edge capacities in such a way, care must be taken

so that the resulting min-cut does not lead to an increase in code

switching operations compared to uniform temporal edge capacities.

If the capacities are too low, then cutting more low-capacity edges

might have an overall lower cost than cutting fewer edges with

higher capacity. In the following, we briefly argue that the idling

capacities can be chosen such that the cost of the resulting min-cut

is still determined by the number of cut temporal edges.

If 𝐸temp ⊂ 𝐸 is the number of temporal edges, and 𝑡
idle

(𝑒) is the
number of time steps the respective qubit idles between the gate

nodes connected by 𝑒 , then the capacity of a temporal edge 𝑒 is

𝑐 (𝑒) = 1 − 𝑡
idle

(𝑒)
|𝐸temp | (𝑡idle (𝑒) + 1)

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

200 400 600 800 1000
Number of Qubits

0

200

400

600

800

Av
er

ag
e

ru
nt

im
e

[s
]

evenly distributed
CNOT-heavy

Figure 4: Average runtime of the proposed compilationmeth-
ods across different circuit sizes and gate distributions.

The cost 𝑐 (𝐶) of the cut 𝐸𝐶 is then given by

𝑐 (𝐸𝐶) =
∑︁
𝑒∈𝐸𝐶

𝑐 (𝑒) =
∑︁
𝑒∈𝐸𝐶

(
1 − 𝑡

idle
(𝑒)

|𝐸temp | (𝑡idle (𝑒) + 1)

)
= |𝐸𝐶 | −

©­«
∑︁
𝑒∈𝐸𝐶

𝑡
idle

(𝑒)
|𝐸temp | (𝑡idle (𝑒) + 1)

ª®¬ .
Now, since the size of the cut is at most as big as the set of all

temporal edges, i.e., |𝐸𝐶 | ≤ |𝐸temp |, we can bound the second term

as

0 ≤
∑︁
𝑒∈𝐸𝐶

𝑡
idle

(𝑒)
|𝐸temp | (𝑡idle (𝑒) + 1) <

∑︁
𝑒∈𝐸𝐶

1

|𝐸temp |
≤ 1,

and therefore

|𝐸𝐶 | ≥ 𝑐 (𝐸𝐶) > |𝐸𝐶 | − 1.

This means that the cost of the cut is still determined by the number

of temporal edges in the cut, and the influence of the idling bonus

on the overall cost can never make up for cutting an additional edge.

The idling bonus thus encodes the notion that performing switches

during idle periods is “cheaper” in terms of circuit depth without

sacrificing minimality with respect to the number of switches.

Another aspect to consider when determining suitable code

switching locations is whether one of the codes involved is prefer-

able to the other. For example, the 3D color code has a higher code

capacity threshold (for one type of error) than the 2D color code [42,

43]. It seems intuitive that the 3D color code would also exhibit

a higher circuit-level threshold, due to the higher weight of the

stabilizer generators that need to be measured. Since the minimal

solution to the min-cut problem on the network is not necessarily

unique, it may be preferable to choose a cut that performs more op-

erations in the 2D code in this scenario. It might even be beneficial

to allow for slightly more switches if one can perform substantially

more operations in the preferred code.

To embed this bias into the graph model, we introduce a new

type of edge, referred to as bias edges. Every node representing

an operation that can be executed in either code is connected to

both the source and the sink via a bias edge. A bias edge connected

to the source (corresponding to the preferable code) is assigned a

slightly higher capacity than its counterpart connected to the sink.

Because every such node is connected to both source and sink, any

200 400 600 800 1000
Number of Qubits

0

50000

100000

150000

200000

250000

300000

Av
er

ag
e

Sw
itc

h
Nu

m
be

r

evenly distributed
CNOT-heavy

Figure 5: Average number of minimal switching operations
across different circuit sizes and gate distributions.

min-cut in this modified graph needs to cut one of the bias edges.

By assigning a higher capacity to the preferred code, the min-cut

is therefore skewed towards cutting bias edges connected to the

node of the less desirable code and, therefore, performing more

operations in the preferred code.

Example 8. Consider the example circuit in Figure 3 again. Fig-

ure 3c shows the corresponding network of this circuit using bias

edges. Bias edges connected to the 2D color code have a bias of 0.2,

while bias edges connected to the 3D color code have a bias of 0.1.

The min-cut, therefore, cuts the edge on qubit 0 as well as the bias

edge connecting the CNOT nodes to the 3D color code node. This

corresponds to switching qubit 0 into the 2𝐷 color code.

By picking capacities for these bias edges that are only a small

fraction of those of temporal edges, it can be ensured that they

influence the optimization without dominating it. Importantly, the

algorithm must still cut temporal edges to produce a valid solution;

it cannot minimize the cost solely by cutting bias edges, which

means that a switching scheme can still be extracted from the cut in

this modified network. However, depending on the capacity of the

bias edges, a min-cut in this modified network might correspond

to more switching operations if a significant amount of bias edges

can be cut instead.

4 Evaluations
We implemented the proposed min-cut-based approach to solving

the minimal code switching problem in Python within an existing

open-source quantum compilation framework. For finding the min-

cut, we used the open-source graph library NetworkX [44].

4.1 Experimental Setup
To evaluate the proposed approach across a broad spectrum of

benchmark circuits, we generate quantum circuits using gates from

the set {𝐻,𝑇 ,CNOT} as well as the identity gate, for varying circuit
sizes. We assume a switching scheme using 2D and 3D color codes

with transversal gate sets {𝐻,𝐶𝑁𝑂𝑇 } and {𝑇,𝐶𝑁𝑂𝑇 }, respectively.
Because this setting allows for one-way transversal CNOTs, they are

modeled in the respective graphs by default. When generating the

circuits, each gate has a predefined probability of being applied to a

qubit at each step, with the constraint that, except for the identity,

Erik Weilandt, Tom Peham, and Robert Wille

Table 1: Relative reduction in circuit depth achieved when
incorporating idling time into the capacity of temporal edges
compared to uniform capacities.

#Qubits Relative Saving (%) Relative Std (%)

64 5.25 3.92

128 4.79 2.02

256 5.56 1.55

512 5.41 0.97

the same gate cannot be applied twice in a row. We construct two

circuit classes: evenly distributed circuits, containing 15% each of

𝐻 , 𝑇 , and CNOT gates, and CNOT-heavy circuits, containing 10%

𝐻 and 𝑇 gates, and 30% CNOT gates.

For performance benchmarking, we evaluated circuits with qubit

counts ranging from 𝑛 = 64 to 𝑛 = 1024, sampling 2𝑛 gates per

qubit. For each qubit count, we generate 100 circuits with an even

gate distribution and 100 CNOT-heavy circuits. To further evaluate

extensions to our model (e.g., bias edges or idling bonuses), an

additional 1000 circuits were generated with 𝑛 = 128 qubits and 2𝑛

gates per qubit sampled from the even gate distribution.

All experiments were conducted on an Ubuntu 20.04 system

equipped with an AMD Ryzen Threadripper PRO 5955WX CPU (16

cores, 32 threads, 4.0–4.5 GHz) and 128 GB of DDR4 RAM.

4.2 Performance Evaluation
Figure 4 shows the average runtime for computing the minimal

number of code switching operations on the generated circuits.

Even for circuits with 1024 qubits and approximately a million

gates, the algorithm still only takes about 800 s. This can potentially

be further optimized by using a more efficient implementation

of the min-cut algorithm. Moreover, it can be observed that the

runtime is influenced by the circuit structure. CNOT-heavy circuits—

involving more gates that can be executed in either code—exhibit

longer runtimes than circuits containing more𝐻 and𝑇 gates, which

restrict code choices and reduce combinatorial complexity.

Figure 5 shows the average number of minimal switches required

for the considered benchmark circuits. Evenly distributed circuits

need roughly twice as many code switching operations as CNOT-

heavy circuits. This is because a larger fraction of consecutive

single-qubit gates (𝐻 and 𝑇) results in more unavoidable switching

locations, limiting optimization potential.

4.3 Idling Qubits and Code Bias
In a second series of evaluations, we explore the potential for reduc-

ing circuit depth by incorporating an idle bonus on temporal edges

representing idling qubits. To evaluate the impact of this extension

on the considered circuits, we compare the depth of circuits with

and without idling bonus as discussed in Section 3.3. The specific

time requirement for code switching ultimately depends on the

specific code switching scheme in use, as well as other factors such

as the specific hardware platform. In our evaluations, we assume

that each switch takes longer than a logical single-qubit gate but

no longer than two consecutive logical single-qubit operations in

our simulations.

0 1 2 3 4 5 6 7 8 9
Number of Additional Switches

0

500

1000

1500

2000

2500

3000

Ab
so

lu
te

 N
um

be
r o

f A
dd

iti
on

al
No

de
s i

n
Bi

as
ed

 C
od

e

Temporal-Bias
Edge Ratio

0.001
0.01
0.1

Figure 6: Boxplot illustrating the number of additional nodes
in the 2D color code when allowing for extra switching oper-
ations compared to the optimal solution.

The average circuit depth reduction achieved through idle-based

optimization under this assumption on circuits using an even dis-

tribution of gates is shown in Table 1. Across different numbers of

qubits, the depth saving is about 5% even under this very optimistic

assumption. If switching takes longer, incorporating qubit idling

into the choice of switching locations will have an even greater

impact. Moreover, the results confirm that including this aspect

in the proposed approach does not violate the minimality of the

solution.

Finally, we examine how varying the ratio between the capacities

of temporal and bias edges affects the trade-off between preserving

optimality and reducing the number of nodes assigned to the 3D

color code. Figure 6 shows how additional switching operations

(x-axis) influence the number of extra nodes in the biased code

(y-axis). We compute the min-cut for circuits using ratios 0.1, 0.01,

and 0.001. The capacity of the bias edges for the 2D color code

is chosen as twice as large as the bias for the 3D color code. The

results demonstrate that a single additional switching operation can

lead to several hundred nodes shifting from the 3D to the 2D color

code. Smaller ratios result in a larger trade-off. This is expected,

as the cost of a single additional temporal edge in the cut must be

compensated for by more biased edges. If the ratio is 0.01, one cut

of a temporal edge results in at least 100 more cuts on bias edges.

Interestingly, no change in the number of operations in the 2D

color code can be observed, i.e., the min-cut without modeling code

bias already maximizes the number of CNOTs performed in the 2D

code. This is because the min-cut implementation we used puts the

majority of nodes on the source side of the cut by default, and we

represent the 2D color code as the source node.

5 Conclusion
In this work, we investigated the minimal code switching problem

for quantum circuits and demonstrated how it can be solved effi-

ciently by reducing it to the minimum 𝑠-𝑡-cut problem. We also

showed how additional circuit metrics can be incorporated into the

min-cut framework and optimized simultaneously. Furthermore,

we implemented and evaluated the proposed solution on a large

number of benchmarks to demonstrate its scalability to circuits

with up to 1024 qubits and approximately a million gates, as well as

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

how extensions such as code bias and idle-aware switching enable

meaningful trade-offs between minimal switching, circuit depth,

and code preferences.

The runtime efficiency of our approachmakes it a good candidate

for use as a cost function in quantum circuit optimization. Given a

choice of different circuits implementing the same unitary, one can

quickly evaluate which one requires the fewest switches, or which

one realizes a preferable compromise between switching overhead

and other circuit-level metrics.

This work constitutes a significant advancement in the compi-

lation of code-switching-based fault-tolerant quantum computing.

We view our contributions as complementary to advancements in

decoding and physical-level implementations of code switching,

and we expect that the proposed techniques will help in evaluat-

ing the practicality of code switching as a candidate for universal

fault-tolerant quantum computation.

Acknowledgements
The authors would like to thank Sascha Heußen for insightful discussions

and comments.

The authors acknowledge funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation

program (grant agreement No. 101001318) and Millenion (grant agreement

No. 101114305). This work was part of the Munich Quantum Valley, which is

supported by the Bavarian state government with funds from the Hightech

Agenda Bayern Plus. This work was funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation, No. 563402549).

References
[1] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-

tion. Cambridge University Press, 2010.

[2] A. M. Dalzell et al. Quantum algorithms: A survey of applications and end-to-end
complexities. 2025. doi: 10.1017/9781009639651. arXiv: 2310.03011 [quant-ph].

[3] A. Y. Kitaev. “Fault-tolerant quantum computation by anyons”. In: Ann. Phys.
303.1 (2003), pp. 2–30. doi: 10.1016/S0003-4916(02)00018-0.

[4] P. Shor. “Fault-tolerant quantum computation”. In: Proc. 37th Conf. Found.
Comput. Sci. 1996, pp. 56–65. doi: 10.1109/SFCS.1996.548464.

[5] D. Gottesman. “Theory of fault-tolerant quantum computation”. In: Phys. Rev.
A 57.1 (1998), pp. 127–137. doi: 10.1103/PhysRevA.57.127.

[6] B. Eastin and E. Knill. “Restrictions on Transversal Encoded Quantum Gate

Sets”. In: Phys. Rev. Lett. 102.11 (2009), p. 110502. doi: 10.1103/PhysRevLett.102.
110502.

[7] C. Gidney, N. Shutty, and C. Jones. Magic state cultivation: growing T states as
cheap as CNOT gates. 2024. doi: 10.48550/arXiv.2409.17595. arXiv: 2409.17595.
Pre-published.

[8] K. Sahay et al. Fold-transversal surface code cultivation. 2025. doi: 10.48550/
arXiv.2509.05212. arXiv: 2509.05212 [quant-ph]. Pre-published.

[9] Y. Vaknin et al. Efficient Magic State Cultivation on the Surface Code. 2025. doi:
10.48550/arXiv.2502.01743. arXiv: 2502.01743 [quant-ph]. Pre-published.

[10] S. Bravyi and A. Kitaev. “Universal quantum computation with ideal Clifford

gates and noisy ancillas”. In: Phys. Rev. A 71.2 (2005), p. 022316. doi: 10.1103/

PhysRevA.71.022316.

[11] S. Bravyi and J. Haah. “Magic-state distillation with low overhead”. In: Phys.
Rev. A 86.5 (2012), p. 052329. doi: 10.1103/PhysRevA.86.052329.

[12] D. Litinski. “Magic State Distillation: Not as Costly as You Think”. In: Quantum
3 (2019), p. 205. doi: 10.22331/q-2019-12-02-205.

[13] M. E. Beverland, A. Kubica, and K. M. Svore. “Cost of Universality: A Compara-

tive Study of the Overhead of State Distillation and Code Switching with Color

Codes”. In: PRX Quantum 2.2 (2021), p. 020341. doi: 10.1103/PRXQuantum.2.

020341.

[14] F. Butt et al. “Fault-Tolerant Code-Switching Protocols for Near-Term Quantum

Processors”. In: PRX Quantum 5.2 (2024), p. 020345. doi: 10.1103/PRXQuantum.

5.020345.

[15] S. Heußen and J. Hilder. “Efficient fault-tolerant code switching via one-way

transversal CNOT gates”. In: Quantum 9 (2025), p. 1846. doi: 10.22331/q-2025-

09-03-1846.

[16] A. Kubica and M. E. Beverland. “Universal transversal gates with color codes:

A simplified approach”. In: Phys. Rev. A 91.3 (2015), p. 032330. doi: 10.1103/

PhysRevA.91.032330.

[17] H. Bombín. “Gauge color codes: optimal transversal gates and gauge fixing

in topological stabilizer codes”. In: New J. Phys. 17.8 (2015), p. 083002. doi:

10.1088/1367-2630/17/8/083002.

[18] D. Horsman et al. “Surface code quantum computing by lattice surgery”. In:

New J. Phys. 14.12 (2012), p. 123011. doi: 10.1088/1367-2630/14/12/123011.
[19] D. Litinski. “A Game of Surface Codes: Large-Scale Quantum Computing with

Lattice Surgery”. In: Quantum 3 (2019), p. 128. doi: 10.22331/q-2019-03-05-128.

[20] A. J. Landahl and C. Ryan-Anderson. Quantum computing by color-code lattice
surgery. 2014. doi: 10.48550/arXiv.1407.5103. arXiv: 1407.5103 [quant-ph].
Pre-published.

[21] D. B. Tan, M. Y. Niu, and C. Gidney. “A SAT Scalpel for Lattice Surgery: Repre-

sentation and Synthesis of Subroutines for Surface-Code Fault-Tolerant Quan-

tum Computing”. In: International Symposium on Computer Architecture. 2024,
pp. 325–339. doi: 10.1109/ISCA59077.2024.00032.

[22] L. S. Herzog et al. Lattice Surgery Compilation Beyond the Surface Code. 2025.
doi: 10.48550/arXiv.2504.10591. arXiv: 2504.10591 [quant-ph]. Pre-published.

[23] G. Watkins et al. “A High Performance Compiler for Very Large Scale Surface

Code Computations”. In: Quantum 8 (2024), p. 1354. doi: 10.22331/q-2024-05-

22-1354.

[24] M. Beverland, V. Kliuchnikov, and E. Schoute. “Surface Code Compilation via

Edge-Disjoint Paths”. In: PRX Quantum 3.2 (2022), p. 020342. doi: 10.1103/

PRXQuantum.3.020342.

[25] L. Lao et al. “Mapping of lattice surgery-based quantum circuits on surface code

architectures”. In:Quantum Sci. Technol. 4.1 (2018), p. 015005. doi: 10.1088/2058-
9565/aadd1a.

[26] G. B. Dantzig and D. R. Fulkerson. “On the max-flow min-cut theorem of

networks”. In: Linear inequalities and related systems. Princeton University

Press, 1957, pp. 215–222. doi: doi:10.1515/9781400881987-013.

[27] R. Wille et al. The MQT Handbook: A Summary of Design Automation Tools and
Software for Quantum Computing. 2024. arXiv: 2405.17543. Pre-published.

[28] H. Bombin and M. A. Martin-Delgado. “Topological Quantum Distillation”. In:

Phys. Rev. Lett. 97.18 (2006), p. 180501. doi: 10.1103/PhysRevLett.97.180501.
[29] H. Bombin and M. A. Martin-Delgado. “Exact Topological Quantum Order in

D=3 and Beyond: Branyons and Brane-Net Condensates”. In: Physical Review
B 75.7 (2007), p. 075103. doi: 10 . 1103 /PhysRevB . 75 . 075103. arXiv: cond -

mat/0607736.

[30] C. Chamberland and M. E. Beverland. “Flag fault-tolerant error correction with

arbitrary distance codes”. In: Quantum 2 (2018), p. 53. doi: 10.22331/q-2018-02-

08-53.

[31] M. Sullivan. “Code conversion with the quantum Golay code for a universal

transversal gate set”. In: Phys. Rev. A 109.4 (2024), p. 042416. doi: 10.1103/

PhysRevA.109.042416.

[32] D. Forlivesi and D. Amaro. Flag at origin: a modular fault-tolerant preparation for
CSS codes. 2025. doi: 10.48550/arXiv.2508.14200. arXiv: 2508.14200 [quant-ph].
Pre-published.

[33] R. Zen et al. “Quantum Circuit Discovery for Fault-Tolerant Logical State Prepa-

ration with Reinforcement Learning”. In: Phys. Rev. X 15.4 (2025), p. 041012.

doi: 10.1103/gqpr-dgz7.

[34] T. Peham et al. “Automated Synthesis of Fault-Tolerant State Preparation

Circuits for Quantum Error-Correction Codes”. In: PRX Quantum 6.2 (2025),

p. 020330. doi: 10.1103/PRXQuantum.6.020330.

[35] A. Y. Kitaev. “Quantum computations: algorithms and error correction”. In: Russ.
Math. Surv. 52.6 (1997), p. 1191. doi: 10.1070/RM1997v052n06ABEH002155.

[36] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University Press,

1962. doi: doi:10.1515/9781400875184.

[37] R. E. Tarjan. “Algorithms for maximum network flow”. In: Netflow at Pisa.
Springer, 1986, pp. 1–11. doi: 10.1007/BFb0121085.

[38] J. Edmonds and R. M. Karp. “Theoretical Improvements in Algorithmic Effi-

ciency for Network Flow Problems”. In: Journal of the ACM 19.2 (1972), pp. 248–

264. doi: 10.1145/321694.321699.

[39] E. A. Dinic. “Algorithm for solution of a problem of maximal flow in a network

with power estimation”. In: 1970.

[40] A. V. Goldberg and R. E. Tarjan. “A new approach to the maximum-flow

problem”. In: Journal of the ACM 35.4 (1988), pp. 921–940. doi: 10.1145/48014.

61051.

[41] J. B. Orlin. “Max flows in O(nm) time, or better”. In: Symp. on Theory of Com-
puting. 2013, pp. 765–774. doi: 10.1145/2488608.2488705.

[42] A. Kubica et al. “Three-Dimensional Color Code Thresholds via Statistical-

Mechanical Mapping”. In: Phys. Rev. Lett. 120.18 (2018), p. 180501. doi: 10.1103/
PhysRevLett.120.180501.

[43] M. Ohzeki. “Accuracy thresholds of topological color codes on the hexagonal

and square-octagonal lattices”. In: Phys. Rev. E 80.1 (2009), p. 011141. doi:

10.1103/PhysRevE.80.011141.

[44] M. E. J. Newman. “The Structure and Function of Complex Networks”. In: SIAM
Review 45.2 (2003), pp. 167–256. doi: 10.1137/S003614450342480.

https://doi.org/10.1017/9781009639651
https://arxiv.org/abs/2310.03011
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.48550/arXiv.2409.17595
https://arxiv.org/abs/2409.17595
https://doi.org/10.48550/arXiv.2509.05212
https://doi.org/10.48550/arXiv.2509.05212
https://arxiv.org/abs/2509.05212
https://doi.org/10.48550/arXiv.2502.01743
https://arxiv.org/abs/2502.01743
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PRXQuantum.5.020345
https://doi.org/10.1103/PRXQuantum.5.020345
https://doi.org/10.22331/q-2025-09-03-1846
https://doi.org/10.22331/q-2025-09-03-1846
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.48550/arXiv.1407.5103
https://arxiv.org/abs/1407.5103
https://doi.org/10.1109/ISCA59077.2024.00032
https://doi.org/10.48550/arXiv.2504.10591
https://arxiv.org/abs/2504.10591
https://doi.org/10.22331/q-2024-05-22-1354
https://doi.org/10.22331/q-2024-05-22-1354
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1088/2058-9565/aadd1a
https://doi.org/10.1088/2058-9565/aadd1a
https://doi.org/doi:10.1515/9781400881987-013
https://arxiv.org/abs/2405.17543
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevB.75.075103
https://arxiv.org/abs/cond-mat/0607736
https://arxiv.org/abs/cond-mat/0607736
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevA.109.042416
https://doi.org/10.1103/PhysRevA.109.042416
https://doi.org/10.48550/arXiv.2508.14200
https://arxiv.org/abs/2508.14200
https://doi.org/10.1103/gqpr-dgz7
https://doi.org/10.1103/PRXQuantum.6.020330
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/doi:10.1515/9781400875184
https://doi.org/10.1007/BFb0121085
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1103/PhysRevLett.120.180501
https://doi.org/10.1103/PhysRevLett.120.180501
https://doi.org/10.1103/PhysRevE.80.011141
https://doi.org/10.1137/S003614450342480

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Code Switching
	2.2 Resulting Problem

	3 Solving Minimal Switching with Min-Cut
	3.1 Min-Cut
	3.2 Reducing Minimal Code Switching to Min-Cut
	3.3 Extensions to the Min-Cut Model

	4 Evaluations
	4.1 Experimental Setup
	4.2 Performance Evaluation
	4.3 Idling Qubits and Code Bias

	5 Conclusion

