Minimizing the Number of Code Switching Operations
in Fault-Tolerant Quantum Circuits

Erik Weilandt
erik. weilandt@tum.de
Chair for Design Automation
Technical University of Munich
Germany

Abstract

Fault-tolerant quantum computers rely on Quantum Error-Correcting
Codes (QECCs) to protect information from noise. However, no sin-
gle error-correcting code supports a fully transversal and therefore
fault-tolerant implementation of all gates required for universal
quantum computation. Code switching addresses this limitation
by moving quantum information between different codes that, to-
gether, support a universal gate set. Unfortunately, each switch is
costly—adding time and space overhead and increasing the logical
error rate. Minimizing the number of switching operations is, there-
fore, essential for quantum computations using code switching. In
this work, we study the problem of minimizing the number of code
switches required to run a given quantum circuit. We show that this
problem can be solved efficiently in polynomial time by reducing
it to a minimum-cut instance on a graph derived from the circuit.
Our formulation is flexible and can incorporate additional consid-
erations, such as reducing depth overhead by preferring switches
during idle periods or biasing the compilation to favor one code over
another. To the best of our knowledge, this is the first automated
approach for compiling and optimizing code-switching-based quan-
tum computations at the logical level.

1 Introduction

Quantum computing [1] offers substantial speedups for certain clas-
sically hard tasks [2]. However, the noisy nature of physical qubits
requires the use of Quantum Error Correction Codes (QECCs) [3-5]
to protect information during a computation. Furthermore, compu-
tations have to be performed fault-tolerantly to avoid small errors
from affecting large parts of the encoded system.

One way to realize fault-tolerant computations is via transversal
gates, where logical gates are performed on an encoded system
by acting on each qubit individually, thus preventing errors from
spreading uncontrollably. Unfortunately, no QECC with an en-
coded universal transversal gate set exists [6], which means that
the transversal gates of a code can only be used for restricted com-
putations, which are not sufficient to solve problems of interest.

Two prominent proposals for overcoming these restrictions are:

o Magic-state cultivation [7-9] and distillation (MSD) [10-12],
in which multiple noisy states are iteratively refined to
produce fewer, higher-fidelity states that can then be used
to implement logical gates via gate teleportation, and

o Code switching [13-17], in which two QECCs with comple-
mentary transversal gate sets are used and logical qubits
are switched between them as needed.

Tom Peham
tom.peham@tum.de
Chair for Design Automation
Technical University of Munich
Germany

Robert Wille
robert.wille@tum.de
Chair for Design Automation
Technical University of Munich
Munich Quantum Software Company
Germany

In the context of logical quantum circuit compilation where the
task is to translate a given quantum circuit into instructions that
can be executed for the target QECC and hardware platform, MSD-
based computation in conjunction with lattice surgery [18-20] has
been a very active research field and many advances in compila-
tion techniques have been made [21-25]. However, despite some
estimates showing that code switching may have lower overhead
than magic state distillation in certain regimes [13], compilation for
code switching-based fault-tolerant quantum computing has hardly
been investigated. While improvements have been made to reduce
the overhead of the switching protocols themselves [14, 15], to the
best of our knowledge, no work exists that aims at optimizing code
switching on the logical level.

We formalize the minimal code switching problem, which aims to
identify the minimum number of code switches neededthroughout
the execution of a circuit. Because the gate sets supported by the
different QECCs involved in the code switching scheme are not
necessarily disjoint, i.e., there are some gates that can be executed
in either code, it is not immediately clear when and where qubits
should be switched to avoid unnecessary switching operations. We
show that this optimization problem can be solved in polynomial
time by reducing it to the minimum cut problem [26]. Furthermore,
we demonstrate that the min-cut formulation is highly flexible
as it can be extended to incorporate one-way CNOTs between
the QECCs, optimize circuit depth, and encode preferences for
prioritizing one code over the other.

We implemented the proposed min-cut and heuristic approaches
to the minimum code switching problem as part of the open source
Munich Quantum Toolkit (MQT) [27] (at https://github.com/munich-
quantum-toolkit/qecc) and conducted a series of empirical eval-
uations on circuits up to 1024 qubits and millions of gates. The
evaluations show that the minimum code switching problem can
be solved in a moderate amount of time, even for circuits with up
to 1024 qubits and millions of gates. We furthermore demonstrate
that the proposed extensions to the min-cut approach allow the
compiler to reduce circuit depth while preserving minimality with
regard to the number of switching operations, and to trade a small
number of additional switches for executing thousands more gates
in a preferred code—an advantageous trade-off when the improved
performance of that code outweighs the extra switching cost.

This work constitutes an important step in the compilation of
code switching based fault-tolerant quantum computing. We hope
that future developments in code switching compilation further
help to evaluate when code switching might be preferable to MSD.

https://github.com/munich-quantum-toolkit/qecc
https://github.com/munich-quantum-toolkit/qecc

Erik Weilandt, Tom Peham, and Robert Wille

e A 0 {H- i o
H g 1: .: .1:
2: =: =2:
a» A 3: : -h . e 3:
g 1. i} e=— oo—aoniif +
o . : .5:

(@) (b)

(©

Figure 1: Minimal code switching: (a) Transversal gates of the 2D and 3D color codes. CNOT gates are transversal in both codes.
(b) Circuit implementation requiring 6 switching operations. (c) Minimal solution requiring only 4 switches.

The rest of this work is structured as follows. Section 2 provides
the necessary background on code switching and introduces the
minimal code switching problem. Section 3 shows how the minimal
code switching problem can be reduced to min-cut and shows how
the formulation can be extended to incorporate further features
into the compilation process. We evaluate the performance of the
proposed algorithm in Section 4 and demonstrate how the model
can be tweaked to trade off minimality against other optimization
criteria. Finally, Section 5 concludes this paper.

2 Background and Motivation

This section introduces and motivates the minimal code switching
problem. To do this, we first revise the relevant background on code
switching itself.

2.1 Code Switching

Different Quantum Error Correction Codes (QECCs) support distinct
sets of gates that can be implemented transversally. Transversal
gates, which act on individual physical qubits of different logical
code blocks, are inherently fault-tolerant as they do not spread
errors uncontrollably through a quantum circuit. Code switching
has been proposed as a technique that employs multiple QECCs
whose respective sets of transversal gates complement each other
to achieve universality. Logical qubits are dynamically transferred
between these codes depending on which gate needs to be applied;
in other words, the logical information is switched from one code
to the other. For the remainder of the paper, we consider the com-
bination of a 2D [28] and 3D color code [29] as a possible QECC
pair for code switching,.

Example 1. 2D color codes implement, among others, CNOT and
Hadamard gates transversally. On the other hand, 3D color codes
have CNOT and T gates in their transversal gate set. The union of
both sets provides a universal gate set {H, T, CNOT} as sketched
in Figure 1a.

Having identified two codes whose transversal gate sets comple-
ment each other, the next challenge is to leverage this combination
in an actual computation. Code switching allows a computation to
remain fault-tolerant throughout by temporarily encoding logical
qubits in the code that is needed for the next gate to be executed

transversally. In practice, this means the logical state must be trans-
ferred between codes whenever a gate outside the current code’s
transversal set is needed.

Example 2. Consider the input circuit shown in Figure 1b, which
has been synthesized to only contain gates from the universal gate
set. One can see that the single-qubit gates force the corresponding
logical qubits into the respective code: Logical qubits on which a
Hadamard gate acts have to be in the 2D color code (highlighted
in green), and conversely, T gates enforce the 3D color code (high-
lighted in red). Assuming that a CNOT operation forces both par-
ticipating qubits to be in the same code, we still have some degree
of freedom to choose between the two codes. This is indicated by
the switching symbols. So, for the first CNOT in Figure 1b we have
the choice to either switch qubit 1 from green to red code or, as
indicated, qubit 4 from red to green.

2.2 Resulting Problem

The process of switching between two codes introduces a non-
trivial overhead into a computation, and different approaches to
realize code switching have been proposed. It can be done by mea-
suring certain gauge operators of a common subsystem code of the
two codes in question [13, 14, 16, 17], which requires fault-tolerant
stabilizer measurements with flag circuits [30]. Recently, a different
technique has been proposed using doubled codes, which allows
for teleporting the logical information into the other code using
a one-way transversal CNOT [15, 31]. This requires fault-tolerant
preparation of a high-quality logical ancillary system, which intro-
duces additional overhead [32-34].

As a result, the frequency of switching operations directly in-
fluences both resource overheads and the overall logical error rate.
Consequently, a critical question arises at the logical level: how can
we minimize the total number of switches required in a computation?
While much of the existing research has focused on the physical
aspects of switching, the systematic optimization of switching pat-
terns for given quantum circuits remains unexplored.

Example 3. Consider Figure 1c, which realizes the same logical
circuit as the one in Figure 1b. However, this circuit utilizes the
degree of freedom that CNOT gates can be realized in either code.
In fact, performing all CNOT gates except the last one in the 2D

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

® Graph Node

W) Cut

— Edges with
capacity 1.0

— Edges with
infinite capacity

Figure 2: Network of the circuit in Figure 1. Each qubit op-
eration is represented as a graph node. The terminal nodes,
depicted here as the green and red switches, represent the two
different codes. The dashed line represents the minimum cut
that separates the graph into two distinct subsets of nodes.

color code allows to reduce the number of switches from 6 to 4 (the
actual minimum), reducing the overhead associated with switching.

Finding such optimal switching configurations is a non-trivial
combinatorial challenge. Each possible assignment of logical qubits
to different codes can affect the number and placement of required
switches across multiple gates. As circuit size and connectivity
increase, the space of possible switching patterns grows rapidly.
Therefore, formally, we define:

Problem 1: Minimal Code Switching Problem

Input: Two quantum error correction codes with respective
transversal gate sets I'1 and I'; as well as a circuit
composed of gates in I'1 U Iy.

Problem: Determine the minimal number of switching oper-

ations and their locations required to execute the
circuit using the available transversal gate sets.

Note that there are some circuit structures for which solving
the minimal code switching problem is trivial. For example, the de-
composition of single-qubit rotations into H- and T-gates requires
potentially long sequences of alternating applications of H and
T [35]. In such decompositions, the minimum number of switches
is obvious, as one has to switch after basically every gate. The opti-
mization potential lies in the part of the circuit that contains gates
that can be performed in either code. In the following, we show
how to exploit this optimization potential in polynomial time.

3 Solving Minimal Switching with Min-Cut

In this section, we demonstrate how to reduce the minimal code
switching problem to solving an instance of the min-cut problem.
To lay the groundwork for this reduction, we will first review the
necessary background on min-cut. Afterwards, the proposed solu-
tion, as well as possible extensions, are described in detail.

3.1 Min-Cut

A network is a (directed) graph G = (V,E,c), E € V XV with
nodes s, t € V (often referrred to as source and sink) together with
a capacity function ¢ : E — IR. An s-f cut is a partition of V
into disjoint subsets C = (S,T) with SU T = V and a cut set

Ec = (SXT)NEsuchthats € Sandt € T.In other words,
removing E¢ from E yields a graph G’ = (V, E\ E¢) such that there
is no path from s to t in G’. The cost ¢(C) of a cut is the sum of the
capacities of edges in the cut, i.e.,

e(C) = Z cle).

ecEc

There are usually many ways to construct an s-t cut. A minimum
cut (or min-cut) is a cut with minimal costs.

The minimum s-t cut problem is well studied especially due to its
connection to maximum flow in flow networks [26, 36, 37], and there
are numerous algorithms that solve the min-cut problem efficiently
in O(IV| - |EI*) [38], O(IV|* - |E]) [39]. or O(IV|? - |E) [40] time,
and more efficient algorithms for specific classes of graphs have
been developed as well [41].

3.2 Reducing Minimal Code Switching to
Min-Cut
To utilize min-cut solutions for the code switching problem, we
first represent the input circuit as a graph.
Suppose we have a code-switching protocol between two codes
supporting gate sets I'1 and I;. Let the circuit be

C=9gmogm-10---0g1,

where each gate g; € I' =T U I; acts on some subset of n qubits.
We construct a network G = (V, E, ¢) as follows:

(1) Add source and sink nodes. Create two special nodes s and ¢
representing the two codes that qubits can be assigned to.

(2) Add gate—qubit nodes. For every gate g; and every qubit g;
it acts on, create a node

Z)(gl', qj) evV.

(3) Add temporal edges. For each qubit g, connect the nodes
corresponding to consecutive gates acting on g. Add edges
in both directions with capacity 1:

(v(91>9)- v(gr- 9)) and (v(gk. 9)0(9i. 9))-
(4) Add gate edges. For every gate g acting on qubits Q(g) =
{q1, - qi}:

e If g € Iy \ I}: connect each v(g,q) € Q(g) to s (and
vice versa) with infinite capacity.

o If g € Iy \ I': connect each v(g,q) € Q(g) to t (and
vice versa) with infinite capacity.

o Inall cases, qubits acted on by the same gate must be in
the same code. Connect all nodes {v(g,q) : g € Q(9)}
to each other with infinite-capacity edges.

Example 4. Applying the procedure above to the circuit in Figure 1
results in the graph depicted in Figure 2. Here, I} = {H, CNOT} and
I, = {T,CNOT}. We see that the nodes corresponding to H gates
are connected to the node representing the two-dimensional color
code (green), and the nodes corresponding to T gates are connected
to the node representing the three-dimensional color code (red).

Given this graph-based representation of the circuit, the opti-
mization task described in Problem 1 can be formulated as a graph
partitioning problem: determining how to divide the graph into two
subsets with the minimal number of cuts, which can be solved using

@D source/ sink

— temporal edge
-

\>* bias edge
7 min-cut

(b) (©

Figure 3: Modeling extensions to the min-cut formulation
and resulting impact on the min-cut. (a) One-way transversal
CNOT: cutting only a single edge separates source from sink.
(b) Prefer switching during qubit idling: a lower weight for
idling edges pushes the min-cut algorithm to include these
edges in the min-cut. (c) Code bias: adding additional bias
edges and choosing capacities such that cutting bias edges of
the 3D code results in lower overall costs, results in min-cuts
that put more gate nodes on the 2D color code side of the cut.

a min-cut algorithm. The resulting subsets indicate which nodes
belong to which terminal, or equivalently, which qubit operations
should be executed in which code. Since cuts are only allowed along
unit-capacity edges, i.e., before or after a gate, the resulting cut size
directly corresponds to the number of required code switches, i.e.,
¢(C) = |Ec|. The code switching locations are then determined by
the cut temporal edges corresponding to positions in the circuit
between gates.

Example 5. Consider the cut in Figure 2 (indicated by a dashed
line). All graph nodes below belong to the red code, and all nodes
above to the green code, respectively. Each time the cut crosses a
blue edge, it indicates a required cut of the edge, separating the
two connected graph nodes, or in other words, a switching oper-
ation from one code to another between the two gate operations
connected by the edge. This solution coincides with the solution
shown in Figure 1c c).

3.3 Extensions to the Min-Cut Model

The min-cut formulation introduced above can be extended to
incorporate additional aspects of the compilation process, enabling
further optimization in terms of both space and time overhead.

For instance under specific conditions, CNOT operations can be
implemented transversally even when the control and target qubits
are encoded in different codes [15, 31]. This property, however, is
directional. In the 2D-3D color code scheme, it holds only when the
control qubit is encoded in the 3D color code and the target qubit
in the 2D color code!.

To accurately model the one-way gates between different codes
in the graph representation, we remove one of the two infinite-
capacity edges in the encoding of CNOT gates. The cut set of an s-t
cut removes edges so that no path from s to t exists. Paths from t
to s are still allowed. If the edge is directed from control (source) to
target (sink), then the cut must separate these terminals. Conversely,

The direction depends on the exact definition of the 3D color code since the X- and
Z-stabilizers are not symmetric, but it is always only one-way.

Erik Weilandt, Tom Peham, and Robert Wille

if the edge is directed from target to control, no path exists from
source to sink, and no cut is needed. Thus, this modification does
not introduce unnecessary cuts—it merely avoids adding cuts where
they are not required, preserving the minimality of the solution.

Example 6. Figure 3a shows the effect of this directed constraint.
The CNOT nodes are connected by a directed edge that goes from
the control node to the target node. In this setup, the control node
is associated with a 3D color code (sink node), while the target node
is associated with a 2D color code (source node). In this example,
the source (green) can be separated from the sink (red) by cutting
a single edge. Since the edge between the nodes involved in the
CNOT is directed, no path exists from source to sink in the resulting
graph. If the CNOT edge were bidirectional, at least one more edge
would need to be cut.

As a result, circuits that exploit these one-way transversal in-
teractions can achieve further reductions in switching overhead
without requiring changes to the underlying optimization proce-
dure.

Besides the minimal number of switching operations, the min-cut
framework can also be extended to optimize additional circuit met-
rics. Consider, for example, the time overhead involved in realizing
a code switching operation. While code switching via transver-
sal CNOTs has low overhead for the actual switching operations
compared to switching via gauge measurements, it still requires
fault-tolerant preparation of an ancilla, which must be completed
before the switching takes place. Due to this time overhead, it
might be beneficial to perform switching operations during qubit
idling. We can achieve this behaviour by adding an idling bonus
to certain temporal edges. Specifically, temporal edges connecting
consecutive nodes of an idling qubit are assigned a slightly reduced
capacity.

Example 7. Consider the circuit in Figure 3 in which qubit 0 is
idling for one single-qubit gate operation. By assigning a lower
capacity of 0.83 to the edge connecting the node representing the
T-gate and the control of the CNOT gate as shown in Figure 3b,
the min-cut now has to cut this idling edge. Performing the switch
on the idling qubit 0 results in an overall shallower circuit as the
switching can already start during the execution of the H gate on
qubit 1.

When altering edge capacities in such a way, care must be taken
so that the resulting min-cut does not lead to an increase in code
switching operations compared to uniform temporal edge capacities.
If the capacities are too low, then cutting more low-capacity edges
might have an overall lower cost than cutting fewer edges with
higher capacity. In the following, we briefly argue that the idling
capacities can be chosen such that the cost of the resulting min-cut
is still determined by the number of cut temporal edges.

If Etemp C E is the number of temporal edges, and ;g (€) is the
number of time steps the respective qubit idles between the gate
nodes connected by e, then the capacity of a temporal edge e is

tidle ()

A = (e (9 + D

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

—%— evenly distributed
CNOT-heavy

800

[

o

3

S
—_

400

Average runtime [s]

200

200 400 600 800 1000
Number of Qubits

Figure 4: Average runtime of the proposed compilation meth-
ods across different circuit sizes and gate distributions.

The cost ¢(C) of the cut E¢ is then given by

_ _ _ tidle (€)
elEc)=), ele)=) (1 Eremp] (iate(@) + 1)

ecEc ecEc

tidle(€)

= |Ec| - _
|Etemp|(tidle(e) +1)

ecEc

Now, since the size of the cut is at most as big as the set of all
temporal edges, i.e., |Ec| < |Etemp|, we can bound the second term
as
0< Z fidle (€) - Z LY
ecEc |Etemp|(tidle(e) +1) ecEe |Etemp|
and therefore
|Ec| = ¢(Ec) > |Ec| - 1.
This means that the cost of the cut is still determined by the number
of temporal edges in the cut, and the influence of the idling bonus
on the overall cost can never make up for cutting an additional edge.
The idling bonus thus encodes the notion that performing switches
during idle periods is “cheaper” in terms of circuit depth without
sacrificing minimality with respect to the number of switches.

Another aspect to consider when determining suitable code
switching locations is whether one of the codes involved is prefer-
able to the other. For example, the 3D color code has a higher code
capacity threshold (for one type of error) than the 2D color code [42,
43]. It seems intuitive that the 3D color code would also exhibit
a higher circuit-level threshold, due to the higher weight of the
stabilizer generators that need to be measured. Since the minimal
solution to the min-cut problem on the network is not necessarily
unique, it may be preferable to choose a cut that performs more op-
erations in the 2D code in this scenario. It might even be beneficial
to allow for slightly more switches if one can perform substantially
more operations in the preferred code.

To embed this bias into the graph model, we introduce a new
type of edge, referred to as bias edges. Every node representing
an operation that can be executed in either code is connected to
both the source and the sink via a bias edge. A bias edge connected
to the source (corresponding to the preferable code) is assigned a
slightly higher capacity than its counterpart connected to the sink.
Because every such node is connected to both source and sink, any

—%— evenly distributed
300000 CNOT-heavy

250000 4

200000

150000 1

Average Switch Number

100000

50000 1

200 400 600 800 1000
Number of Qubits

Figure 5: Average number of minimal switching operations
across different circuit sizes and gate distributions.

min-cut in this modified graph needs to cut one of the bias edges.
By assigning a higher capacity to the preferred code, the min-cut
is therefore skewed towards cutting bias edges connected to the
node of the less desirable code and, therefore, performing more
operations in the preferred code.

Example 8. Consider the example circuit in Figure 3 again. Fig-
ure 3c shows the corresponding network of this circuit using bias
edges. Bias edges connected to the 2D color code have a bias of 0.2,
while bias edges connected to the 3D color code have a bias of 0.1.
The min-cut, therefore, cuts the edge on qubit 0 as well as the bias
edge connecting the CNOT nodes to the 3D color code node. This
corresponds to switching qubit 0 into the 2D color code.

By picking capacities for these bias edges that are only a small
fraction of those of temporal edges, it can be ensured that they
influence the optimization without dominating it. Importantly, the
algorithm must still cut temporal edges to produce a valid solution;
it cannot minimize the cost solely by cutting bias edges, which
means that a switching scheme can still be extracted from the cut in
this modified network. However, depending on the capacity of the
bias edges, a min-cut in this modified network might correspond
to more switching operations if a significant amount of bias edges
can be cut instead.

4 Evaluations

We implemented the proposed min-cut-based approach to solving
the minimal code switching problem in Python within an existing
open-source quantum compilation framework. For finding the min-
cut, we used the open-source graph library NetworkX [44].

4.1 Experimental Setup

To evaluate the proposed approach across a broad spectrum of
benchmark circuits, we generate quantum circuits using gates from
the set {H, T, CNOT} as well as the identity gate, for varying circuit
sizes. We assume a switching scheme using 2D and 3D color codes
with transversal gate sets {H, CNOT} and {T, CNOT}, respectively.
Because this setting allows for one-way transversal CNOTs, they are
modeled in the respective graphs by default. When generating the
circuits, each gate has a predefined probability of being applied to a
qubit at each step, with the constraint that, except for the identity,

Table 1: Relative reduction in circuit depth achieved when
incorporating idling time into the capacity of temporal edges
compared to uniform capacities.

#Qubits Relative Saving (%) Relative Std (%)

64 5.25 3.92
128 4.79 2.02
256 5.56 1.55
512 5.41 0.97

the same gate cannot be applied twice in a row. We construct two
circuit classes: evenly distributed circuits, containing 15% each of
H, T, and CNOT gates, and CNOT-heavy circuits, containing 10%
H and T gates, and 30% CNOT gates.

For performance benchmarking, we evaluated circuits with qubit
counts ranging from n = 64 to n = 1024, sampling 2n gates per
qubit. For each qubit count, we generate 100 circuits with an even
gate distribution and 100 CNOT-heavy circuits. To further evaluate
extensions to our model (e.g., bias edges or idling bonuses), an
additional 1000 circuits were generated with n = 128 qubits and 2n
gates per qubit sampled from the even gate distribution.

All experiments were conducted on an Ubuntu 20.04 system
equipped with an AMD Ryzen Threadripper PRO 5955WX CPU (16
cores, 32 threads, 4.0-4.5 GHz) and 128 GB of DDR4 RAM.

4.2 Performance Evaluation

Figure 4 shows the average runtime for computing the minimal
number of code switching operations on the generated circuits.
Even for circuits with 1024 qubits and approximately a million
gates, the algorithm still only takes about 800 s. This can potentially
be further optimized by using a more efficient implementation
of the min-cut algorithm. Moreover, it can be observed that the
runtime is influenced by the circuit structure. CNOT-heavy circuits—
involving more gates that can be executed in either code—exhibit
longer runtimes than circuits containing more H and T gates, which
restrict code choices and reduce combinatorial complexity.

Figure 5 shows the average number of minimal switches required
for the considered benchmark circuits. Evenly distributed circuits
need roughly twice as many code switching operations as CNOT-
heavy circuits. This is because a larger fraction of consecutive
single-qubit gates (H and T) results in more unavoidable switching
locations, limiting optimization potential.

4.3 Idling Qubits and Code Bias

In a second series of evaluations, we explore the potential for reduc-
ing circuit depth by incorporating an idle bonus on temporal edges
representing idling qubits. To evaluate the impact of this extension
on the considered circuits, we compare the depth of circuits with
and without idling bonus as discussed in Section 3.3. The specific
time requirement for code switching ultimately depends on the
specific code switching scheme in use, as well as other factors such
as the specific hardware platform. In our evaluations, we assume
that each switch takes longer than a logical single-qubit gate but
no longer than two consecutive logical single-qubit operations in
our simulations.

Erik Weilandt, Tom Peham, and Robert Wille

3000 Temporal-Bias
Edge Ratio o

== 0.001 ' o
2500 001 i _
== 01 o
4 é i
5004 B B
_ & = =

0 1 2

N
=]
3
3

o

Absolute Number of Additional
Nodes in Biased Code
= =
=) o
3 s
3 3

3 4 6 7 8 9
Number of Additional Switches

Figure 6: Boxplot illustrating the number of additional nodes
in the 2D color code when allowing for extra switching oper-
ations compared to the optimal solution.

The average circuit depth reduction achieved through idle-based
optimization under this assumption on circuits using an even dis-
tribution of gates is shown in Table 1. Across different numbers of
qubits, the depth saving is about 5% even under this very optimistic
assumption. If switching takes longer, incorporating qubit idling
into the choice of switching locations will have an even greater
impact. Moreover, the results confirm that including this aspect
in the proposed approach does not violate the minimality of the
solution.

Finally, we examine how varying the ratio between the capacities
of temporal and bias edges affects the trade-off between preserving
optimality and reducing the number of nodes assigned to the 3D
color code. Figure 6 shows how additional switching operations
(x-axis) influence the number of extra nodes in the biased code
(y-axis). We compute the min-cut for circuits using ratios 0.1, 0.01,
and 0.001. The capacity of the bias edges for the 2D color code
is chosen as twice as large as the bias for the 3D color code. The
results demonstrate that a single additional switching operation can
lead to several hundred nodes shifting from the 3D to the 2D color
code. Smaller ratios result in a larger trade-off. This is expected,
as the cost of a single additional temporal edge in the cut must be
compensated for by more biased edges. If the ratio is 0.01, one cut
of a temporal edge results in at least 100 more cuts on bias edges.

Interestingly, no change in the number of operations in the 2D
color code can be observed, i.e., the min-cut without modeling code
bias already maximizes the number of CNOTs performed in the 2D
code. This is because the min-cut implementation we used puts the
majority of nodes on the source side of the cut by default, and we
represent the 2D color code as the source node.

5 Conclusion

In this work, we investigated the minimal code switching problem
for quantum circuits and demonstrated how it can be solved effi-
ciently by reducing it to the minimum s-t-cut problem. We also
showed how additional circuit metrics can be incorporated into the
min-cut framework and optimized simultaneously. Furthermore,
we implemented and evaluated the proposed solution on a large
number of benchmarks to demonstrate its scalability to circuits
with up to 1024 qubits and approximately a million gates, as well as

Minimizing the Number of Code Switching Operation in Fault-Tolerant Quantum Circuits

how extensions such as code bias and idle-aware switching enable
meaningful trade-offs between minimal switching, circuit depth,
and code preferences.

The runtime efficiency of our approach makes it a good candidate
for use as a cost function in quantum circuit optimization. Given a
choice of different circuits implementing the same unitary, one can
quickly evaluate which one requires the fewest switches, or which
one realizes a preferable compromise between switching overhead
and other circuit-level metrics.

This work constitutes a significant advancement in the compi-
lation of code-switching-based fault-tolerant quantum computing.
We view our contributions as complementary to advancements in
decoding and physical-level implementations of code switching,
and we expect that the proposed techniques will help in evaluat-
ing the practicality of code switching as a candidate for universal
fault-tolerant quantum computation.

Acknowledgements

The authors would like to thank Sascha Heuf3en for insightful discussions
and comments.

The authors acknowledge funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 101001318) and Millenion (grant agreement
No. 101114305). This work was part of the Munich Quantum Valley, which is
supported by the Bavarian state government with funds from the Hightech
Agenda Bayern Plus. This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation, No. 563402549).

References

[1] M. A Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2010.

[2] A.M.Dalzell et al. Quantum algorithms: A survey of applications and end-to-end
complexities. 2025. DoI: 10.1017/9781009639651. arXiv: 2310.03011 [quant-ph].

[3] A.Y.Kitaev. “Fault-tolerant quantum computation by anyons”. In: Ann. Phys.
303.1 (2003), pp. 2-30. por: 10.1016/S0003-4916(02)00018-0.

[4] P. Shor. “Fault-tolerant quantum computation”. In: Proc. 37th Conf. Found.
Comput. Sci. 1996, pp. 56—65. DOI: 10.1109/SFCS.1996.548464.

[5] D. Gottesman. “Theory of fault-tolerant quantum computation”. In: Phys. Rev.
A 57.1(1998), pp. 127-137. por: 10.1103/PhysRevA.57.127.

[6] B.Eastin and E. Knill. “Restrictions on Transversal Encoded Quantum Gate
Sets”. In: Phys. Rev. Lett. 102.11 (2009), p. 110502. por: 10.1103/PhysRevLett.102.
110502.

[7] C. Gidney, N. Shutty, and C. Jones. Magic state cultivation: growing T states as
cheap as CNOT gates. 2024. por: 10.48550/arXiv.2409.17595. arXiv: 2409.17595.
Pre-published.

[8] K. Sahay et al. Fold-transversal surface code cultivation. 2025. po1: 10.48550/
arXiv.2509.05212. arXiv: 2509.05212 [quant-ph]. Pre-published.

[9] Y. Vaknin et al. Efficient Magic State Cultivation on the Surface Code. 2025. DOI:
10.48550/arXiv.2502.01743. arXiv: 2502.01743 [quant-ph]. Pre-published.

[10] S.Bravyiand A. Kitaev. “Universal quantum computation with ideal Clifford
gates and noisy ancillas”. In: Phys. Rev. A 71.2 (2005), p. 022316. por: 10.1103/
PhysRevA.71.022316.

[11] S.Bravyiand J. Haah. “Magic-state distillation with low overhead”. In: Phys.
Rev. A 86.5 (2012), p. 052329. por: 10.1103/PhysRevA.86.052329.

[12] D.Litinski. “Magic State Distillation: Not as Costly as You Think”. In: Quantum
3(2019), p. 205. por: 10.22331/q-2019-12-02-205.

[13] M. E.Beverland, A. Kubica, and K. M. Svore. “Cost of Universality: A Compara-
tive Study of the Overhead of State Distillation and Code Switching with Color
Codes”. In: PRX Quantum 2.2 (2021), p. 020341. por: 10.1103/PRXQuantum.2.
020341.

[14] F.Butt et al. “Fault-Tolerant Code-Switching Protocols for Near-Term Quantum
Processors”. In: PRX Quantum 5.2 (2024), p. 020345. por: 10.1103/PRXQuantum.
5.020345.

[15] S.Heuflen and J. Hilder. “Efficient fault-tolerant code switching via one-way
transversal CNOT gates”. In: Quantum 9 (2025), p. 1846. por: 10.22331/q-2025-
09-03-1846.

[16]

[22]

(23]

[24]

[26]

[27]
(28]

[29]

(31]

(32]

(38]

(39]

[40]

A. Kubica and M. E. Beverland. “Universal transversal gates with color codes:
A simplified approach”. In: Phys. Rev. A 91.3 (2015), p. 032330. por: 10.1103/
PhysRevA.91.032330.

H. Bombin. “Gauge color codes: optimal transversal gates and gauge fixing
in topological stabilizer codes”. In: New J. Phys. 17.8 (2015), p. 083002. DOI:
10.1088/1367-2630/17/8/083002.

D. Horsman et al. “Surface code quantum computing by lattice surgery”. In:
New J. Phys. 14.12 (2012), p. 123011. por: 10.1088/1367-2630/14/12/123011.

D. Litinski. “A Game of Surface Codes: Large-Scale Quantum Computing with
Lattice Surgery”. In: Quantum 3 (2019), p. 128. por: 10.22331/q-2019-03-05-128.
A.]. Landahl and C. Ryan-Anderson. Quantum computing by color-code lattice
surgery. 2014. por: 10.48550/arXiv.1407.5103. arXiv: 1407.5103 [quant-phl.
Pre-published.

D. B. Tan, M. Y. Niu, and C. Gidney. “A SAT Scalpel for Lattice Surgery: Repre-
sentation and Synthesis of Subroutines for Surface-Code Fault-Tolerant Quan-
tum Computing”. In: International Symposium on Computer Architecture. 2024,
pp- 325-339. por: 10.1109/ISCA59077.2024.00032.

L. S. Herzog et al. Lattice Surgery Compilation Beyond the Surface Code. 2025.
DoI: 10.48550/arXiv.2504.10591. arXiv: 2504.10591 [quant-ph]. Pre-published.
G. Watkins et al. “A High Performance Compiler for Very Large Scale Surface
Code Computations”. In: Quantum 8 (2024), p. 1354. por: 10.22331/q-2024-05-
22-1354.

M. Beverland, V. Kliuchnikov, and E. Schoute. “Surface Code Compilation via
Edge-Disjoint Paths”. In: PRX Quantum 3.2 (2022), p. 020342. por: 10.1103/
PRXQuantum.3.020342.

L. Lao et al. “Mapping of lattice surgery-based quantum circuits on surface code
architectures”. In: Quantum Sci. Technol. 4.1 (2018), p. 015005. DoI: 10.1088/2058-
9565/aadd1a.

G. B. Dantzig and D. R. Fulkerson. “On the max-flow min-cut theorem of
networks”. In: Linear inequalities and related systems. Princeton University
Press, 1957, pp. 215-222. por: doi:10.1515/9781400881987-013.

R. Wille et al. The MQT Handbook: A Summary of Design Automation Tools and
Software for Quantum Computing. 2024. arXiv: 2405.17543. Pre-published.

H. Bombin and M. A. Martin-Delgado. “Topological Quantum Distillation”. In:
Phys. Rev. Lett. 97.18 (2006), p. 180501. por: 10.1103/PhysRevLett.97.180501.
H. Bombin and M. A. Martin-Delgado. “Exact Topological Quantum Order in
D=3 and Beyond: Branyons and Brane-Net Condensates”. In: Physical Review
B 75.7 (2007), p. 075103. por: 10.1103/PhysRevB.75.075103. arXiv: cond-
mat/0607736.

C. Chamberland and M. E. Beverland. “Flag fault-tolerant error correction with
arbitrary distance codes”. In: Quantum 2 (2018), p. 53. por: 10.22331/q-2018-02-
08-53.

M. Sullivan. “Code conversion with the quantum Golay code for a universal
transversal gate set”. In: Phys. Rev. A 109.4 (2024), p. 042416. por: 10.1103/
PhysRevA.109.042416.

D. Forlivesi and D. Amaro. Flag at origin: a modular fault-tolerant preparation for
CSS codes. 2025. po1: 10.48550/arXiv.2508.14200. arXiv: 2508.14200 [quant-ph].
Pre-published.

R. Zen et al. “Quantum Circuit Discovery for Fault-Tolerant Logical State Prepa-
ration with Reinforcement Learning”. In: Phys. Rev. X 15.4 (2025), p. 041012.
por: 10.1103/gqpr-dgz7.

T. Peham et al. “Automated Synthesis of Fault-Tolerant State Preparation
Circuits for Quantum Error-Correction Codes”. In: PRX Quantum 6.2 (2025),
p. 020330. por: 10.1103/PRXQuantum.6.020330.

A.Y.Kitaev. “Quantum computations: algorithms and error correction”. In: Russ.
Math. Surv. 52.6 (1997), p. 1191. por: 10.1070/RM1997v052n06 ABEH002155.

L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University Press,
1962. por: doi:10.1515/9781400875184.

R. E. Tarjan. “Algorithms for maximum network flow”. In: Netflow at Pisa.
Springer, 1986, pp. 1-11. Dor: 10.1007/BFb0121085.

J. Edmonds and R. M. Karp. “Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems”. In: Journal of the ACM 19.2 (1972), pp. 248-
264. por: 10.1145/321694.321699.

E. A. Dinic. “Algorithm for solution of a problem of maximal flow in a network
with power estimation”. In: 1970.

A. V. Goldberg and R. E. Tarjan. “A new approach to the maximum-flow
problem”. In: Journal of the ACM 35.4 (1988), pp. 921-940. por: 10.1145/48014.
61051.

J. B. Orlin. “Max flows in O(nm) time, or better”. In: Symp. on Theory of Com-
puting. 2013, pp. 765-774. DOI: 10.1145/2488608.2488705.

A. Kubica et al. “Three-Dimensional Color Code Thresholds via Statistical-
Mechanical Mapping”. In: Phys. Rev. Lett. 120.18 (2018), p. 180501. por: 10.1103/
PhysRevLett.120.180501.

M. Ohzeki. “Accuracy thresholds of topological color codes on the hexagonal
and square-octagonal lattices”. In: Phys. Rev. E 80.1 (2009), p. 011141. por:
10.1103/PhysRevE.80.011141.

M. E.J. Newman. “The Structure and Function of Complex Networks”. In: SIAM
Review 45.2 (2003), pp. 167-256. por: 10.1137/S003614450342480.

https://doi.org/10.1017/9781009639651
https://arxiv.org/abs/2310.03011
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.48550/arXiv.2409.17595
https://arxiv.org/abs/2409.17595
https://doi.org/10.48550/arXiv.2509.05212
https://doi.org/10.48550/arXiv.2509.05212
https://arxiv.org/abs/2509.05212
https://doi.org/10.48550/arXiv.2502.01743
https://arxiv.org/abs/2502.01743
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PRXQuantum.5.020345
https://doi.org/10.1103/PRXQuantum.5.020345
https://doi.org/10.22331/q-2025-09-03-1846
https://doi.org/10.22331/q-2025-09-03-1846
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.48550/arXiv.1407.5103
https://arxiv.org/abs/1407.5103
https://doi.org/10.1109/ISCA59077.2024.00032
https://doi.org/10.48550/arXiv.2504.10591
https://arxiv.org/abs/2504.10591
https://doi.org/10.22331/q-2024-05-22-1354
https://doi.org/10.22331/q-2024-05-22-1354
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1088/2058-9565/aadd1a
https://doi.org/10.1088/2058-9565/aadd1a
https://doi.org/doi:10.1515/9781400881987-013
https://arxiv.org/abs/2405.17543
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevB.75.075103
https://arxiv.org/abs/cond-mat/0607736
https://arxiv.org/abs/cond-mat/0607736
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevA.109.042416
https://doi.org/10.1103/PhysRevA.109.042416
https://doi.org/10.48550/arXiv.2508.14200
https://arxiv.org/abs/2508.14200
https://doi.org/10.1103/gqpr-dgz7
https://doi.org/10.1103/PRXQuantum.6.020330
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/doi:10.1515/9781400875184
https://doi.org/10.1007/BFb0121085
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1103/PhysRevLett.120.180501
https://doi.org/10.1103/PhysRevLett.120.180501
https://doi.org/10.1103/PhysRevE.80.011141
https://doi.org/10.1137/S003614450342480

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Code Switching
	2.2 Resulting Problem

	3 Solving Minimal Switching with Min-Cut
	3.1 Min-Cut
	3.2 Reducing Minimal Code Switching to Min-Cut
	3.3 Extensions to the Min-Cut Model

	4 Evaluations
	4.1 Experimental Setup
	4.2 Performance Evaluation
	4.3 Idling Qubits and Code Bias

	5 Conclusion

