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Equivalence checking of quantum circuits via intermediary matrix product operator
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As quantum computing advances, the complexity of quantum circuits is rapidly increasing, driving the need
for robust methods to aid in their design. Equivalence checking plays a vital role in identifying errors that may
arise during compilation and optimization of these circuits and is a critical step in quantum circuit verification. In
this work, we introduce a method based on matrix product operators (MPOs) for determining the equivalence of
quantum circuits. Our approach contracts tensorized quantum gates from two circuits into an intermediary MPO,
exploiting their reversibility to determine their equivalence or nonequivalence. Our results show that this method
offers significant scalability improvements over existing methods, with polynomial scaling in circuit width and
depth for the practical use cases we explore. We expect that this work to set a standard for scalable equivalence
checking of quantum circuits and will become a crucial tool for the validation of increasingly complex quantum
systems.
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I. INTRODUCTION

Real quantum devices are constrained by limitations in
gate sets, topologies, and noise characteristics, making the
direct execution of ideal quantum algorithms impractical.
Consequently, algorithms must undergo multiple layers of
transformation, including compilation to available gate sets,
mapping onto the architecture’s topology, and optimization
to minimize circuit depth and qubit usage. Each stage in this
process introduces the potential for errors, leading to circuits
that may fail to correctly represent the intended algorithm
[1]. As quantum circuits grow in size, particularly with the
advent of fault-tolerant quantum computing, these challenges
will be further compounded by increased circuit depth and
complexity. Without robust methods to identify and mitigate
such errors, we risk a design gap, where quantum hardware
advances, but the ability to reliably develop large-scale, exe-
cutable algorithms lags behind. This underscores the pressing
need for effective debugging tools to ensure that quantum
circuits meet their intended functionality at each step of the
development process [2].

Fortunately, the development of classical computing pro-
vides valuable lessons that can be leveraged to advance the
design, verification, and debugging of quantum algorithms.
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In classical computing, formal equivalence checking has be-
come an essential tool in electronic design automation, used
to ensure that digital integrated circuits represent the same
logical functionality, i.e., the same truth table [3]. Drawing
inspiration from this, we turn our focus to quantum circuits,
aiming to verify whether two circuits implement the same
unitary operation—a process known as equivalence checking.

Determining whether two quantum circuits are equivalent
is a QMA-complete problem (Quantum Merlin Arthur, i.e.,
the quantum analogue of NP problems in classical comput-
ing) [4], requiring the development of advanced methods that
not only operate efficiently in subexponential time but also
scale effectively as quantum algorithms grow in complex-
ity. Previous approaches to equivalence checking, such as
those using ZX-calculus, decision diagrams (DDs), or tensor
decision diagrams (TDDs), face significant challenges in scal-
ability. In this work, we introduce an equivalence checking
method based on tensor networks—specifically, tensorized
quantum circuits and matrix product operators (MPOs), a
leading framework for simulating quantum many-body sys-
tems [5–7]. Tensor networks offer a promising path to enhance
the scalability of equivalence checking, allowing for error
detection in larger circuits and supporting the development
of more complex quantum algorithms. Furthermore, this
approach leverages decades of established techniques in ten-
sor networks, bringing a wealth of theoretical and practical
knowledge to the equivalence checking problem.

To check the equivalence of two quantum circuits, we
utilize an intermediary MPO to compare tensorized versions
of the circuits. Given two circuits, G and G′, the equivalence
can be determined by computing GG′† and comparing it to the
n-qubit identity operator, In. If GG′† is approximately equal to
In (within a specified precision), the circuits are equivalent;
otherwise, they are nonequivalent.
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In our proposed method, an MPO representing In is posi-
tioned between the two circuits, and gates from G and G′†
are contracted into the MPO using an alternating scheme,
G → In ← G′†, to exploit the desired equivalence property.
This process resembles a double-sided time-evolving block
decimation (TEBD) algorithm [8–10], where gates are applied
in a two-qubit temporal zone to neighboring qubit pairs, en-
hancing computational efficiency and minimizing the growth
of bond dimensions—especially when the circuits are equiva-
lent or near equivalent. Once all gates are contracted into the
intermediary MPO, the equivalence of G and G′ is evaluated
by calculating the Frobenius norm of the resulting MPO GG′†
based on its trace.

Our evaluations demonstrate that this method outperforms
the current state of the art in equivalence checking, particu-
larly in detecting nonequivalence. Notably, the method scales
efficiently with both circuit width and depth when comparing
quantum circuits that are closely related, such as when one cir-
cuit is derived from the other through compilation with minor
errors. While equivalence checking remains a QMA-complete
problem, making it intractable for arbitrary circuits, our ap-
proach shows significant potential for practical use cases,
where we see polynomially scaling equivalence checking for
circuits of realistic size and complexity.

This paper is organized as follows. In Sec. II, we introduce
the essential tensor network building blocks, including basic
tensor operations and MPOs, aimed at readers who may be un-
familiar with tensor networks but are interested in equivalence
checking. In Sec. III, we define the equivalence and identity
checking problems, outlining our motivation for addressing
them. We then present our algorithm for MPO-based equiva-
lence checking in Sec. IV, first explaining the approach at a
high level. In Sec. V, we detail the tensorization of quantum
circuits, the application of individual gates to the intermediary
MPO, and the handling of long-range gates. In Sec. VI, we
provide the complete implementation strategy, which involves
a spatial sweep, utilizing temporal zones of the quantum
circuits, as well as the evaluation of equivalence from the
resulting MPO. In Sec. VII, we introduce the experimental
setup and assess the impact of the SVD threshold on our
method, as well as evaluating different entanglement patterns
to study scaling for both equivalent and nonequivalent circuits
against other available techniques. Finally, we discuss the
broader implications of our method, propose future research
directions, and conclude the work in Sec. VIII.

II. PRELIMINARIES

In the past decade, tensor networks have emerged as
state-of-the-art computational methods for solving problems
in quantum many-body physics, from fundamental theoret-
ical challenges to the simulation of quantum circuits. This
section aims to provide readers without a tensor network
background with a foundation to understand the methods em-
ployed in this work. While this introduction is not exhaustive,
it serves as a starting point for comprehending the techniques
used in our equivalence checking method. For more in-depth
treatments of tensor networks, we refer the reader to several
resources [8–12]. Additionally, a visualization of the opera-
tions used throughout this work are found in Fig. 1.

(a)

(b)

(c)

(d)

(e)

FIG. 1. Basic tensor operations and the MPO structure. Each
panel (a)–(e) illustrates one fundamental concept or structure. (a)
Example tensor network notation for rank-1, rank-2, rank-3 ten-
sors, (b) Contraction of a rank-2 tensor Mi j with a rank-1 tensor
v j [Matrix-vector multiplication, Eq. (1)], (c) Reshape of a rank-4
tensor into a rank-2 tensor and vice versa [Eq. (2)], (d) SVD of an
arbitrary matrix M [Eq. (3)]; the diamond denotes the S matrix, and
(e) A 3-site MPO with labeled indices, including χi = 1 dotted lines
[Eq. (4)].

Tensors are generalizations of vectors and matrices from
linear algebra to multilinear algebra. Computationally, tensors
can be viewed as multidimensional arrays, with the rank of a
tensor referring to the number of dimensions. Scalars, vectors,
and matrices are simply rank-0, rank-1, and rank-2 tensors,
respectively, while higher-dimensional arrays are referred to

023261-2



EQUIVALENCE CHECKING OF QUANTUM CIRCUITS VIA … PHYSICAL REVIEW RESEARCH 7, 023261 (2025)

as rank-k tensors, where k ∈ N. Mathematically, a rank-k
tensor is indexed by k dimensions and can be visualized as
a diagram with k legs extending from a central node. The
symbol used to represent a tensor is arbitrary, but multiple
symbols may be employed to highlight different roles in a
tensor network.

Matrix multiplication can be generalized to tensor contrac-
tion, which involves summing over a shared index between
two tensors. For example, the matrix-vector multiplication
v′ = Mv for a vector v ∈ Cb and matrix M ∈ Ca×b is written
as

v′
i =

n∑
j=1

Mi jv j, (1)

where v′ ∈ Ca, and the contraction is performed over the
shared index j.

Just as vectors can be reshaped into matrices or vice versa,
a reshape operation allows us to transform a rank-k tensor into
a rank-k′ tensor by combining or splitting dimensions. This
operation is essential in tensor networks and is often denoted
by grouping indices, such as reshaping a rank-4 tensor T ∈
C2×2×2×2 into a rank-2 tensor T ∈ C4×4, written as

Ti jkl → T(i j)(kl ). (2)

Reshaping is crucial for tensor network operations, such as
decomposition methods, many of which are defined only for
matrices. To apply these methods to higher-rank tensors, we
first reshape them into matrices, perform the decomposition,
and then reshape the results back into the original form (or a
desired alternative).

A key decomposition method is the singular value decom-
position (SVD), which decomposes any matrix M ∈ Ca×b as

Mi j =
χ∑

k=1

UikSkkV
†

k j, (3)

where U ∈ Ca×χ and V † ∈ Cχ×b are the left- and right-
eigenvector matrices and S ∈ Rχ×χ is a diagonal matrix of
singular values, with χ � min(a, b). This process is used
extensively in tensor network methods. The total number of
singular values, χ , is referred to as the bond dimension, which
represents the amount of information retained between the
two parts of the tensor. Truncating χ based on a threshold
smax yields an approximate decomposition. This method is fre-
quently used on higher-rank tensors, which are reshaped into
matrices, decomposed using the SVD, and then contracted or
reshaped back into tensors.

The SVD allows for the decomposition of a matrix repre-
senting a quantum operator into a tensor train representation
known as an MPO [5–7]. A global operation acting on n
qubits, g ∈ C2n×2n

, can be expressed as an MPO composed
of n rank-4 tensors:

W
q′

1,...,q
′
n

q1,...,qn =
χi∑

a0,...,an=1

n∏
i=1

W ai−1,ai

qi,q′
i

, (4)

where the physical dimensions qi, q′
i correspond to local trans-

formations at the ith qubit, and ai−1, ai represent the left- and
right-bond dimensions. The bond dimensions dim(ai ) = χi

encode the operator’s entanglement capacity.

The values of χi reflect the operator’s ability to generate
or destroy quantum entanglement [13,14]. Operators with low
bond dimensions χi are less entangling and thus easier to
store and manipulate. Efficient storage and computation are
possible when χi is small across the network, allowing us to
represent and manipulate complex quantum operators without
an exponential growth in resources.

III. EQUIVALENCE CHECKING

In the context of quantum computing, equivalence check-
ing involves proving that two quantum circuits, G and G′,
represent an equivalent unitary operation or demonstrating
their nonequivalence via a counterexample. This process is
comparable to the verification of classical logic circuits, with
one circuit serving as the specification and the other represent-
ing the device being verified. Within quantum computing, this
approach targets a wide range of use cases, from researchers
building circuits by hand who want to ensure they have made
no mistakes up to the integration of equivalence checking into
quantum computing software stacks which may have multiple
levels of compilation and optimization.

A. Considered problem

Equivalence checking of quantum circuits can be per-
formed using various methods, ranging from simple to
complex. To illustrate this, we first define the unitary operators
representing two quantum algorithms, U and U ′, both acting
on n qubits. The equivalence checking problem asks whether

U = eiθU ′,

where θ ∈ (−π, π ] denotes a global phase. Unitary operators
possess a crucial property that we can exploit:

UU † = U †U = In, (5)

where In is the n-qubit identity operator, defined as

In = I ⊗ · · · ⊗ I︸ ︷︷ ︸
n

, (6)

and I is the local identity operator. One of the simplest ways
to check whether two unitaries U and U ′ are equivalent is to
determine if they satisfy Eq. (5) when substituted for each
other:

UU ′† = U ′U † = eiθ In. (7)

However, in quantum computing, the entire unitary opera-
tor U (and similarly U ′) is typically not directly accessible for
comparison. Instead, the unitary must be reconstructed from
the individual quantum gates:

G[U ] = g0 . . . g|G|−1,

where G[U ] represents a quantum circuit encoding U , com-
posed of |G| gates gi for 0 � i < |G|. For brevity, we will drop
the bracket notation of G[U ].

Given the reversibility of quantum algorithms [and the
properties of unitary operators in Eqs. (5) and (7)], the equiv-
alence of two quantum circuits, G and G′, can be determined
using the following equivalence checking condition:

G = G′ ⇐⇒ GG′† = eiθ In, (8)

023261-3



SANDER, BURGHOLZER, AND WILLE PHYSICAL REVIEW RESEARCH 7, 023261 (2025)

where G′† denotes the conjugation and reversal of all gates in
G′. Thus,

GG′† = g0 . . . g|G|−1(g′
|G′|−1)† . . . (g′

0)†, (9)

which leads to two QMA-complete problems [4]: the identity
check

GG′† ?= In, (10)

and the equivalence check

G
?= G′. (11)

To solve this computationally, each gate gi must be stored
and manipulated to construct GG′†. In its simplest form, this
can be done using matrix-matrix multiplication, where each
qubit-specific operation is extended using the tensor product
to create global matrices gi ∈ C2n×2n

. However, Eq. (9) suffers
from exponential growth in both the size of the matrices and
the computational cost of performing the equivalence check.
Therefore, it becomes necessary to develop methods that mit-
igate this exponential scaling, at least in practical cases, by
encoding gate operations in more compact data structures
rather than relying solely on matrices.

B. Related work

Several data structures have been developed to mitigate the
exponential scaling problems in quantum circuit equivalence
checking, including the ZX-calculus, DDs, and TDDs. Each
of these methods, however, has distinct limitations that we aim
to address.

The ZX-calculus [15–18] is a graphical notation for quan-
tum circuits, equipped with a powerful set of rewrite rules
that enable diagrammatic reasoning about quantum systems.
Primarily used for circuit compilation and optimization, ZX-
calculus has also been applied to equivalence checking [19].
In this approach, one of the circuits is inverted and combined
with the other, forming GG′†, as described by Eq. (9). The
rewrite rules are then used to simplify the combined ZX di-
agram. If the diagram reduces to bare wires, the circuits are
deemed equivalent. This method is efficient for large circuits
but has a major drawback: the ZX-calculus, as proposed in
Ref. [19], is incomplete. It cannot reliably conclude non-
equivalence if the diagram does not fully reduce to the identity
[20,21].

Another approach is the use of DDs [22–24], which are
inspired by binary decision diagrams from classical com-
puting [25]. DDs represent quantum circuits as directed
acyclic graphs (DAGs) with complex-valued edge weights
by recursively splitting matrices into subparts and exploiting
redundancies. Applied to equivalence checking [26], an inter-
mediary identity operator In, represented by a DD, is placed
between two circuits G and G′†, as described in Eq. (9). Gates
from each circuit are alternately applied to the intermediary
DD, which remains compact if the gates effectively cancel
each other out, leaving a structure equivalent to GG′†, which
can be compared to In to determine equvialence or nonequiv-
alence. However, DDs can become exponentially large in the
worst case, particularly when circuits are nonequivalent, as the
resulting DD may not reduce to the compact identity diagram
[27].

TDDs [28–30] offer another approach, combining ideas
from tensor networks with DD-like data structures. Each gate
is reduced to a local tensor operation on the qubits it interacts
with, and the result is stored in a DD format to exploit redun-
dancies. This method contracts gates from G and G′†, followed
by tracing the TDD to perform the identity check. However, it
suffers from the same limitations as DDs, such as the potential
for exponential growth in non-equivalent cases. Additionally,
the TDD approach does not fully utilize many of the advanced
techniques developed for tensor network simulation, focusing
instead on exploiting redundancies within the TDD format.

Alternatively, all operations in circuits G and G′† could be
directly represented as tensors, and their equivalence could
be checked using standard tensor contraction algorithms [31].
In this approach, the full network representing GG′† would be
contracted. However, this method faces scalability challenges,
as the intermediate tensors generated during contraction, as
well as the final tensor, scale exponentially with the number
of qubits, similar to the issues faced by the TDD approach.

IV. MPO-BASED EQUIVALENCE CHECKING

To address the limitations of the methods described in
previous works, we propose an equivalence checking method
based on tensorized quantum circuits [31–33] and an in-
termediary MPO [5–7] that follows an alternating strategy:
G → In ← G′†. Unlike DDs, where the entire system’s qubits
are interdependent, the local tensors of an MPO ensure that
operations only affect local regions, avoiding global growth
in complexity. Additionally, this MPO-based method can
conclusively prove nonequivalence, unlike the incomplete
ZX-based approach from Ref. [19].

Each quantum gate can be reduced to local operations
that act on specific qubits. For k-qubit gates (kQGs), this
reduction is done by reshaping the matrix representation into
a tensor form. While MPO methods are generally designed for
nearest-neighbor qubits, long-range gates (which are essential
for many quantum algorithms) can be similarly represented
by decomposing them and then extending the tensors into an
MPO form using identity tensors. This approach decouples
the gate representation from the total qubit count, resulting in
a compact tensor representation.

The proposed MPO-based equivalence checking algorithm
leverages this tensor representation of quantum gates. To han-
dle the scalability challenges of directly contracting tensors
from GG′†, we introduce an intermediary MPO representing
the identity operation, akin to the DD-based strategy [26]
mentioned in Sec. III B, but with a unique data structure
and application strategy. By inserting the intermediary MPO
between the circuits, we can represent the operation as

GInG′† = g0 . . . g|G|−1In(g′
|G′|−1)† . . . (g0)†

and contract gates from each circuit into the MPO according
to the following application strategy:

G → In ← G′†.

Since the n-qubit identity matrix In is formed as a repeated
tensor product of local identity matrices [Eq. (6)], its MPO
representation is maximally compact with bond dimensions
χi = 1 ∀i. The tensorized gates are applied to the local tensors
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(a)

(b)

(c)

FIG. 2. Visualization of MPO operations required for the equivalence checking algorithm. (a) Application of a 1QG to an MPO,
(b) Application of a 2QG to an MPO, and (c) Application of two sites of a long-range gate to an MPO.

of the MPO by contracting their physical indices qi, q′
i, corre-

sponding to the inputs for gates from G and G′†, respectively.
The gates are applied sequentially in a two-qubit spatial

sweep across the tensors of the intermediary MPO. For each
qubit pair (spatial zone), we apply all gates from both circuits
that act within that spatial zone (temporal zone). This strategy
minimizes the number of SVDs needed and helps keep the
bond dimensions as low as possible, especially in cases where
the circuits are equivalent or nearly equivalent.

After all gates have been applied and the intermediary
MPO W represents GG′†, we can check the equivalence of
the circuits by calculating the Frobenius inner product with
the identity

〈IN , GG′†〉 = 〈IN ,W 〉 = Tr[W ].

This enables efficient evaluation of the equivalence condition
from Eq. (11) and results in a complete MPO-based equiva-
lence checking algorithm.

The following section details the implementation for read-
ers less familiar with tensor network methods, particularly
how quantum circuit gates are initialized and applied to
the MPO structure. These operations are explained through
equations using tensor notation and are visualized in Fig. 2.
Readers already familiar with this topic may proceed to
Sec. VI, where we discuss the application strategy that under-
pins the computational efficiency of the MPO-based method.

V. GATE APPLICATION

To perform MPO-based equivalence checking, quantum
gates must be applied to the intermediary MPO. This involves
tensorizing the gates and determining how and where they
are applied within the local site tensors of the MPO. For
kQGs with k � 2 acting on neighboring qubits, this process
is straightforward. However, for kQGs with k > 2 and long-
range gates, extra care is needed, as MPOs are optimized
for nearest-neighbor interactions. This section describes how
quantum gates are represented as tensors and how individual
gates are applied to the intermediary MPO.

A. Nearest-neighbor gates

Any kQG can be represented by a rank-2k tensor, obtained
by reshaping the matrix form into local dimensions corre-
sponding to each site:

g ∈ C2k×2k → g ∈ C

2k︷ ︸︸ ︷
2 × · · · × 2.

For a 2QG, this reshaping creates a rank-4 tensor: g ∈
C4×4 → C2×2×2×2. Each dimension corresponds to the local
input and output leg of the tensor for each qubit.

When a gate is applied to neighboring qubits, its tensor
can be applied directly to the local tensors of the intermediary
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MPO. For a single-qubit gate (1QG) g ∈ C2×2 acting on qubit
i from algorithm G, it is contracted into the MPO W at site i
along the corresponding index qi:

W ai−1,ai

q′′
i ,q′

i
=

1∑
qi=0

gq′′
i ,qiW

ai−1,ai

qi,q′
i

, (12)

where dim(qi ) = dim(q′
i ) = dim(q′′

i ). Similarly, a 1QG from
G′† acts on index q′

i. Since these gates are local, they do
not generate entanglement and do not increase the bond di-
mensions of the MPO tensors. This process is illustrated in
Fig. 2(a).

For kQGs with k � 2, the application requires contraction
of all tensors they act upon, including bond dimensions, form-
ing a higher-rank tensor. For example, a 2QG, represented as
a rank-4 tensor g ∈ C2×2×2×2 acting on neighboring qubits i
and i + 1, results in a rank-6 tensor:

�
ai−1,ai+1

q′′
i ,q′′

i+1,q
′
i,q

′
i+1

=
∑

qi,qi+1
ai

gqi,qi+1

q′′
i ,q′′

i+1
W ai−1,ai

qi,q′
i

W ai,ai+1

qi+1,q′
i+1

. (13)

This tensor is reshaped into a matrix, grouping dimensions
across the qubits:

�
ai−1,ai+1

q′′
i ,q′′

i+1,q
′
i,q

′
i+1

→ �
(ai−1q′′

i q′
i )

(ai+1,q′′
i+1,q

′
i+1 ) := �mat,

and then an SVD is applied:

�mat = U (SV †) =: W (ai−1a′
iq

′′
i q′

i )W (a′
iai+1q′′

i+1q′
i+1 ), (14)

resulting in a new bond dimension ai → a′
i. The singular

values in S can be truncated if necessary before multiplying
it into one of the neighboring matrices. Finally, the resulting
matrices are reshaped into rank-4 tensors for the intermediary
MPO:

W ai−1,a′
i

q′′
i ,q′

i
W a′

i,ai+1

q′′
i+1,q

′
i+1

.

This process is visualized in Fig. 2(b).
For kQGs with k > 2, this process results in larger inter-

mediate tensors �, which require repeated applications of the
SVD, and more opportunities for the bond dimension to grow.
To avoid this, we decompose kQGs with k > 2 into MPOs and
treat them as long-range gates to prevent the creation of large
� tensors.

B. Long-range gates

Any kQG can be decomposed into a k-site MPO using
repeated SVDs. Each site of this MPO represents a local
interaction, while the bond dimension allows information to
flow between tensors. For example, a 2QG can be decomposed
as:

gmn =
χ∑

b j=1

Am,b j Bbj ,n,

where A ∈ C4×χ and B ∈ Cχ×4. These tensors can be re-
shaped into local tensors of an MPO: A → C2×2×1×χ and
B → C2×2×χ×1.

This leads to a nearest-neighbor two-site MPO representa-
tion of the gate:

g
q′

j ,q
′
j+1

q j ,q j+1 =
χ∑

b j=1

A
bj−1,b j

q j ,q′
j

B
bj ,b j+1

q j+1,q′
j+1

,

where b j−1 = b j+1 = 1, and the bond dimension χ is de-
termined by the properties of the decomposition. This can
be extended for long-range gates acting on non-neighboring
qubits j and j by inserting identity tensors at noninteracting
sites:

g
q′

j ,...,q
′
j

q j ,...,q j
=

χ∑
b j ,...,b j=1

A
bj−1,b j

q j ,q′
j

⎡
⎣

j−1∏
i= j+1

Ibi−1,bi

qi,q′
i

⎤
⎦B

bj−1,b j

q j ,q
′
j

=:
χ∑

b j ,...,b j=1

j∏
i= j

gbi−1,bi

qi,q′
i

.

Long-range gates are applied to the intermediary MPO by
iteratively contracting the gate MPO tensors in a sweep. For
a long-range gate g acting on sites j to j, we start at qubits
( j, j + 1) and create a two-site tensor � as in Eq. (13):

�
a j−1,b j−1,a j+1,b j+1

q′′
j ,q

′′
j+1,q

′
j ,q

′
j+1

=
∑

q j ,q j+1

a j ,a′
j

g
b j−1,b j

q′′
j ,q j

g
bj ,b j+1

q′′
j+1,q j+1

W
aj−1,a j

q j ,q′
j

W
aj ,a j+1

q j+1,q′
j+1

.

After constructing �, it is reshaped and decomposed using
the SVD, similar to the nearest-neighbor case. This process is
repeated for all sites until the end of the gate at j is reached, at
which point the long-range gate MPO has been fully applied
to the intermediary MPO. This is visualized in Fig. 2(c).

Applying gates with k > 1 requires SVD decompositions
to return the intermediate tensor � to the original MPO form.
The SVD is the most computationally expensive step in the
equivalence checking algorithm and can cause bond dimen-
sion growth, potentially leading to slowdowns. To mitigate
this, we aim to extend the individual gate application to a
multigate application strategy, allowing us to apply as many
operations to � as possible before performing the decompo-
sition.

VI. APPLICATION STRATEGY

In previous works, the strategy for applying gates between
circuits has been crucial in maintaining the compactness of
the intermediary data structure, whether by applying gates
one-to-one, proportionally based on the number of gates, or
using more advanced strategies [26]. While such strategies can
benefit from the spatial locality of quantum circuits, they often
do not fully exploit the circuit’s temporal structure. Therefore,
instead of reusing these strategies from other data structures,
we propose an application strategy that fully leverages the
advantages offered by tensor networks.

A. Spatial and temporal zones

Our approach is based on a two-site spatial sweep across
pairs of qubits, which is common in tensor network meth-
ods such as TEBD [8] and DMRG [11]. In the proposed
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(a)

(b)

FIG. 3. Visualization of the MPO-based equivalence checking algorithm in both quantum circuit (a) and DAG (b) form. (a) This figure
shows an example of two equivalent linear entanglement algorithms with an intermediary MPO. Each color represents the zones during a sweep
with the order G12 → I4 ← G′†

12 (green), G34 → I4 ← G′†
34 (orange, encircled as an example), then G23 → I4 ← G′†

23 (blue) and (b) This shows
the equivalent DAG representation of the above circuit. The transition edges represent the qubit it corresponds to, allowing easy identification
of zones and the order of tensors to apply.

MPO-based equivalence checking, we use this sweep to sys-
tematically update the tensors of the intermediary MPO by
iterating over pairs of qubits, breaking down the quantum
circuit into smaller, more manageable chunks–similar to a
double-sided, MPO-based TEBD algorithm.

However, unlike previous proportional gate application
strategies, we simultaneously apply gates from both circuits
within what we call the temporal zone of the qubits. This
zone includes all gates that act exclusively on the selected
pair of qubits and is conceptually similar to the causal (or
light) cones used in expectation value calculations [34–37].
The temporal zone application digs as deeply into the circuits
as possible, applying as many gates as available at each step.
Instead of requiring an SVD after each multiqubit gate, this
strategy requires an SVD only after applying the full temporal
zone, which minimizes the number of SVDs required and
helps prevent bond dimension growth, particularly when the
circuits are equivalent or nearly equivalent.

B. Combined sweep

In this method, we perform a two-site spatial sweep across
the intermediary MPO W , alternating between even-indexed
and odd-indexed qubits. At each spatial zone (i, i + 1), we ap-
ply tensorized gates from both circuits, G and G′†, in the order
defined by the directed acyclic graph (DAG) representation of
each circuit.

The DAG representation provides a structured way to
identify temporal zones, where we traverse the edges cor-
responding to qubits (i, i + 1) and sequentially apply gates

until encountering a node connected to another qubit outside
the current spatial zone. This traversal marks the end of the
temporal zone for (i, i + 1). Nodes corresponding to applied
gates are removed from the DAG, and the process is repeated
for subsequent spatial zones. As shown in Fig. 3, the DAG
representation helps determine the temporal zones and their
associated gate sequences.

Differences in the DAG structures of G and G′ can in-
troduce mismatches in the temporal zones, particularly when
long-range gates or differences in qubit connectivity are
present. For example, while the transpilation process for G′
may assume all-to-all qubit connectivity, G may retain a
specific structure such as a linear nearest-neighbor structure.
This mismatch results in temporal zones in G′ that may not
perfectly align with those in G. In such cases, long-range gates
in either circuit require recursive treatment.

More precisely, to ensure efficient operator cancellations
even in cases of long-range gates, the method introduces an
MPO-MPO contraction step when a long-range gate or k-
qubit gate (k > 2) is encountered. Here, the overall even/odd
sweep is interrupted to handle the long-range interaction by
using a subsweep along the sites of the gate MPO. As each set
of neighboring sites in the gate MPO are contracted with the
intermediary MPO, the temporal zone is applied from deeper
into each circuit. This approach minimizes the computational
cost associated with handling mismatched DAG structures
while preserving the operator cancellations enabled by local
temporal zones. By addressing potential mismatches in the
DAG structures of G and G′ through recursive subzone pro-
cessing, this method ensures robustness and efficiency even in
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FIG. 4. Tensor trace of an MPO [Eq. (15)] used to perform the
identity check in Eq. (16).

the presence of long-range gates or varying circuit connectiv-
ity patterns.

Once all gates are applied for a given spatial zone, the
resulting tensor � = Gi,i+1WiWi+1G′†

i,i+1 is decomposed using
the SVD, reshaped back into two rank-4 tensors, and used to
update the intermediary MPO. The even/odd sweep continues
across the MPO until all gates have been applied and all nodes
removed from the DAG.

C. Evaluating GG′†

Once all gates have been contracted into the intermedi-
ary MPO, the resulting MPO W now encodes GG′†. The
equivalence of G and G′ can be evaluated using Eq. (11).
Specifically, we check how close W is to the identity oper-
ation In by calculating the Frobenius inner product 〈A, B〉F =
Tr[A†B]. The inner product between W and In (possibly with
a global phase) simplifies to

〈e−iθ In,W 〉F = eiθ Tr[W ],

which can be computed by contracting the physical dimen-
sions qi and q′

i:

Tr[W ] =
χi∑

a0,...,an=1

d−1∑
q1,...,qn=0

n∏
i=1

W ai−1,ai
qi,qi

. (15)

This process is illustrated in Fig. 4.
Unlike quantum states, operators do not inherently require

normalization; thus, the trace of W may not be 1. However, for
an n-qubit identity operator In, we have Tr[In] = 2n, making
In (up to a global phase) the unique unitary achieving that
maximum trace. Consequently, we can check equivalence via

∣∣∣∣ eiθ Tr[W ]

2n

∣∣∣∣ ≈ 1 ⇐⇒ G = G′,

which in practice leads to the condition

∣∣∣∣
Tr[W ]

2n

∣∣∣∣ � 1 − ε ⇐⇒ G = G′, (16)

where ε (0 � ε < 1) defines a numerical tolerance such that

1 − ε � Tr[W ]

2n
� 1 + ε.

Furthermore, the global phase does not affect Tr[W ]
2n because

∣∣∣∣ eiθ Tr[W ]

2n

∣∣∣∣ = |eiθ |
∣∣∣∣
Tr[W ]

2n

∣∣∣∣ =
∣∣∣∣
Tr[W ]

2n

∣∣∣∣.
This identity check can be scaled to any length MPO,

enabling the use of an early stopping condition. For W to be
equivalent to the n-qubit identity In, each local tensor Wi must
be equivalent to the local identity I . Therefore, if all gates
acting on a specific qubit i have been applied, but the partial
trace reveals nonequivalence for that qubit, we can conclude
that the circuits are not equivalent and terminate the algorithm
early. Depending on the circuit topology, this early stopping
condition can significantly speed up the algorithm. This could
also be extended to detect specific circuit bugs, although this
is left for future work.

An alternative way to verify GG′† is to first check whether
all bond dimensions χi = 1 for all i, then check if each local
matrix is the identity. However, in practice, small numerical
imprecisions often cause slight increases in bond dimensions,
especially for larger systems, even when the result is the
identity. A final SVD sweep across the entire MPO can reduce
these extra dimensions, but it is computationally less efficient
than directly calculating Tr[GG′†]. Moreover, χi = 1 could
also mean that the operator factorizes into arbitrary local
operators, making this criterion ambiguous. By contrast, com-
puting the trace immediately provides a clear global check
of equivalence that is both more robust and efficient in most
practical settings.

D. Advantages

This application strategy offers two key benefits. First, it
reduces the number of SVDs required by applying multiple
gates at once, ensuring that if several 2QGs lie within the
temporal zone, only a single SVD is needed. This can lead to
significant efficiency gains, depending on the circuit structure.
Most importantly, by applying gates from both circuits simul-
taneously, the bond dimension remains small when the circuits
are structurally similar, such as when one is derived from the
other via compilation. In such cases, the circuits effectively
cancel out one another, reducing the operator entanglement
and keeping the MPO bond dimensions low throughout the
algorithm, ultimately improving computational efficiency.

VII. RESULTS

To evaluate the performance and scalability of the proposed
MPO-based equivalence checking method, we implemented
a Python prototype using numpy [38] for tensor representa-
tions and opt-einsum [39] for efficient tensor operations. This
implementation is part of the Munich Quantum Toolkit [40]
and is available in the YAQS package found at Ref. [41], as
well as integrated as a tool in QCEC [26]. The performance
of this method is compared against the established DD- and
ZX-based methods found in the QCEC package. All tests were
executed on an i7-1165G7 (2.80 GHz).
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For benchmarking, we generated parameterized two-local
quantum circuits using IBM’s qiskit [42]. Each circuit consists
of a block made of a layer of single-qubit rotation gates, Rx,
followed by an entanglement layer of two-qubit rotation gates
Rzz (with various entanglement patterns). This is then repeated
before a final layer of Rx gates.

The tested circuits are then generated as square n × n cir-
cuits, meaning that for n qubits, there are n repetitions of
this rotation structure. Each rotation angle, θi, is randomly
(according to a uniform distribution) selected from the range
[−π, π ], with each block generated independently such that
the structures do not repeat. This is visualized in Fig. 5(a).

To evaluate the performance of the MPO-based method,
we consider three classes of entanglement patterns, each dis-
tinguished by how many long-range gates they contain:

(1) Linear entanglement.
Each qubit interacts only with its nearest neighbors. In

each layer, the Rzz gates follow a staircase pattern, connecting
(qi, qi+1) for i = 1, . . . , n.. Hence, there are no long-range
gates. This is shown in Fig. 5(b).

(2) Shifted-circular alternating (SCA) entanglement.
This pattern extends the linear circuit by adding a single

long-range gate (q1, qn) within each layer. The order of gates
in a layer shifts so the long-range gate alternates its position
each time [43]. For example, in one layer the entangling gates
contain a long-range gate (q1, qn) followed by (qi, qi+1) for
i = 1, . . . , n. In the next layer, this long-range gate shifts such
that the circuit has a gate (q1, q2), then the long-range (q1, qn),
followed by (qi, qi+1) for i = 2, . . . , n. The first repetition
block is shown in Fig. 5(c) as an example.

(3) Full entanglement.
Each qubit interacts with every other qubit in each layer,

resulting in many long-range gates. Specifically, the Rzz gates
connect all pairs (qi, q j ) for i, j = 1, . . . , n, where i = j,
creating both a larger total number of gates and extensive
long-range entanglement. This is shown in Fig. 5(d).

These circuits were chosen to provide a generalized set
of quantum circuits, representing a wide range of applica-
tions, suitable for thoroughly testing the proposed equivalence
checking method.

The effectiveness of MPO-based methods, and similar
MPS-based methods, is heavily influenced by the interaction
range. These classes are designed to represent a spectrum of
scenarios, ranging from ideal (linear entanglement) to non-
ideal (full entanglement), with a transitional regime (SCA
entanglement) in between.

After generating the circuits G, each circuit is transpiled—
optimizing and mapping the gates—to a new circuit G′ with
the gate set supported by IBM’s Heron architecture:

{I, X,
√

X , Rz(θ ), CZ},

with all-to-all qubit connectivity, allowing long-range gates
to exist in G′. We then use circuits G and G′ to test each
equivalence checking method, either by directly comparing
the circuits or by introducing deliberate errors into G′. Specif-
ically, we consider three types of errors:

(1) Missing gate error.
A number of gates are randomly removed from G′, repre-

senting faulty transpiler passes.

Rx(θ1)

Rx(θ2)

Rx(θ3)

Rx(θ4)

Entanglement layer

Rx(θ5)

Rx(θ6)

Rx(θ7)

Rx(θ8)

(a)

Rzz(θ1)

Rzz(θ2)

Rzz(θ3)

(b)

Rzz(θ1)

Rzz(θ1)

Rzz(θ2)

Rzz(θ3)

Rzz(θ4)

(c)

Rzz(θ1)
Rzz(θ2)

Rzz(θ2)

Rzz(θ3)

Rzz(θ3)

Rzz(θ4)
Rzz(θ5)

Rzz(θ5)
Rzz(θ6)

(d)

FIG. 5. This figure shows a single repetition of each circuit
structures used in the experimental setup. For n qubits, each struc-
ture is repeated n times. All angles are randomly selected for each
gate according to a uniform distribution [−π, π ]. Each repetition
is generated independently with independently generated angles, (a)
This visualizes the general circuit structure used in all experimental
setups. This structure is repeated n times, each time with different
random rotation angles, using the below entanglement layers, (b)
Linear entanglement layer, (c) Shifted-Circular Alternating (SCA)
entanglement layer, and (d) Full entanglement layer.

(2) Rotation angle error.
All rotation angles in G′ are offset by a fixed amount,

simulating rounding errors or uncalibrated control hardware.
(3) Permutation error.

Random SWAP gates are inserted at the beginning of G′,
representing mismatched virtual-to-physical qubits or incor-
rect qubit ordering.

For all tests, each data point represents the average runtime
over ten samples with a trace fidelity tolerance of ε = 10−13.
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FIG. 6. This figure shows the deviation ε(smax) = 1 − Tr[W ]
2n

caused by various SVD thresholds for each circuit type. This was
tested for 60 logarithmically spaced SVD thresholds smax for ten
circuits of each type, where the average is plotted. The shaded area
shows one standard deviation from the average.

The average runtime T and the standard deviation σ (T ) are
reported for each test case.

A. SVD behavior

The SVD threshold smax plays a critical role in the perfor-
mance of tensor network methods, as it directly controls the
truncation of singular values and thus the growth of the bond
dimensions of the intermediary MPO. Understanding its effect
is essential before analyzing the scalability of the proposed
MPO-based equivalence-checking method.

To investigate this, we generate 10 5 × 5 circuits G of each
entanglement type (linear, SCA, and full), and transpile them
into new circuits G′. We then check their equivalence using
60 logarithmically spaced SVD thresholds smax in the range
[10−6, 1].

For each smax, we compute the deviation from the ideal
equivalence condition as

ε(smax) = 1 − Tr[W ]

2n
.

This ε(smax) measures the inherent numerical error generated
from the truncation in the method itself. This can be un-
derstood as the numerical tolerance required in the trace to
assert equivalence between the two circuits G and G′ for a
given SVD threshold such that ε < ε(smax) must be true to
guarantee correctness. The average over ten circuits of each
entanglement type is plotted in Fig. 6.

The plot illustrates how ε(smax) behaves for the three en-
tanglement patterns, highlighting the threshold beyond which
equivalence can no longer be reliably asserted. For instance,
circuits with full entanglement exhibit significant sensitivity
to the SVD threshold, continuously introducing more error
as the threshold increases. In contrast, the SCA circuit with
fewer long-range gates has a hard cut from roughly machine
error to a continuous curve around smax ≈ 10−2. Notably,
linear circuits are robust for any value smax < 1. Due to the

cancellations that occur in these benchmarks, the intermediary
MPO will almost exclusively be close to the identity. As soon
as the intermediary MPO is not consistently close, e.g., in the
case of many long-range gates, then this value must be chosen
with care.

B. Error injection

To investigate this, we tested three SVD thresholds, smax:
a low threshold (10−6), a medium threshold (10−3), and a
high threshold (10−1). Since the equivalence condition G =
G′ holds only when the intermediary MPO exactly equals
the identity and nonequivalent cases have infinite variations,
we expect flexibility in choosing smax without risking false
equivalencies.

We conducted tests using linear entanglement circuits G of
size n = 10 (i.e., 10 × 10) and transpiled them into new cir-
cuits G′, introducing various errors. We measured the runtime
required to detect nonequivalence under different thresholds.
Additionally, we evaluated the runtime in equivalent cases
(no errors) to observe the effect of the SVD threshold on
performance. These results are presented in Fig. 7.

1. Missing gate errors

In this test, we randomly removed a certain number of
gates, |g|removed, from G′ to simulate potential errors during
transpilation. We observed that the runtime for each SVD
threshold increases polynomially with the number of missing
gates. As expected, the runtime decreases significantly with a
higher threshold, and the standard deviation in runtime grows
polynomially with the number of removed gates, albeit with
multiple orders of magnitude difference in runtime. Inter-
estingly, for low thresholds, the standard deviation is also
roughly an order of magnitude smaller than the runtime. As
|g|removed increases, the standard deviation converges to sim-
ilar values regardless of threshold, making the runtime more
unpredictable.

In the equivalent case (|g|removed = 0), the SVD threshold
has negligible impact on the runtime. All thresholds yield
similar results, with the lower threshold slightly reducing
the standard deviation. This behavior likely results from the
cancellation of gates during the spatial sweep, reducing the
singular values to near zero in the equivalent case.

2. Rotation angle errors

In this test, we shifted all rotation angles in G′ by a fixed
value, θerror, chosen from the range [−π, π ] using logarithmic
scaling. The smallest error tested was θerror = 10−3π , with
θerror = 0 representing the equivalent case. The results reveal
symmetry in runtime around the equivalent case, indicating
that the sign of the error does not affect the performance. The
standard deviation follows a similar trend, remaining about an
order of magnitude smaller than the runtime.

For low and medium thresholds, any error causes a signif-
icant jump in runtime, reflecting a phase transition between
the equivalent and nonequivalent cases. In contrast, the high
threshold maintains a relatively constant runtime for small
errors, likely because it disregards minor nonzero singular
values. As θerror approaches π/4, both the medium and high
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FIG. 7. This figure compares different types and severity of errors on n = 10 circuits with linear entanglement according to various SVD
thresholds. Each color represents an SVD threshold for the MPO method. Each column corresponds to the error type such that the top row is
the average runtime over ten samples and the bottom is the data’s standard deviation. The equivalent case can be identified at the zero point of
each plot.

thresholds show an increase in runtime, likely due to the
maximal operator entanglement in the intermediary MPO. For
larger errors, the runtime decreases again as θerror approaches
2π , converging back to the equivalent case. The high thresh-
old significantly reduces runtime, especially for small angle
errors.

3. Permutation errors

In this test, we applied a random number of nearest-
neighbor SWAP gates, nSWAP, at the beginning of G′ to
simulate mismatched virtual-physical qubits or incorrect qubit
ordering. The runtime initially increases linearly with nSWAP

before stabilizing at a constant value as nSWAP → ∞. The low
and medium thresholds quickly reach this plateau with few
SWAPs, while the high threshold scales more slowly with
nSWAP before also plateauing. The standard deviation follows
a similar trend, with the high threshold showing higher de-
viation compared to the lower thresholds. In the equivalent
case, the low and medium thresholds are outliers, with sig-
nificantly higher standard deviations, which stabilize after a
single SWAP.

C. Scaling of equivalent circuits

This section evaluates the scaling behavior of different
methods for verifying the equivalence of circuits, repeated
for increasing values of n, to assess performance with circuit
size. We compare the proposed MPO-based method against
the DD- and ZX-based methods, with the results shown in
Fig. 8. All tests have an SVD threshold set such that we
guarantee equivalence with a tolerance ε = 10−13, i.e., linear
smax = 10−1, SCA smax = 10−3, full smax = 10−6.

For circuits with linear entanglement patterns, both the
MPO-based and ZX methods scale polynomially with system
size n, whereas the DD method exhibits exponential scaling.
The MPO-based method demonstrates better overall scaling
than the ZX method for larger circuits.

As the number of long-range gates increases (i.e., in the
SCA entanglement pattern), the MPO- and ZX-based meth-
ods continue to scale polynomially and perform comparably,
while the DD method remains exponential. This indicates that
for circuits with few long-range gates, the MPO-based method
is competitive with other available methods.

For fully entangled circuits with many long-range gates, all
methods approach exponential scaling, though the ZX method
continues to scale more efficiently than the others. This sug-
gests that an increase in long-range entanglement pushes all
methods toward exponential growth in runtime, with the ZX
method being the least affected by long-range gates. This
is expected as the ZX calculus tends to be independent of
the range of each gate, and depends more on the depth and
number of operations.

Across all methods, the standard deviation in runtime
scales exponentially, but it remains at least an order of mag-
nitude lower than the average runtime. Notably, the MPO
method shows exceptionally low standard deviation for the
linear case, indicating stable and predictable performance as a
function of n.

D. Scaling of nonequivalent circuits

Here, we evaluate the scaling behavior for detecting
nonequivalence between circuits. Since the ZX method cannot
prove nonequivalence, we focus on comparing the MPO- and
DD-based methods. Various errors of different intensity, as
described in Sec. VII B and analyzed in Sec. VII B, were
injected into linear entanglement circuits. For the MPO-based
method, the high SVD threshold smax = 10−1 was used to
detect nonequivalence. The results are presented in Fig. 9.

For all error types and severities, the DD method scales
exponentially, likely because it becomes maximally large in
all cases—an expected outcome given that it also scales ex-
ponentially for the equivalent case. In contrast, the MPO
method scales polynomially, though more severe errors cause
worse scaling, as expected due to the QMA completeness
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FIG. 8. Equivalence scaling of each method with circuit size n across different entanglement patterns. Each color represents a different
method, with the top row showing average runtime and the bottom row showing standard deviation over ten samples.

of the equivalence-checking problem. These results can be
extrapolated to understand the nonequivalence scaling when
applied to SCA and full entanglement patterns, where we
expect small errors to scale similarly to the equivalent case,
and more severe to approach exponential scaling. Concretely,
by combining the results in this section with the error plots in
Sec. VII B, we can estimate that the transition from polyno-
mial to exponential scaling of runtime as a function of system
size occurs approximately for phase errors θerror > 10−2π

or when the number of swapped gates reaches nswap > 5.
While additional gate errors do worsen scaling behavior, the
tests performed here do not exhibit true exponential scal-
ing. We expect such scaling to emerge only for significantly
more nonequivalent circuits as the removed gates increases
|g|removed � 10.

Interestingly, for circuits with low-severity errors, the MPO
method’s scaling closely mirrors that of the linear equivalent
case in Sec. VII C. This shows that the MPO method sur-
passes previous methods by far for detecting small degrees
of nonequivalence.

The standard deviation scales exponentially, likely due to
the wide variety of possible errors, though it remains more
favorable for low-severity errors compared to the DD method.
Additionally, the standard deviation grows in proportion to
the average runtime, indicating that for very large circuits,
the deviation could surpass the average runtime. However, at
the current scale (n = 32), the MPO-based method remains
stable and predictable, suggesting it is well-suited for near-
term circuit development.
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FIG. 9. Nonequivalence scaling of each method with circuit size n, considering different error types and severities applied to linear circuits.
Each color represents a method and each column corresponds to an error type. The top row shows the average runtime, and the bottom row
shows the standard deviation over ten samples.
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VIII. DISCUSSION

The MPO-based equivalence checking method introduced
in this work demonstrates promising scalability for detecting
both equivalent and nonequivalent circuits, marking an impor-
tant advancement in the field of quantum circuit verification.
Our approach shows superior scaling compared to DD-based
methods, particularly for nonequivalence checking, and offers
performance comparable to ZX-based methods for equivalent
circuits. This makes the MPO-based method highly valuable
as quantum circuits continue to grow in size and complexity.

One of the key strengths of the MPO-based approach is
its ability to detect both minor and severe errors within quan-
tum circuits, something that is crucial for a comprehensive
equivalence checking tool. While the ZX method struggles
with nonequivalence checking, the MPO method fills this
gap, providing a more complete solution. However, it is im-
portant to acknowledge the inherent challenge in selecting
a representative subset of quantum circuits and error types
for evaluation. The vast diversity of quantum circuits and
the multitude of possible errors make it difficult to cover all
potential scenarios. The results presented here aim to provide
a broad overview of the method’s capabilities rather than an
exhaustive evaluation.

Given that our method is based on tensor networks,
several practical improvements could further enhance its per-
formance. These include parallelizing the calculations [44],
leveraging GPU acceleration [45,46], and implementing a
more optimized version than the current prototype. Long-
range gates present the greatest bottleneck in scaling the
method, as extending gates via identity tensors is not an
ideal solution. One possible improvement could involve di-
rectly using gate tensors without extension, though this would
introduce additional complexity in tracking dimensions. Al-
ternatively, techniques from condensed matter physics, such
as Krylov space methods for handling long-range interactions
[10,47], may offer more efficient solutions. Another potential

optimization could be inspired by the identity-stripping tech-
nique used in DDs [27], which could analogously speed up
the MPO method by removing unnecessary identity tensors.

Looking ahead, the MPO-based equivalence checking
method opens several exciting avenues for future research
and application. One notable direction is its potential use in
quantum circuit optimization and compilation. By exploiting
the method’s ability to detect nonequivalence, optimization
techniques could be developed to iteratively refine quantum
circuits until an equivalent, optimized version is generated.
Additionally, the method could be applied to compare noisy,
error-mitigated circuits with their ideal noiseless counterparts,
offering a pathway toward improved error mitigation strate-
gies in quantum computing.

In conclusion, the MPO-based method provides a scalable,
flexible, and robust solution for quantum circuit equivalence
checking. It addresses a key challenge in the field by of-
fering a comprehensive approach to both equivalence and
non-equivalence checking. With further development and
optimization, this method holds significant potential for ad-
vancing quantum circuit verification, optimization, and error
mitigation, paving the way for more reliable and scalable
quantum computing systems.
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