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Abstract—Quantum computing is an emerging technology
that has seen significant software and hardware improvements
in recent years. Executing a quantum program requires the
compilation of its quantum circuit for a target Quantum Processing
Unit (QPU). Various methods for qubit mapping, gate synthesis,
and optimization of quantum circuits have been proposed and
implemented in compilers. These compilers try to generate a
quantum circuit that leads to the best execution quality—a
criterium which is usually approximated by figures of merit such
as the number of (two-qubit) gates, the circuit depth, expected
fidelity, or estimated success probability. However, it is often
unclear how well these figures of merit represent the actual
execution quality on a QPU.

In this work, we investigate the correlation between established
figures of merit and actual execution quality on real machines—
revealing that the correlation is weaker than anticipated and that
more complex figures of merit are not necessarily more accurate.
Motivated by this finding, we propose an improved figure of
merit (based on a machine learning approach) that can be used
to predict the expected execution quality of a quantum circuit
for a chosen QPU without actually executing it. The employed
machine learning model reveals the influence of various circuit
features on generating high correlation scores. The proposed figure
of merit demonstrates a strong correlation and outperforms all
previous ones in a case study—achieving an average correlation
improvement of 49%.

Index Terms—quantum computing, quantum circuit compila-
tion, figures of merit, machine learning

I. INTRODUCTION

Quantum computing has made remarkable progress in recent
years, with improvements in both the software and hardware
used to run programs on quantum computers. A quantum
program is typically represented as a quantum circuit, composed
of a sequence of operations. For a quantum program to run
on a specific Quantum Processing Unit (QPU), it needs to
be translated into a form that the hardware can execute. This
process is known as quantum circuit compilation.

The quality of a compiled quantum circuit is usually
measured by so-called figures of merit. Established figures
of merit include the number of gates in the circuit, its depth,
or the expected fidelity and Estimated Success Probability
(ESP, [1]). These figures of merit are intended to describe
how well the circuit will perform on a target QPU. However,
while these figures of merit provide an approximation of
the circuit’s execution quality, they might not always give
an accurate picture of how well the circuit will actually run
on quantum hardware. QPUs are complex systems that face
many challenges during execution, such as interference between
signals applied to neighboring qubits, errors during gate or

measurement operations, and other hardware imperfections that
can impact their performance. These effects are often difficult
to capture with the simple figures of merit used today.

In this paper, we take a closer look at the established figures
of merit and investigate how well they truly reflect the quality of
a circuit’s execution on real QPUs. We find that the correlation
between these metrics and real execution performance is often
weaker than expected. In some cases, it even turns out that
a more complex metric (like ESP) does not lead to a better
approximation.

Furthermore, to address these weaknesses of established
figures of merit, we propose a new way of evaluating circuit
quality using machine learning techniques. This results in an
improved figure of merit that takes into account a variety
of quantum circuit characteristics without requiring QPU
calibration data. The approach achieves an average correlation
improvement of 49%, accurately predicting how well a circuit
can be executed on a targeted QPU. By offering a simple yet
more effective method to assess circuit quality, this work helps
researchers and engineers to develop or adjust compilers, so
that the generated circuits are better suited for a given target
QPU.

This paper is structured in the following way: Section II
offers a concise review of quantum circuit compilation includ-
ing its primary tasks and the established figures of merit for
assessing circuit quality. Section III discusses the limitations
of current metrics (providing the motivation of this work) and
presents the proposed approach for an improved evaluation of
circuit execution quality. Section IV provides detailed insights
into the implementation of the proposed method. The results of
a study are presented in Section V, along with a comparison of
the new approach to established figures of merit and a thorough
discussion. Finally, Section VI summarizes the findings.

II. QUANTUM CIRCUIT COMPILATION

A quantum program is usually designed as a quantum circuit
in order to execute it on quantum hardware. Such a circuit
typically consists of multiple operations called quantum gates
and measurements. During the execution of a program, these
operations modify the state of quantum bits, so-called qubits—
the fundamental computational elements of a QPU. There
are various quantum computing hardware technologies that
realize these operations and qubits in different ways (e.g.,
superconducting, trapped ions, neutral atoms, etc). Since quan-
tum circuits are typically defined on a hardware-agnostic level,
these need to be translated into machine-executable operations.

https://www.cda.cit.tum.de/research/quantum
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Fig. 1: Compilation of a quantum circuit demonstrating (a) mapping, (b) synthesis, and (c), (d) optimization passes for a
four-qubit square layout (only missing a link between Q1 and Q3). The exemplary QPU is subject to crosstalk errors from
parallel gate execution (orange) on neighboring qubits and provides only a low CNOT fidelity (blue) between distant qubits
Q0 and Q2.

Any QPU supports a specific set of executable operations.
Consequently, quantum circuit compilation is necessary to
convert any given quantum circuit into an equivalent one that
utilizes only these supported operations. This section provides
an overview of the main tasks involved in quantum circuit
compilation, along with a review of how the quality of a
compiled circuit is currently assessed using so-called figures
of merit.

A. Compilation Tasks
Depending on the type of the QPU and its specific constraints,

the compilation procedure usually involves a combination of
the following tasks:

Qubit mapping: Quantum circuits typically contain
multi-qubit gates acting on multiple arbitrary qubits. However,
some hardware (like superconducting QPUs) only provides
a limited set of qubits on which multi-qubit operations are
possible. Similarly, for technologies (like trapped ions and
neutral atoms) that do not have this limitation, it is often
sensible to perform them on specific qubits only (e.g., to
reduce shuttling operations). Executing the algorithm, therefore,
usually requires a mapping between the logical (program) qubits
and the physical (QPU) qubits.

Example 1. Fig. 1a shows how the qubits of an example circuit
are mapped to an exemplary superconducting QPU architecture
with a square qubit layout where almost all physical qubits
Q0, Q1, Q2, and Q3 are connected; only missing a direct link
between Q1 and Q3.

Gate synthesis: Quantum algorithms and their corresponding
circuits are commonly designed using a wide set of gate and
measurement operations. Since any QPU only supports a small
number of natively executable operations, each non-native
operation must be synthesized into one or more of these
supported operations. This task is non-trivial, and doing it
optimally is NP-complete [2].

Example 2. Fig. 1b illustrates how the Hadamard gates in
the circuit of the previous example can be translated into the
native Rx and Ry rotation gates provided by the exemplary
superconducting QPU architecture.

Circuit optimization: It is possible to alter a circuit’s gate
composition without changing its original function. Following
specific transformation rules, a general quantum circuit can
be expressed through numerous combinations of distinct gates.
Hence, a circuit can often be optimized with respect to a desired
metric.

Example 3. Fig. 1c demonstrates how the four single-qubit
rotation gates of the previously unoptimized circuit can be
eliminated (according to circuit transformation rules [3]).

Various compilation methods have been proposed for qubit
mapping [4]–[16], gate synthesis [2], [17]–[22], and circuit
optimization [22]–[30]. These tasks are usually implemented
by individual compilation passes that manipulate the circuit.
Passes can be performed in any order and might be repeated
multiple times. Hence, there are various pass sequences that
lead to distinct compiled versions representing the same original
circuit. Finding a suitable order of compilation passes that yield
an efficient circuit is a non-trivial task. This raises the question:
How can the quality of a chosen sequence of passes and its
associated quantum circuit be assessed?

B. Figures of Merit

Besides imposing hardware-specific constraints, current
QPUs additionally pose the risk of erroneous calculations.
Quantum hardware is usually subject to environmental noise
and suffers from imperfect gate and qubit realizations. Due to
this, any quantum operation (even the identity that should leave
a qubit unmodified) can only be performed with some proba-
bility of error. To obtain a circuit that produces high-quality
execution results, its design must minimize the accumulation
of errors. Figures of merit can act as a proxy for the result
quality, enabling the assessment of a compilation run without
the need to execute the resulting circuit. Thus far, the following
figures of merit have been employed in state-of-the-art mapping,
synthesis, and optimization methods such as those mentioned
above.

• Number of gates, i.e., the integer gate count in the circuit.
Often, only two-qubit gates are considered because of their



dominant error rates. A lower number indicates better
performance.

• Circuit depth, i.e., the integer number of gates on the
longest path in the circuit graph. A lower circuit depth
usually indicates lower execution time and fewer gates,
hence a higher circuit quality.

• Expected fidelity, i.e., the product of all decimal gate and
measurement fidelities in the circuit. Since the fidelity is
inversely proportional to the error, higher values suggest
better execution quality.

• Estimated Success Probability (ESP), i.e., the ex-
pected fidelity multiplied by the exponential decay factor
exp [−tqidle/min (T q

1 , T
q
2 )], for all qubits, where tqidle is

the total idle time of qubit q. This figure additionally
requires each qubit’s T1 and T2 relaxation times (which
measure how long it can retain information) and is based
on variants of ESP [1], [31], [32]. High values indicate
good performance.

The first two figures of merit are hardware-agnostic metrics
and, hence, independent of the executing QPU. The latter two
require experimental data about the specific hardware—usually
obtained during device calibration, a process that involves
fine-tuning qubits, gates, and measurement fidelities. The
intuition behind using these as proxies for a circuit’s execution
quality is that these numbers are expected to scale (directly
or indirectly) proportional to the anticipated errors. Under this
assumption, most quantum compilation flows optimize for one
(sometimes multiple) of these figures of merit. However, it often
remains unclear whether the resulting compiled circuit actually
leads to the least error-affected execution and, therefore, the
best solution.

III. MOTIVATION AND PROPOSED APPROACH

The compilation concepts reviewed before provide an
easy-to-use and general approach to converting any algorithm
encoded as a quantum circuit into an executable set of
operations. However, the simplicity and generality can come at
the cost of missing out on better circuit designs, as demonstrated
in the following example.

Example 4. The previously considered circuit, depicted in
Fig. 1c, is compiled according to the established figures of
merit reviewed before, i.e., is minimized with respect to the
overall number of gates and, accordingly, the circuit depth.
Depending on the actual gate fidelity and relaxation values,
this solution will also maximize the expected fidelity and ESP.

However, considering the QPU in Fig. 1(c), this circuit is
unnecessarily prone to crosstalk on neighboring qubits Q0,
Q1, and Q2—an error that occurs when gates are executed in
parallel (highlighted in orange). This effect, along with a low
CNOT fidelity between distant qubits Q0 and Q2 (highlighted
in blue), can be avoided by using the functionally equivalent
circuit shown in Fig. 1(d), where two CNOTs are rearranged
and an additional one is added. This circuit has a higher
number of gates and depth (and would, therefore, be rejected
when applying established figures of merit) but still performs
better when executed on the considered QPU. While expected
fidelity and ESP can account for the low CNOT fidelity between
distant qubits, they remain indifferent to the crosstalk effects.

The example illustrates how relying on the established
figures of merit, which may not fully capture hardware-specific
characteristics, can guide the compilation procedure to subpar
solutions. Similar concerns have been raised before [33], [34],
and were confirmed in a study demonstrating that calibration-
based compilation strategies can achieve higher circuit fidelities
compared to those that solely focus on minimizing the number
of two-qubit gates [35]. Likewise, an individual assessment
of ESP demonstrated its poor correlation with actual device
performance [36]. This already indicates the need for a
comprehensive investigation (and, eventually, improved figures
of merit), but to the best of our knowledge, no comprehensive
study that directly compares the correlation scores of various
established figures of merit and circuit execution quality has
been conducted yet.

At the same time, the investigation and development of
alternative figures of merit are still in the early stages. New
figures of merit have been introduced employing basic machine
learning techniques [37], [38], where the underlying circuit rep-
resentations scale with the depth of the input circuit—making
these methods impractical for deep quantum circuits. This issue
is also present in another approach utilizing the circuit graph
representation, which was used by a transformer-based model
to accurately predict the probability of successful trials [39].
Although more sophisticated, this work only considered circuits
of up to seven qubits and (like ESP) requires accurate T1, T2,
gate and measurement fidelity data, which is often outdated or
not available.

In summary, there is a lack of comprehensive analysis of
the established figures of merit, while emerging alternatives
struggle with scalability and practical limitations. In this work,
we address these gaps with the following contributions:

1) We conduct a comprehensive investigation to quantify
the (weak) correlation between the established figures
of merit (i.e., number of gates, circuit depth, expected
fidelity, and ESP) and a circuit’s actual execution quality.
The study is designed with a focus on real-world
applicability by executing circuits from practical quantum
computing applications on real QPUs.

2) Based on these findings, we propose an interpretable
machine-learning-based figure of merit as an improved
representation of a circuit’s execution quality. This model
works with a depth-independent circuit representation
and provides an individualized figure of merit for any
QPU without requiring detailed calibration data.

IV. IMPLEMENTATION

This section provides details on the implementation of the
contributions outlined above. First, we introduce the measure
required to evaluate the execution quality of a quantum circuit
and demonstrate its correlation with the previously introduced
figures of merit. Based on this measure, a machine learning
approach to generate an improved figure of merit is proposed,
which offers a better correlation and, thus, provides a more
accurate approximation of the execution quality for a given
quantum circuit.



A. Investigating the Correlation Between
Figures of Merit and Execution Quality

The measurement result of a quantum circuit is usually
described in terms of a discrete probability distribution over all
possible qubit states, i.e., combinations of zeroes and ones that
can be illustrated in a histogram (see green and blue charts
in Fig. 2). In order to understand how well a figure of merit
represents the presumed execution quality of a quantum circuit,
we evaluate the result quality of its execution on an actual QPU
and compare it to its true distribution. The true (noiseless)
distribution can be obtained, e.g., from a state vector simulation,
whereas the (noisy) experimental distribution can be obtained
from repeated circuit executions on a QPU. To quantify the
execution quality and, accordingly, the (mis)alignment of the
two histograms, the Hellinger distance

d(P,Q) =
1√
2

√∑2N−1
i=0

(√
p|i⟩ −√

q|i⟩

)2

∈ [0, 1] (1)

between the true distribution P = {p|0⟩, . . . , p|2N−1⟩} and
its QPU counterpart Q = {q|0⟩, . . . , q|2N−1⟩} is used. If the
measurement histograms of the true and experimental QPU dis-
tribution overlap completely, their distance is zero. Conversely,
for highly distinct histograms, the distance approaches one.

In addition to assessing the Hellinger distance d, we
investigate its correlation with any previously introduced figure
of merit y on a set of M quantum circuits. For this task, the
Pearson correlation coefficient

r =

∑M
j=1(dj −md)(yj −my)√∑M

j=1(dj −md)2
∑M

j=1(yj −my)2
∈ [−1, 1] (2)

is calculated, where md and my are the mean (Hellinger
distance d and figure of merit y) values over all circuits in
the set. A perfect linear correlation is represented by |r| = 1,
whereas r = 0 indicates no Pearson correlation at all1.

This correlation (based on the Hellinger distance) can now
be used to quantify how well any figure of merit actually
approximates the execution quality. Furthermore, the Hellinger
distance is additionally used to derive an improved (machine-
learning-based) figure of merit that aims to capture it more
accurately and, thus, can be used as a more precise figure of
merit.

B. Proposed Figure of Merit

With insights from the Hellinger distance, it is possible to
quantify the (mis)alignment between the results obtained from
executing a circuit on a real QPU and the true distribution.
While established figures of merit use indirect metrics to approx-
imate this measure in order to guide the circuit compilation, it
would be far more efficient to directly optimize for a reduction
of the Hellinger distance. However, evaluating the distance for
every possible circuit configuration during compilation would
require an impractical amount of simulation and execution
data.

1There might be non-linear correlation measures that better capture the
relationship between individual figures of merit and the Hellinger distance.
However, any such measure must include a linear (or anti-linear) component
that the Pearson correlation coefficient can capture.
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Fig. 2: Workflow for feature and label generation from a com-
piled quantum circuit. The Hellinger distance—representing the
difference between the circuit’s true distribution and the QPU
execution results—is used as label data for model training.

Hence, we instead propose to train a machine learning
model on a representative set of practical algorithms labeled
with experimentally obtained Hellinger distance values. The
resulting model then acts as an estimator to predict the distance
for any circuit during compilation, effectively serving as a figure
of merit.

To this end, we employ the workflow depicted in Fig. 2. In
order to train an estimator model (pictured in orange) for a
specific QPU, a comprehensive set of feature and label data
is required. Such an estimator receives as input a vectorized
representation, called feature vector (shown in the bottom left),
of all the quantum circuits. To this end, we utilize a revised
version of the circuit encoding introduced in [40], whose size
is independent of the circuit depth and, therefore, constant for
any specific QPU. Among the basic features are the hardware-
agnostic figures of merit, i.e., the circuit depth and its gate
counts. More sophisticated features include circuit liveness,
which captures how actively qubits are utilized; directed
program communication, which quantifies the ratio between
the actual and maximum possible average node degree of the
circuit’s directed interaction graph; as well as parallelism (all
based on [41]) and gate ratios, which reflect the circuit’s
operational density. Notably, the feature vector does not require
calibration data, as is required for calculating fidelity-related
figures of merit.

In addition to extracting the feature representation, every
single circuit must be associated with its Hellinger distance,
which serves as the training label (shown in the top right). This
requires evaluating the noiseless true result distribution and
the noisy QPU distribution, as shown in the green and blue
sample Histogram.

Given a representative set of such circuit features and label
data, a model can be trained and then used to estimate the
Hellinger distance for a given circuit, thereby allowing the
compilation to aim directly at the reduction of Hellinger
distance.

V. EXPERIMENTAL EVALUATION

The ideas and implementation details described above even-
tually lead to a framework that allows for (1) a comprehensive



investigation of the correlation between circuit execution quality
and the established figures of merit and (2) an evaluation of
the proposed (improved) figure of merit. In this section, we
summarize the main results obtained by these investigations
and evaluations. To this end, we first review the used setup.
Afterwards, the obtained results are provided and discussed.

A. Setup
The following describes the experimental setup used in our

investigations and evaluations. All of the presented methods
and results were implemented in Python and are accessible
through the MQT Predictor [40] as part of the Munich Quantum
Toolkit [42]. The source code is publicly available on GitHub2.

1) Used Benchmarks: For the comprehensive investigation
of quantum circuit quality, we utilize all circuits provided by the
MQT Bench collection, an open-source library frequently used
to evaluate compilers, QPUs, and more [43]. This collection
offers a variety of algorithms (like VQE, QAOA, QFT, etc.),
which have been mapped, synthesized, and optimized for
any number between 2 and 20 qubits using the Qiskit [44]
transpiler module at optimization level three. Since circuits
with a depth of more than 1000 are too much affected by noise
when executed on current quantum computers (and, eventually,
would not produce any meaningful results), we only considered
circuits with a compiled depth smaller than 1000—leaving a
total of 222 circuits.

2) Used QPUs: The resulting set of benchmark circuits
has been executed on two superconducting IQM QPUs hosted
at the German Leibniz Supercomputing Centre. Both devices
are members of the 20-qubit series (labeled Q20-A and Q20-
B) [45]. Their native gate set consists of a parameterized
single-qubit rotation gate and the CZ gate on IQM’s crystal
architecture (qubits located on a square grid). In addition to
running them on both QPUs (and generating the corresponding
true distributions), the full set of benchmark circuits has been
simulated using the Qiskit Aear noiseless state vector simulator
on a MacBook Pro (M2 chip), completing within a few hours.

3) Machine Learning Model: All circuits have been ex-
pressed through the numeric feature vector of size 30 and
have been labeled with their associated Hellinger distance
values. Then, a random forest regressor (consisting of multiple
decision trees, implemented with scikit-learn [46]) was trained
for each QPU on the same classical hardware in a few seconds.
This was done using cross-validation over three training sets
and an overall 80/20 train-test ratio. The Pearson correlation
coefficient served as the model performance score during
validation. A hyperparameter grid search to optimize, e.g.,
the number of decision trees, their maximum depth, and the
minimum samples per leaf and split, could be completed in
under a minute on the same classical hardware. Eventually,
like any other figure of merit, the trained model was used to
determine the quality of a compiled circuit and was evaluated
on the (previously unseen) test set.

B. Investigation of Established Figures of Merit
After executing the entire benchmark set on both QPUs and

generating the true distributions, the correlation between the
established figures of merit and the actual circuit execution

2 https://github.com/cda-tum/mqt-predictor

TABLE I: Pearson correlation with Hellinger distance

Figure of merit / QPU Q20-A Q20-B Combined
Number of gates 0.46 0.61 0.53

Circuit depth 0.46 0.62 0.54

Expected fidelity 0.66 0.80 0.73

ESP 0.59 0.70 0.64

Proposed approach 0.88 0.94 0.91

quality has been evaluated. The results are summarized in
Table I, showing the Pearson coefficients for each investigated
figure of merit. Values in the columns Q20-A and Q20-B
correspond to the executing QPUs, whereas the values in
the column Combined provide the correlation for all circuit
executions on both QPUs. To enhance clarity, the table only
shows the absolute correlation scores. Values closer to 1
indicate higher quality figures of merit.

The results provide some interesting insights (both expected
as well as unexpected): First, they show that the number of
gates and circuit depth have very similar correlation scores,
which, considering their clear link between each other, is not
really surprising. Furthermore, the expected fidelity and ESP
obviously provide significantly higher correlation values than
the other figures on both QPUs. Also, this is not surprising:
The number of gates and the circuit depth are rather simple
(albeit easy to use) figures of merit, while expected fidelity and
ESP take hardware information into account. Hence, a better
quality is expected from these figures of merits.

What surprises, though, is that, in some cases, a more
complex metric does not necessarily lead to a better correlation.
In fact, even though expected fidelity and ESP share the same
fidelity term in their calculation, the former achieves a higher,
i.e., better correlation score (0.66 vs. 0.59 on Q20-A and 0.80
vs. 0.78 on Q20-B). Since the only difference lies within the
calibration-data-dependent relaxation term, this result points to
possibly outdated T1, T2 times.

Independently from those differences, the results confirm
that all established figures of merits do not provide a fully
effective correlation between estimated and real execution
performance. Even though the hardware-specific figures of
merit (i.e., expected fidelity and ESP) represent the actual
circuit execution quality better than the target-agnostic figures
of merit (i.e., number of gates and circuit depth), the combined
correlation remains at 0.73 in the best case. This confirms the
discussions and the motivation from Section III, highlighting
that the established figures of merit indeed leave room for
improvement.

C. Evaluation of Proposed Figure of Merit
The above investigation confirmed the weaknesses of the

established figures of merit. Next, we evaluated whether the
proposed figure of merit provides an improvement. To this
end, the correlation of the trained machine learning model is
assessed using the unseen circuit test set. Its Pearson correlation
is presented in the last row of Table I, again for both individual
QPUs and for the total set of all executed test circuits.

The results clearly confirm the improved correlation of the
proposed figure of merit to the actual execution quality. In
fact, on average, the correlation score increases by 62% and
38% for the Q20-A and Q20-B, respectively. Considering the
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average correlation of all previous figures of merit over both
QPUs (last column), the proposed figure of merit outperforms
their correlation scores by 49%.

In order to understand how the proposed figure of merit
managed to capture the execution quality so well, we investigate
the model’s feature importance depicted in Fig. 3. It can be
observed that the model’s prediction quality strongly depends
on features designed to capture qubit activity, operational
density, and qubit interactions—specifically, liveness, gate
ratios, parallelism, and directed program communication. In
contrast, the basic gate counts and circuit depth features show
moderately low importance, aligning with the correlation values
observed in the previous figure of merit analysis.

Overall, the proposed figure of merit offers a significant im-
provement over the established figures of merit. By leveraging
the right combination of circuit features, it manages to capture
the actual circuit execution quality much better.

D. Discussion
The findings presented above provide valuable insights into

the characteristics of an effective figure of merit, enhancing
our understanding of both hardware-agnostic and hardware-
specific (calibration-data-based) approaches. The discrepancy
between expected fidelity and ESP indicates that overly
specific metrics can reduce the correlation when using poor
calibration data. This result is consistent with work on error-
aware compilation methods, which has also found decreased
compilation performance on outdated calibration data [35].

Furthermore, the results showed that neither the number of
gates nor the circuit depth alone serves as a reliable estimator
of circuit execution quality. This finding is supported by
their relatively low contribution to the random forest model
accuracy. Accounting for individual qubit performance through
idle times in the exponential decay factor (see ESP) did not
improve correlation scores. However, incorporating their impact
via liveness and parallelism features did. This underscores
the importance of selecting and combining circuit features
effectively, aligning with similar findings in related work [47],
[48], and demonstrates that such a feature set can yield a far
better figure of merit than any single measure alone.

Finally, unlike the expected fidelity and ESP, the proposed
model does not directly rely on device-specific measurement
data, which is highly valuable when this information is not
(frequently) provided by a QPU provider. Importantly, the
model was trained on real QPU data rather than simulations,
which means it indirectly incorporates device-specific calibra-
tion information.

Overall, these findings show that it is crucial to find the right
balance between incorporating an accurate hardware representa-
tion and abstracting device details. The high correlation scores
obtained through the proposed figure of merit indicate that
the model managed to achieve this performance requirement.
Future work will focus on examining the model’s performance
over time, comparing it to other QPU-specific figures of merit
in the context of evolving QPU noise characteristics.

Lastly, in our experiments, we trained the model on circuits
that can still be classically simulated. With improving hardware,
this will become more challenging. However, there is evidence
to suggest that the Probability of Successful Trials (PST)
derived by appending a circuit’s inverse (hence, removing the
need for simulation) can successfully represent its execution
quality [39]. Future work will investigate to what extent the
PST can be used to improve our proposed approach.

VI. CONCLUSION

This work investigated and improved upon the limitations
of current figures of merit in representing the actual execution
quality of quantum circuits. By analyzing the correlation
between established figures of merit—such as the number
of gates, circuit depth, expected fidelity, as well as ESP—and
real-world execution results, we unveiled that these figures
of merit often fall short of accurately representing quantum
circuit performance on a QPU. This gap highlights the need
for improved metrics that better align with execution quality.

Motivated by that, we introduced a machine-learning-based
figure of merit designed to better correlate with actual cir-
cuit execution quality. The proposed model does work with
a depth-independent circuit representation and provides a
QPU-specific figure of merit. The method outperformed the
traditional figures of merit, showing a 49% improvement in its
correlation with execution quality.

Overall, the obtained findings underscore the significance
of selecting and combining the right circuit characteristics
to develop a figure of merit that closely aligns with actual
circuit execution quality. This work demonstrates that the
appropriate format and combination of circuit features can
yield a far superior figure of merit than any individual measure
alone. We have shown that, to this end, machine learning can
significantly enhance quantum circuit compilation, providing a
more effective approach to evaluating execution quality.
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