
Bias by Design: Diversity Quantification to Mitigate
Structural Bias Effects in AIG Logic Optimization

Isabella Venancia Gardner,∗†, Marcel Walter‡, Yukio Miyasaka§, Robert Wille‡¶, and Michael Cochez†

∗Universiteit van Amsterdam, Netherlands
Email: bella.gardner@student.uva.nl

†Vrije Universiteit Amsterdam, Netherlands
Email: m.cochez@vu.nl

‡Chair for Design Automation, Technical University of Munich, Germany
Email: {marcel.walter, robert.wille}@tum.de
§University of California, Berkeley, USA

Email: yukio_miyasaka@berkeley.edu
¶Software Competence Center Hagenberg GmbH (SCCH), Austria

Abstract—And-Inverter Graphs (AIGs) are a fundamental data
structure in logic optimization, widely used in modern electronic
design automation. A persistent challenge in AIG optimization is
structural bias, where the initial graph structure strongly influences
optimization quality by restricting the search space, often resulting
in subpar outcomes. Existing methods address this issue by running
multiple optimization workflows in parallel, relying on a trial-and-
error approach that lacks a systematic way to measure structural
diversity or assess effectiveness, making them computationally
expensive and inefficient. This paper introduces a novel framework
for systematically evaluating and reducing structural bias by
measuring structural diversity, defined as the degree of dissimi-
larity between AIG graphs. Several traditional graph similarity
measures and newly proposed AIG-specific metrics, including the
Rewrite, Refactor, and Resub Scores, are explored. Results reveal
limitations in traditional graph similarity metrics and highlight the
effectiveness of the proposed AIG-specific measures in quantifying
structural dissimilarity. Notably, the RRR Score shows a strong
correlation (Pearson correlation coefficient, r = 0.79) with post-
optimization structural differences, demonstrating the reliability
of the metric in capturing meaningful variations between AIG
structures. This work addresses the challenge of quantifying struc-
tural bias and offers a methodology that can potentially improve
optimization outcomes, with future extensions applicable to other
logic graph types.

I. INTRODUCTION & MOTIVATION

With the increasing complexity of digital circuits and rising
manufacturing costs in advanced technology nodes, minimizing
chip area and improving performance have become critical chal-
lenges. And-Inverter Graphs (AIGs) are a state-of-the-art data
structure used in technology-independent logic optimization,
supporting a wide range of synthesis and optimization tasks that
are fundamental in modern electronic design automation [1]–
[4].

Many optimization algorithms for AIGs have been devel-
oped, focusing on reducing circuit area, delay, and power
consumption [1]–[6]. However, these methods are often lim-
ited by structural bias, a well-recognized phenomenon in the
community [7]. Structural bias refers to the sensitivity of op-
timization algorithms to the initial structure of an AIG, which
restricts the search space and hinders the discovery of globally
optimal solutions. Consequently, even advanced optimization

flows can become trapped in local minima, reducing their overall
effectiveness. This challenge has been demonstrated in recent
IWLS Programming Contests (2022–2024), where many entries
struggled to overcome this bias.

Despite structural bias being widely recognized, systematic
quantification or mitigation strategies have seen limited progress.
Current strategies often attempt to bypass the issue by running
multiple synthesis and optimization processes in parallel, hoping
that one will outperform the others [8]. While this trial-and-
error approach introduces some structural diversity, it lacks
a systematic method for measuring the degree of diversity or
evaluating its effectiveness in addressing structural bias before
the optimization process is complete. As a result, this approach
remains both computationally expensive and resource-inefficient.

In the field of logic optimization, methods focus on en-
hancing structural diversity, which is defined as the degree of
structural dissimilarity between AIGs. Structurally dissimilar
AIGs are known to follow distinct optimization paths, as each
structure presents unique opportunities and constraints within the
optimization search space [9]. By promoting greater structural
diversity, these methods increase the likelihood of exploring al-
ternative optimization paths, potentially leading to more optimal
results. A more effective approach would involve analyzing the
initial AIG structure to predict optimization outcomes, enabling
more informed decisions, reducing computation time, and al-
lowing for early termination of unpromising runs. This research
systematically investigates structural bias and presents several
key contributions:

1) the development of a framework for quantitatively assessing
AIG structural dissimilarity, as outlined in Section III-A,

2) the introduction of fast metrics based on AIG optimization,
such as Rewrite, Refactor, and Resub Scores, to measure
structural diversity, detailed in Section IV-B,

3) the application of this framework (Section V) using tradi-
tional graph theory metrics (Section IV-A), AIG attributes
(Section IV-B), and the proposed optimization-based scores
(Section IV-B), and

4) a statistical analysis revealing a strong correlation (r =
0.79) between structural bias and the RRR Score, presented
in Section VI.

mailto:bella.gardner@student.uva.nl
mailto:m.cochez@vu.nl
mailto:marcel.walter@tum.de
mailto:robert.wille@tum.de
mailto:yukio_miyasaka@berkeley.edu

x1 x2 x3

∧ ∧

∧

∧ ∧

∧ ∧

y1 y2

Figure 1: AIG of a full adder with carry y1 = ⟨x1x2x3⟩ and
sum y2 = x1 ⊕ x2 ⊕ x3.

II. AND-INVERTER GRAPHS (AIGS)

In modern logic synthesis, efficiently representing and ma-
nipulating Boolean functions is a key challenge as circuit
complexity grows. Traditional methods like truth tables, SOP,
and BDDs become impractical for large designs due to their
exponential size growth. And-Inverter Graphs (AIGs) offer a
more scalable, compact solution, making them essential in
contemporary logic design workflows.

A. Data Structure

An AIG is a directed acyclic graph comprised of primary
input nodes, which correspond to the inputs of a logic circuit,
and AND nodes, each representing a two-input AND gate. A
key feature of AIGs is the use of inversion tags on edges, which
represent logical negations (NOT operations) without adding
extra nodes. The primary output pointers represent the final
logic expressions implemented by the AIG. The hierarchical
structure of AIGs allows for the decomposition of complex
Boolean functions.

Figure 1 displays a visual representation of an AIG that
implements the full adder function in 7 AND nodes where
dashed lines define inverted edges. Here, y1 = ⟨x1x2x3⟩, i. e.,
the majority-of-three of all primary inputs, is the carry, and
y2 = x1 ⊕ x2 ⊕ x3, i. e., the three-input XOR of all inputs,
is the sum output. It should be noted that primary outputs are
generally not regarded as nodes.

B. Synthesis & Optimization

The AIG’s minimalist structure and focus on a restricted
set of logic primitives, enable various efficient optimizations
and powerful iterative transformations that preserve functional
equivalence. This allows for the application of aggressive opti-
mizations that reduce circuit area, improve delay, and minimize
power consumption.

AIG Rewriting [1], [2] is a widely used technique that
reduces node count by replacing subgraphs (cuts) with smaller
pre-computed equivalents through local greedy transformations.
Using fast cut enumeration, NPN equivalence classes, and effi-
cient truth table manipulations, AIG rewriting balances area and
delay optimization, making it a standard in synthesis flows.

Refactoring [2], [3], a variant of rewriting, takes a broader
approach by targeting larger AIG subgraphs for restructuring.
Instead of focusing on local, incremental changes, refactoring

collapses and reorganizes more extensive portions of the graph,
leading to potentially greater reductions in both size and depth.

It is particularly effective when used alongside rewriting in
iterative optimization flows, as it enhances the overall scope of
potential improvements in area and delay.

Resubstitution [3], [4] re-expresses the logic of an AIG
node using other nodes, called divisors, which are outside the
node’s transitive fan-out, ensuring cycle-free reuse. The key is
to find valid divisors that replace a target node’s logic while
preserving the circuit’s functional equivalence. An extension,
Simulation-Guided Resubstitution [10], enhances efficiency by
using simulation patterns to filter non-promising candidates,
reducing computational cost and enabling scalability for larger,
more complex circuits.

C. Structural Bias

It is well recognized in the community that most optimization
algorithms are prone to a phenomenon known as structural
bias [7], which presents a challenge to achieve high-quality
logic optimization. Algorithms, such as rewriting, refactoring,
and resubstitution, operate locally within the graph structure, and
consequentially, the quality of the final circuit can vary greatly
depending on the initial AIG configuration. Thus, structural
bias, an inherent sensitivity, arises because the local structure
influences the set of feasible transformations and optimizations
that can be applied, which can trap the optimizer in suboptimal
results.

In this work, structural diversity is defined as the degree
of structural dissimilarity between graphs, expanding the opti-
mization search space and preventing bias by ensuring different
optimization paths are explored. Although not widely recognized
as a formal term, structural diversity plays a central role in
mitigating bias by increasing the chances of avoiding local
minima.

Consequently, optimization flows often require manual fine-
tuning to individual circuits or employ randomization techniques
to explore a broader portion of the optimization space and
mitigate the effects of structural bias [8]. Another promising
approach involves choices [7], i. e., resynthesizing parts of the
AIG using multiple different strategies, selecting the best result
at each step to avoid being locked into a particular structural
form. Despite these efforts, the issue of structural bias in
AIG optimization remains largely unresolved, requiring further
exploration and more sophisticated methodologies to expand the
search space and improve the robustness of AIG optimization
flows.

III. THE PROPOSED FRAMEWORK

Structural bias in logic synthesis optimization, as discussed
in Section II-C, remains a challenge. This framework addresses
this gap by developing metrics that compare AIG dissimilarity
and strongly correlate with optimization outcomes, such as node
reduction. By aligning graph similarity metrics with optimization
performance, this provides a systematic, reliable alternative to
trial-and-error methods.

A. Experimental Framework

The proposed framework consists of four main steps, de-
signed to systematically explore structural diversity in AIGs
and assess the relationship between a pre-optimization graph
similarity measure and post-optimization graph structure. The
steps are as follows:

Figure 2: Conceptual illustration of an optimization search
space. A1 and A2 represent different starting points for AIG
optimization, with A∗

1 and A∗
2 as their optimized endpoints after

the full optimization process. The red line between A∗
1 and A∗

2
shows the Relative Optimizability Difference, representing the
final difference in node count reduction. Aopt

1 and Aopt
2 represent

the positions after one optimization step (resubstitution, rewrite,
or refactor). Black lines show optimization trajectories, and
the dotted orange line approximates the Relative Optimizability
Difference.

1) Generating multiple starting points from function spec-
ifications: AIGs are synthesized from a given function (e. g.,
a truth table) using different synthesis algorithms to create
functionally equivalent and structurally diverse graphs.

2) Applying similarity measures: Graph similarity measures
are applied to quantify pairwise structural dissimilarity between
the generated AIGs. The choice of measure depends on the
structural aspects relevant to optimization.

3) Optimizing the generated AIGs: Each AIG undergoes
optimization for node reduction using a high-effort optimization
flow chosen by the user. The optimization algorithm should be
consistent.

4) Calculating the correlation between similarity scores and
structural diversity benchmark: Finally, the framework com-
putes the correlation between the similarity scores (obtained in
step 2) and the Relative Optimizability Difference introduced in
Section III-B. This step evaluates the effectiveness of the chosen
similarity metric with stronger correlations indicating a better
representation for AIG structural dissimilarity.

B. Relative Optimizability Difference

The Relative Optimizability Difference quantifies how struc-
turally different two AIGs are based on their optimization
outcomes. Specifically, it measures the normalized distance
between two AIGs after optimization in the optimization search
space. Though not usable pre-optimization, this measure serves
as a benchmark for assessing structural dissimilarity post-
optimization. A strong correlation between a similarity metric
and this measure suggests that the metric effectively captures
pre-optimization structural dissimilarity.

Figure 2 illustrates that structurally dissimilar AIGs follow
distinct optimization paths, as each structure presents unique
opportunities and constraints [9]. In this figure, two function-
ally equivalent AIGs, A1 and A2, synthesized using different

algorithms, start from different positions in the optimization
search space. After optimization, they reach new states, A∗

1
and A∗

2. The black dotted lines trace their optimization paths,
where lower points correspond to fewer nodes. The red line
between A∗

1 and A∗
2 represents the Relative Optimizability

Difference, reflecting the difference in final node reductions i. e.
the distance between endpoints in the optimization search space.
A greater distance indicates more distinct optimization outcomes
and greater structural dissimilarity.

Since node minimization is the primary goal, the difference
in final gate counts between two optimized AIGs serves as a
useful proxy for their structural dissimilarity. Mathematically,
the Relative Optimizability Difference is defined as:

ROD(A1, A2) :=
|G(A∗

1)− G(A∗
2)|

max(G(A∗
1),G(A∗

2))
(1)

Where A∗
1 and A∗

2 are the optimized versions of A1 and A2

after the optimization process, and G(A∗) represents the total
number of gates (nodes) in the optimized AIG A∗.

IV. AIG DISSIMILARITY MEASURES

Accurately measuring structural differences between AIGs is
crucial for understanding how various optimization techniques
affect their overall structure. This section introduces and evalu-
ates a range of graph similarity measures, both traditional and
AIG-specific, that can be used to quantify structural dissimilarity.

A. Integrated Traditional Graph Similarity Measures

Graph similarity measures are commonly used to quantify
structural properties. This work adapts four traditional metrics
from [11] to AIGs to assess their potential in calculating
AIG structural diversity. The selected metrics—feature-based,
network alignment, kernel-based, and spectral analysis—offer
diverse perspectives on structural diversity. 1

1) Graph Metric Considerations for AIGs: Adapting graph
metrics to AIGs involves several challenges. AIGs represent
Boolean functions as directed graphs with inverted edges (NOT
gates), so metrics must account for edge directionality, discon-
nected components, and edge weights. Node correspondence is
also affected by optimizations that alter internal nodes, while the
varying sizes and sparsity of AIGs require additional consider-
ation. To apply metrics designed for undirected graphs, AIGs
are converted by removing directionality and merging normal
and inverted edges. While this preserves topology, it abstracts
functional logic.

2) Vertex-Edge Overlap (VEO): Vertex-Edge Overlap
(VEO) [12] measures graph similarity by comparing shared
vertices and edges. It is simple, computationally efficient,
and well-suited for large, sparse graphs like AIGs. To
facilitate comparison, AIGs are converted to undirected edge
lists, removing inversion and directionality. Consistent node
numbering ensures valid comparisons. VEO computes similarity
by taking the ratio of the shared vertices and edges between
two graphs to the total number of vertices and edges. It
returns a value of 1 for identical graphs and 0 for completely
dissimilar ones. With a linear time complexity, VEO provides
a fast comparison, although it abstracts AIG-specific details by
treating normal and inverted edges equally.

1Graph metrics adapted from https://github.com/peterewills/
NetComp.

https://github.com/peterewills/NetComp
https://github.com/peterewills/NetComp

3) NetSimile: NetSimile [13] compares graphs by analyzing
aggregated structural features rather than relying on direct node-
to-node comparisons, making it suitable for AIGs modified by
optimization. Key features like node degree, clustering coeffi-
cient, and egonet properties are extracted for each node and
aggregated using statistical measures such as median, mean,
and skewness. The aggregated feature vectors for two AIGs are
compared using the Canberra distance, which evaluates the dif-
ference between the two sets of aggregated statistics. The exact
algorithm can be found in [13]. NetSimile is robust to changes in
node structure and has a time complexity of O(n log n). A lower
Canberra distance reflects greater similarity between the graphs,
while a higher value indicates more structural differences.

4) Weisfeiler-Lehman (WL) Kernel Similarity: The
Weisfeiler-Lehman (WL) kernel [14] is a graph similarity
method that iteratively relabels nodes to capture subgraph
patterns. For its application to AIGs, the graphs are first
converted to undirected versions. After conversion, the WL
kernel relabels nodes based on their local subgraph structure,
enabling an effective comparison between two graphs. The
similarity between the graphs is calculated by comparing
these relabeled nodes, with the exact formula provided in
[14]. With linear time complexity in the number of edges,
the WL kernel efficiently handles large AIGs while capturing
structural changes resulting from synthesis and optimization.
The similarity score ranges from 0 (indicating no matching
substructures) to higher values, reflecting stronger structural
alignment.

5) Adjacency Spectral Distance: The Adjacency Spectral
Distance (ASD) [11] measures graph similarity by comparing
the eigenvalues of their adjacency matrices. First, AIGs are
converted to undirected edge lists, from which adjacency ma-
trices are generated. The eigenvalue spectra of the matrices for
graphs G and G′ are then compared using the Euclidean distance
between their respective eigenvalues λA,i and λA′,i. The ASD
score ranges from 0 for identical graphs to higher values for
more dissimilar graphs. The method has a time complexity of
O(nk2), where n is the number of nodes and k is the number
of eigenvalues.

6) Other Methodologies: In addition to the methods in [11],
neural network-based approaches like Graph Neural Net-
works [15] embed graphs into vector spaces for similarity
comparisons. While effective, these methods are computationally
expensive and require extensive training, making them beyond
the scope of this work. This paper also excludes methods
such as DeltaCon [16], Resistance Distance [17], and Graph
Edit Distance [18] due to their computational complexity and
dependence on node correspondence.

B. Proposed AIG-Specific Graph Similarity Measures

This section introduces AIG-specific similarity measures to
better capture unique structural characteristics. These include
attribute-based metrics as well as optimization-based scores
derived from rewriting, refactoring, and resubstitution (cf. Sec-
tion II-B).

1) AIG Attribute-based Similarity Measures: To directly
capture key AIG structural features, attribute-based metrics like
Relative Gate Count (RGC) and Relative Level Count (RLC)
measure differences in the number of logic nodes (gates) and
levels, respectively, between two AIGs. These are computed as

normalized differences, exemplified by the RGC:

RGC(A1, A2) :=
|G(A1)−G(A2)|
G(A1) +G(A2)

(2)

RGC and RLC offer a highly computational efficient way to
assess structural differences because they rely solely on global
AIG attributes—gate count and level depth—that are typically
maintained throughout the AIG’s construction. This eliminates
the need for complex graph transformations. While less detailed,
these scores provide a practical gauge of structural diversity in
AIGs.

2) Resub, Rewrite, and Refactor Scores: Attribute-based
similarity scores, while highly efficient, may not fully capture
the deeper structural features that influence AIG optimization.
To address this, algorithms like rewriting, refactoring, and re-
substitution (discussed in Section II-B) are used to evaluate AIG
optimization paths.

This work introduces the Rewrite, Refactor, and Resub
Scores, which quantify the relative optimization success between
two functionally equivalent AIGs after a single round of op-
timization. These scores are based on the difference in gate
count reduction achieved by each algorithm, and are calculated
as follows:

RS(A1, A2) :=

∣∣∣∣G(A1)−G(Aopt
1)

G(A1)
− G(A2)−G(Aopt

2)

G(A2)

∣∣∣∣ (3)

where R refers to one of the three algorithms (rewriting,
refactoring, or resubstitution), and Aopt is the optimized AIG
after applying R to A. The function G(A) gives the gate count
of A.

These scores are significant because rewriting, refactoring,
and resubstitution are key components of modern optimization
flows, and their results provide insights into the long-term opti-
mization potential of AIGs. By comparing gate count reductions,
these scores reveal structural differences that attribute-based
metrics might miss.

Figure 2 illustrates the process. A1 and A2 are starting points,
while Aopt

1 and Aopt
2 are their positions after one optimization

step. Black lines show optimization paths, the orange dotted
line approximates the Relative Optimizability Difference, and
the red line shows the final difference between A∗

1 and A∗
2 after

full optimization.

The key assumption is that different levels of gate count
reduction between AIGs reflect deeper structural differences.
While full optimization flows are computationally expensive,
these algorithms offer an efficient way to approximate structural
differences without exhaustive synthesis.

3) RRR Score: The RRR Score offers a comprehensive
measure of AIG structural diversity by combining the effects of
rewriting, refactoring, and resubstitution. It compares two AIGs
based on their optimizability through these three techniques,
where r1, r2, r3 represent the reductions achieved from rewrit-
ing, refactoring, and resubstitution, respectively. The RRR Score
is calculated as the Euclidean distance between the reduction
vectors, providing a quantitative assessment of the structural
differences between the two AIGs:

RRR(A1, A2) :=

√√√√ 3∑
i=1

(ri(A1)− ri(A2))
2 (4)

Table I: Similarity scores with Pearson correlation and confi-
dence intervals for traditional graph similarity measures.

SIMILARITY MEASURE r CI

Vertex-Edge Overlap −0.36 [−0.40,−0.32]
NetSimile 0.33 [0.29, 0.37]
Weisfeiler-Lehman Kernel −0.27 [−0.31,−0.22]
Adjacency Spectral Distance 0.21 [0.17, 0.25]

This score quantifies the overall difference in how the two
AIGs respond to optimization. A lower score indicates similar
optimization behavior, while a higher score suggests significant
structural differences.

The RRR Score provides a comprehensive measure of AIG
structural diversity by leveraging multiple optimization tech-
niques. Although it is less efficient than calculating individual
optimization scores, it is still far more efficient than a full
optimization flow, offering a good balance between accuracy
and computational cost.

V. FRAMEWORK APPLICATION

This section outlines the experimental setup used to eval-
uate traditional graph similarity measures (Section IV-A) and
AIG-specific methods (Section IV-B). The goal is to test the
framework and demonstrate how the results in Section VI were
obtained. The full dataset, scripts, and processes are publicly
accessible on GitHub.2

The benchmark set consisted of 100 function specifications
from the IWLS Programming Contest 2024, selected for diver-
sity in function types (e. g., random functions, cryptographic
algorithms, sorting networks, arithmetic operations, and neural
network components).3 Due to scalability constraints, 87 of
them were synthesized into AIGs using seven distinct scripts
from ABC [5] and Espresso [6], including but not limited
to methods like Binary Decision Diagrams (BDDs), SOP fast
extract, Disjoint-support Decomposition (DSD), and LUT bi-
decomposition to generate structurally diverse AIGs from the
function specification. Pairwise similarity measures were then
applied to quantify structural diversity between these function-
ally equivalent AIGs.

After synthesis, each AIG was separately optimized us-
ing one of the following high-effort scripts from ABC:
orchestrate [19], dc2 [2], and &deepsyn [20]. The Rel-
ative Optimizability Difference was calculated for each AIG
pair, providing a benchmark for structural changes induced by
optimization.

Finally, Pearson correlation coefficients were used to assess
the correlation between similarity scores and the Relative Op-
timizability Difference, with 95% confidence intervals calcu-
lated using Fisher transformations. Scatter plots with trendlines
were generated to visualize the relationship between similarity
metrics and optimization outcomes, providing insights into the
effectiveness of each metric in capturing structural diversity and
optimization potential. The full data set and all plots can be
found in the supplementary GitHub repository.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results obtained from
the application of the framework proposed in Section III-A,

2https://github.com/bellavg/aig-similarity
3https://www.iwls.org/iwls2024/

Table II: Graph dissimilarity measure with Pearson correlation
and confidence intervals for proposed AIG-specific metrics eval-
uated against high-effort optimization scripts.

orchestrate dc2 &deepsyn -T 10

MEASURE r CI r CI r CI

RGC 0.42 [0.38, 0.45] 0.47 [0.43, 0.50] 0.75 [0.73, 0.77]
RLC 0.41 [0.37, 0.45] 0.43 [0.39, 0.47] 0.50 [0.47, 0.54]
Rewrite Score 0.43 [0.39, 0.47] 0.52 [0.49, 0.56] 0.31 [0.26, 0.35]
Refactor Score 0.48 [0.45, 0.52] 0.54 [0.50, 0.57] 0.34 [0.30, 0.38]
Resub Score 0.72 [0.70, 0.75] 0.52 [0.48, 0.55] 0.38 [0.34, 0.42]
RRR Score 0.79 [0.78, 0.81] 0.68 [0.66, 0.71] 0.45 [0.42, 0.49]

where multiple graph similarity measures were evaluated for
their correlation with AIG structural dissimilarity. Due to space
limitations, only an amalgamation of key results can be shown
here. The scripts, the complete raw results, and all generated
plots will be provided online upon publication.

A. Integrated Traditional Graph Similarity Measures

The performance of traditional graph similarity measures for
AIGs varied, as shown in Table I. Both positive and negative
correlations were observed because VEO and WL Kernel reflect
greater similarity with higher values, while NetSimile and ASD
do the opposite. Since the focus is on correlation strength rather
than direction, both types of correlations are reported.

ASD demonstrated the weakest correlation (r = 0.21), likely
due to its dependence on eigenvalue spectra, which may not be
well-suited for sparse graphs like AIGs. NetSimile showed a
slightly higher correlation (r = 0.33), but its use of aggregated
statistics may miss important functional differences. VEO (r =
−0.36) and WL Kernel (r = −0.27) also performed poorly,
reflecting limitations in capturing the structural nuances of AIGs.

Overall, these measures produced weak-to-moderate corre-
lations, underscoring the limitations of traditional metrics in
capturing AIG-specific characteristics. Although the results dis-
cussed here are based on the orchestrate flow, similar poor
performance was observed with other optimization strategies,
showing no consistent improvement in correlation.

B. Proposed AIG-Specific Graph Similarity Measures

This section details the experimental results of applying
the proposed framework to the AIG-specific graph similarity
measures discussed in Section IV-B. Table II summarizes the
Pearson correlations and confidence intervals for these metrics
across various high-effort optimization scripts, showcasing their
effectiveness in capturing structural diversity.

1) Proposed AIG Attribute Similarity Scores: The RGC
and RLC metrics simplify AIG analysis by focusing on gate
count and logic levels, rather than abstract structural features.
With AIGs that underwent orchestrate optimization, these
metrics showed moderate correlations with the Relative Opti-
mizability Difference (r = 0.42 and r = 0.41). While useful for
capturing broader trends, they may miss finer details, especially
in localized transformations typical of orchestrate.

However, these metrics performed better with &deepsyn,
which involves broader changes like LUT mapping and resyn-
thesis. RGC, in particular, had a much stronger correlation
(r = 0.75), suggesting that &deepsyn’s more comprehensive
transformations align well with node count.

https://github.com/bellavg/aig-similarity
https://www.iwls.org/iwls2024/

Figure 3: The correlation between Resub Score and Relative
Optimizability Difference for two example AIG datasets with a
correlation of r = 0.79.

Compared to orchestrate’s incremental optimizations,
&deepsyn allows RGC to reflect deeper structural changes.
This highlights that while these metrics offer useful insights,
their effectiveness increases when paired with broader optimiza-
tion strategies like &deepsyn, enhancing both computational
efficiency and correlation with outcomes.

2) Rewrite, Refactor, and Resub Scores: From the individual
algorithm metrics, the Resub Score showed the strongest corre-
lation with the Relative Optimizability Difference (r = 0.72, CI:
[0.70, 0.75]), demonstrating its effectiveness in capturing struc-
tural changes post-optimization, especially in orchestrate,
which heavily favors resubstitution. This high correlation, il-
lustrated in Figure 3, reflects deeper functional transformations
within the AIG and highlights the Resub Score’s strength in
resubstitution-driven optimizations. However, its performance
drops to r = 0.52 with dc2 and r = 0.38 with &deepsyn,
where resubstitution plays a lesser role.

The Rewrite and Refactor Scores showed moderate correla-
tions across different optimization scripts, with r = 0.43 and
r = 0.48 for orchestrate, and slightly better performance
with dc2. Their lower sensitivity to finer structural details, along
with higher runtime overheads, limits their efficiency compared
to Resub.

3) RRR Score: To overcome the limitations of individual
synthesis script scores, the RRR Score, which combines the
effects of resubstitution, refactoring, and rewriting, was in-
troduced. This combined score leveraged the strengths of all
three techniques, achieving the highest correlation with the
Relative Optimizability Difference (r = 0.79). The RRR Score
outperformed each individual score and remained robust across
intensive optimization workflows, such as dc2, maintaining a
high correlation of r = 0.68. However, its performance was
more moderate with &deepsyn, achieving a correlation of
r = 0.45—higher than the individual scores but still lower than
the RGC. This result demonstrates that the combined approach
provides a more comprehensive view of structural diversity and
significantly improves the accuracy of predicting optimization
outcomes, though its effectiveness varies depending on the
optimization strategy used.

VII. DISCUSSION & FUTURE WORK

The results underscore the importance of using optimization-
specific metrics for AIG structural analysis, particularly in
overcoming structural bias. Metrics like the RRR Score proved
highly effective in optimization flows that rely on a com-
bination of resubstitution, rewriting, and refactoring, such as

orchestrate and dc2. The RRR Score delivered the highest
correlations (r = 0.79) across these flows, demonstrating its
versatility in capturing diverse structural transformations and
offering reliable insights into optimization potential.

In contrast, the RGC metric performed best in the
&deepsyn optimization flow, where broader structural changes,
like LUT mapping and node reduction, play a key role. This
highlights the importance of selecting metrics that align with
the specific characteristics of the optimization technique being
used, as structural bias is closely tied to the type of optimization
applied. The differences in metric performance underscore that
structural bias is not a one-size-fits-all challenge; instead, it is
dependent on the optimization method, and thus, the selection
of metrics must be tailored accordingly.

Looking forward, the flexibility of the proposed framework
allows for its seamless application to more complex networks
than evaluated here as well as to other graph types, such as
XAGs or MIGs, expanding its potential beyond AIGs. The
evaluation in this work was conducted on a set of relatively small
networks to enable the application of a wide range of synthesis
methodologies, thereby providing diverse and representative
starting points for the analysis. This choice ensured a robust
understanding of structural metrics across various optimization
techniques. However, the findings and principles established
in this study are equally applicable to real-world scenarios
involving large-scale networks. The same metrics can capture
structural characteristics and optimization potential in industrial-
scale AIGs, where managing structural bias is even more critical
due to the increased complexity of synthesis flows and the
greater impact of optimization decisions.

While the current work covers three primary optimization
scripts—orchestrate, dc2, and &deepsyn—testing addi-
tional optimization techniques could provide further insights
into the relationship between structural bias and optimization
outcomes.

VIII. CONCLUSION

In this work, the challenge of structural bias in AIG opti-
mization was addressed by developing a framework for quanti-
tatively assessing AIG structural dissimilarity. Metrics such as
the Rewrite, Refactor, and Resub Scores, along with traditional
graph theory measures, were introduced to evaluate how struc-
tural diversity impacts optimization outcomes. The RRR Score
proved to be the most effective, achieving a strong correla-
tion (r = 0.79) with optimization flows like orchestrate.
Meanwhile, the RGC metric showed superior performance with
the &deepsyn optimization flow, highlighting the need for
careful metric selection based on the specific characteristics of
the optimization technique.

The findings indicate that structural bias is closely linked to
the type of optimization applied, and thus, metric selection must
be tailored to the method in use. By providing a systematic ap-
proach to measure structural diversity, this framework enhances
the precision of optimization flows and offers practical tools
for improving logic design outcomes. Despite the promising
results, further refinement and validation of the framework
across a broader set of AIG optimization scenarios could provide
additional insights. Additionally, the flexibility of the proposed
framework allows for potential application to other graph types,
such as XAGs or MIGs. Future work could explore additional
optimization techniques to further investigate the relationship
between structural bias and optimization outcomes.

REFERENCES

[1] P. Bjesse and A. Borälv, “DAG-Aware Circuit Compression for Formal
Verification,” in ICCAD, 2004, pp. 42–49.

[2] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-Aware AIG Rewrit-
ing: A Fresh Look at Combinational Logic Synthesis,” in DAC, 2006, pp.
532–535.

[3] A. Mishchenko and R. Brayton, “Scalable Logic Synthesis using a Simple
Circuit Structure,” in IWLS, vol. 6, 2006, pp. 15–22.

[4] G. De Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

[5] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verification Tool,” in Computer Aided Verification. Springer, 2010, pp.
24–40.

[6] R. K. Brayton, Logic Minimization Algorithms for VLSI Synthesis.
Springer, 1984.

[7] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing Structural Bias in Technology Mapping,” TCAD, vol. 25,
no. 12, pp. 2894–2903, 2006.

[8] Y. Miyasaka, “Transduction Method for AIG Minimization,” in ASP-DAC,
2024, pp. 398–403.

[9] W. L. Neto, Y. Li, P.-E. Gaillardon, and C. Yu, “FlowTune: End-
to-End Automatic Logic Optimization Exploration via Domain-Specific
Multiarmed Bandit,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 6, p. 1912–1925, Jun. 2023.
[Online]. Available: http://dx.doi.org/10.1109/TCAD.2022.3213611

[10] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A Simulation-Guided Paradigm for Logic Synthesis and Verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

[11] P. Wills and F. G. Meyer, “Metrics for Graph Comparison: A Practitioner’s
Guide,” Plos one, vol. 15, no. 2, p. e0228728, 2020.

[12] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similarity
for anomaly detection,” Journal of Internet Services and Applications,
vol. 1, pp. 19–30, 2010.

[13] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, “NetSimile:
A Scalable Approach to Size-Independent Network Similarity,” arXiv
preprint arXiv:1209.2684, 2012.

[14] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-Lehman Graph Kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. 9, 2011.

[15] G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu, “Deep Graph Similarity
Learning: A Survey,” Data Mining and Knowledge Discovery, vol. 35,
pp. 688–725, 2021.

[16] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “DELTACON: A
Principled Massive-Graph Similarity Function,” 2013. [Online]. Available:
https://arxiv.org/abs/1304.4657

[17] D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić,
“Resistance-distance matrix: A computational algorithm and its applica-
tion,” International Journal of Quantum Chemistry, vol. 90, no. 1, pp.
166–176, 2002.

[18] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed re-
lational graphs for pattern recognition,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-13, no. 3, pp. 353–362, 1983.

[19] Y. Li, M. Liu, M. Ren, A. Mishchenko, and C. Yu, “DAG-aware
Synthesis Orchestration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2024.

[20] S.-Y. Lee, H. Riener, and G. D. Micheli, “Customizable On-the-Fly Design
Space Exploration for Logic Optimization of Emerging Technologies,” in
International Workshop on Logic Synthesis (IWLS), Lausanne, Switzer-
land, 2023.

http://dx.doi.org/10.1109/TCAD.2022.3213611
https://arxiv.org/abs/1304.4657

	Introduction & Motivation
	And-Inverter Graphs (AIGs)
	Data Structure
	Synthesis & Optimization
	Structural Bias

	The Proposed Framework
	Experimental Framework
	Generating multiple starting points from function specifications
	Applying similarity measures
	Optimizing the generated AIGs
	Calculating the correlation between similarity scores and structural diversity benchmark

	Relative Optimizability Difference

	AIG Dissimilarity Measures
	Integrated Traditional Graph Similarity Measures
	Graph Metric Considerations for AIGs
	Vertex-Edge Overlap (VEO)
	NetSimile
	Weisfeiler-Lehman (WL) Kernel Similarity
	Adjacency Spectral Distance
	Other Methodologies

	Proposed AIG-Specific Graph Similarity Measures
	AIG Attribute-based Similarity Measures
	Resub, Rewrite, and Refactor Scores
	RRR Score

	Framework Application
	Experimental Results
	Integrated Traditional Graph Similarity Measures
	Proposed AIG-Specific Graph Similarity Measures
	Proposed AIG Attribute Similarity Scores
	Rewrite, Refactor, and Resub Scores
	RRR Score

	Discussion & Future Work
	Conclusion
	References

