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Abstract

Railway networks have become increasingly important in recent times, especially in moving freight and public

transportation from road traffic and planes to more environmentally friendly trains. Since expanding the global railway

network is time- and resource-consuming, maximizing the rail capacity of the existing infrastructure is desirable.

However, simply running more trains is infeasible as certain constraints enforced by the train control system must be

satisfied. The capacity of a network depends (amongst others) on the distance between trains allowed by this safety

system. While most signaling systems rely on fixed blocks defined by costly hardware, new specifications provided

by Level 2 with Hybrid Train Detection of the European Train Control System (ETCS L2 HTD), formerly known as

ETCS Hybrid Level 3, allow the usage of virtual subsections. This additional degree of freedom allows for shorter

train following times and, thus, more trains on existing railway tracks.

On the other hand, new design tasks arise on which automated methods might be helpful for designers of modern

railway networks. However, although first approaches exist that solve design problems arising within ETCS L2 HTD,

neither formal descriptions nor results on the computational complexity of the corresponding design tasks exist. In

this paper, we fill this gap by providing a formal description of design tasks for ETCS L2 HTD and proof that these

tasks are NP-complete or NP-hard, respectively. By that, we are providing a solid basis for the future development of

methods to solve those tasks, which will be integrated into the Munich Train Control Toolkit available open-source

on GitHub at https://github.com/cda-tum/mtct.
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I. INTRODUCTION

Railway networks are an important part of both public transportation and logistics, e.g., to reduce carbon emissions

compared to cars and planes. Unlike road traffic, trains have relatively long braking distances. Hence, trains cannot

operate on sight due to safety constraints. Moreover, switches have to be safely set for trains to turn. Because

of that, a control system is needed for efficient and safe rail traffic. Signaling systems are essential to allow or

deny a train to use a specific track part. For this, many national train control systems have been developed. The

European Union Agency for Railways has listed about 40 systems alone in Europe [1]. In Germany, for example,

PZB 90 (intermittent train protection) and LZB (continuous train control) are widely used [2]. For reasons of

interoperability, these national control systems are unified in the European Train Control System (ETCS) [3], [4].

It is specified in the Control Command and Signalling Technical Support Instrument (CCS TSI) [5], in particular

the set of specifications listed in its appendix A [6]. Even for metro lines, a radio-based system analog to ETCS

(Level 2) is being implemented, namely the Communication Based Train Control (CBTC) [7], [8]. Similarly, major

standardized systems have been implemented in China (Chinese Train Control System, CTCS) and North America

(Positive Train Control, PTC) [9].

A. European Train Control System

Currently, most railway systems in the world rely on block signaling, where the whole railway network is divided

into blocks equipped with means of train detection to determine whether a given block is currently occupied by a

train. Within a block, at most, there can only be one train at a time [11]. This paper focuses on ETCS, even though

the model and key components likely carry over to other modern control systems. ETCS can be implemented in

various levels [3], [4]. Previously, the specifications distinguished three levels, however with the CCS TSI 2023 [5]

Level 2 and Level 3 have been combined.

Level 1 (L1) relies on signals and hardware on the tracks (e.g., Eurobalises and Euroloops), which transmit

position and signaling information at discrete points (Eurobalise) or predefined intervals (Euroloop). The trackside

fully handles the detection of block occupations (e.g., using axle counters), see Figure 1a, in which the following

train slows down because it receives the moving authority into TTD2 only at the next Eurobalise.

In Level 2 (L2), a permanent GSM-R connection between the train and the control system exists. By doing so,

the train can continuously receive the maximal permitted speed. Signals are now optional but are often included as

a fallback system. The train receives its moving authority through the GSM-R connection and is no longer bound

to the discrete positions of Eurobalises.

At the same time, train location and integrity can be managed at different parts of the control system. Classically,

reporting block sections as free works as in L1. However, due to the difference mentioned above in transmitting

the moving authority, the trains in Figure 1b can follow each other more closely.

The block section borders are equipped with Trackside Train Detection (TTD) systems, e.g., axle counters,

called TTD sections. Thus far, those blocks have often been defined by geography and economic considerations

or as a trade-off between efforts to install axle counters and possible benefits. Because of this, the length of the

corresponding TTD sections ranges from some meters (e.g., around turnouts) or some hundred meters (e.g., at
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Fig. 1: Schematic drawings of various ETCS levels by Engels et al. [10] published under a CC BY 4.0 license

train stations) to several kilometers (e.g., in remote areas). Of course, this significantly affects the efficiency of the

underlying railway networks.

With the introduction of Moving Block, formerly known as ETCS Level 3, those principles have changed for the

first time since the 19th century. The train reports the exact position itself, and no trackside detection is necessary.

For this, trains must be equipped with an integrity system that detects if a train is still complete. Only in this

case can it safely release parts of the track. Rather than relying on fixed blocks, trains can follow at their braking

distances since no hardware predefines any blocks, see Figure 1c. However, in practice, such systems impose new

challenges [12].

Hence, Level 2 can also be used with a compromise of both classical block signaling and moving blocks. In

Level 2 Hybrid Train Detection (L2 HTD), formerly known as Hybrid Level 3, TTD sections that already exist

are divided into smaller Virtual Subsections (VSS), which do not require physical axle counters anymore and,

hence, allow for a much higher degree of freedom in the utilization of existing railway networks, see Figure 1c.

Independently of trackside hardware, the occupation of these virtual subsections is observed by the position and

integrity data obtained from the trains [13].

B. Related Work

This additional degree of freedom allows for shorter train following times and, thus, more trains on existing

railway tracks. At the same time, new design tasks arise that require automated methods to be helpful for designers

of modern railway networks. However, thus far, design automation methods for ETCS, on the one hand, mainly

focus on blocks characterized by hardware (e.g., axle counters). Because of this, they use general measures of

capacity, energy efficiency, or economic efficiency independently from a specific schedule to propose a signaling
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layout [14], [15], [16], [17], [18], [19], [20], [21], [22]. Thus, the respective solution is expected to work well

on various schedules. On the other hand, train routing was considered separately, assuming the block layout had

already been decided upon. Approaches are mainly separated in macroscopic routing [23] and track allocation on

a microscopic level, i.e., considering the constraints imposed by the control system and sections. Track allocation

was considered in general [24], [25], [26] and specifically focusing on railway stations [27], [28], [29].

This research has been extended to future signaling systems, such as ETCS L2 HTD and Moving Block control

systems. Headways on such railway lines are different to former theory leading to adaptions in the blocking-time

theory [30]. Besides that, recent research by Schlechte et al. optimizes time tables on dedicated moving block

systems [31], which was later extended to use lazy constraints to speed up computation [32], [33]. However,

implementing a moving block system in practice is significantly harder than using virtual subsections, in which

case only the design but not the control logic changes [12].

While (almost) all of these methods can also be applied for ETCS L2 HTD, because virtual subsections and TTD

sections have essentially the same consequences in final operation (assuming no system fails), they are not utilizing

the additional degree of freedom introduced by virtual subsections. Using ETCS L2 HTD, changing a previous

block layout defined by TTD sections even after building the network is now possible. In particular, it might be

reasonable to consider a desired schedule directly because changing a block layout with a new schedule is more

manageable than before. However, corresponding joint considerations of infrastructure planning and scheduling are

just at the beginning.

For ETCS L2 HTD, specifically, the contributions to the “Hybrid ERTMS/ETCS Level 3 Case Study” provided

an step in this direction [34]. Here, the main goal was to detect potential ambiguities in the specification to fix them

in later versions. Submitted papers do this using iUML-B, Event-B, Formal B, Electrum, SysML/KAOS, and SPIN

[34]. However, while these formalizations provided initial (non-ambiguous) interpretations of the ETCS L2 HTD,

no precise design tasks, e.g., how to generate new layouts, can be derived from that. To the best of our knowledge,

only research proposed in [35], [36], [10], [37] explicitly considered the automatic design of hybrid train detection

systems based on specific timetable requests. However, even those papers specified the design tasks at a relatively

high level, and neither formal descriptions nor results on the computational complexity of those tasks have been

provided.

Overall, all related work on developing design methods for ETCS L2 HTD has been conducted without a clear

definition nor a formal understanding of the complexity of the underlying task. As a consequence, we currently have

heuristics that usually generate non-optimal1 results, on the one hand, [36] and exact solutions which significantly

suffer from huge run-times and severely limited scalability on the other [35], [10], [37], but do not know whether

this is caused by insufficient methodology or complexity reasons. Similar scheduling problems (e.g., [24]) have

been proven to be NP-hard by using the alternative graph introduced in [38]. At the same time, we are not aware

of formal complexity results on the design tasks considered in [35], [36], [10], [37].

1with respect to some objective describing the operational outcome, see also Section III
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Fig. 2: Graphs representing a single track

In this paper, we aim to shed light on this. To this end, we first introduce a graph model and review the relevant

concepts of ETCS L2 HTD on this in Section II. Afterward, we discuss three essential design tasks resulting from

the new degrees of freedom and provide clear, i.e., formal, problem definitions and examples in Section III. This

includes proofs showing that these new design tasks remain complex, i.e., are NP-complete or NP-hard, respectively

(even if some restrictions are added). By this, we provide a proper and valuable theoretical foundation (both on

the problem description and its complexity) for upcoming solution-oriented research in this area. Arising methods

for the automated design of such systems will be made available within the Munich Train Control Toolkit (MTCT)

hosted on GitHub (https://github.com/cda-tum/mtct).

II. PRELIMINARIES

In this section, we provide a basic definition of railway networks using graph terminology, which, step by step, is

extended to cover the relevant properties. Within this, we define trains, their routes, and components related to the

train control system. Based on that, in Section III we formalize the design tasks, which might arise in the context

of ETCS L2 HTD.

A. Basic Definition of Railway Networks

In the following, we derive a definition for a railway network and valid movements on it that provide the basis

for formulating corresponding design and verification tasks. For this, we introduce a directed graph G = (V,E)

together with further properties and constraints. In a straightforward and abstract view, edges E represent tracks

that connect to the nodes V representing certain points of interests of the network (e.g., turnouts, crossings, signals,

and stations). While railway tracks do not have a direction, a notion of direction will be important when introducing

trains to prevent corner cases that are cumbersome to exclude in an undirected setting. Unless special operational

constraints limit the direction on a track, we add edges for both directions; see Figure 2a representing a single track

on which trains can move from left to right and from right to left. However, as said, edges (v1, v2) and (v2, v1),

for example, represent the same track segment. For edge e = (u, v) ∈ E, we denote its reverse edge e◦ = (v, u) if

existent. In particular, e and e◦ represent the same track segment and (e◦)◦ = e.

Remark II.1. To simplify notation and visualization, we let ẽ denote both e and e◦ and visualize this by an

undirected edge. Hence, the graph in Figure 2a simplifies to Figure 2b. Whenever we use an undirected edge ẽ, it

should be clear from the context to which of the two directed edges we refer. While this notation is rather imprecise,

https://github.com/cda-tum/mtct
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we believe it will improve the readability of some concepts as long as we bear in mind that they represent two

edges simultaneously.

Of course, an edge e ∈ E has a natural length, e.g., in meters, which we denote by a mapping len : E → R>0.

Note that len(e) = len(e◦) since they represent the same track segment.

Example II.2. Fig. 3 shows a simple railway layout with a siding. Because of this, it is possible that two trains

driving in opposite directions can pass each other. For example, the train driving from v1 to v5 can use the turnout

at v2 via v6 and v7 and come back to the main track using turnout v4 and, then, drive towards v5. The second

train, driving from v5 to v1, can drive via v4, v3, and v2 to its final destination v1. In this example, nodes v2 and

v4 represent simple turnouts.

Turnouts usually do not allow trains to arbitrarily switch between the conjoining tracks. Instead, the possible

ways over the turnout depend (besides others), e.g., on the direction the train is coming from. More precisely,

Figure 4 shows a schematic drawing of a simple turnout as a standard right-hand switch with all its details. A

train coming from the left-hand side (marked with an A) can take two ways: either to B or C. In contrast, a train

coming from the right-hand side (either from C or B) can take only one way, namely to A. These restrictions

on movements are not yet incorporated within the described graph framework. Hence, we introduce a successor

function sv : δin(v) → P (δout(v)) for every vertex v ∈ V , where δin(v) and δout(v) are the sets of edges entering

and leaving v respectively. Then, sv(ein) represents the possible successor edges when entering v from a certain

edge ein ∈ δin(v).

Example II.3. In the case of Example II.2, the successor functions {sv}v∈V are defined by

sv3(e) =

{ẽ3}, if e = ẽ2

{ẽ2}, if e = ẽ3

sv7(e) =

{ẽ7}, if e = ẽ6

{ẽ6}, if e = ẽ7

(1)

sv6(e) =

{ẽ6}, if e = ẽ5

{ẽ5}, if e = ẽ6

sv1(ẽ1) = sv5(ẽ4) = ∅ (2)
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for the nodes corresponding to straight tracks without any turnouts and

sv2(e) =

{ẽ2, ẽ5}, if e = ẽ1

{ẽ1}, if e ∈ {ẽ2, ẽ5}
sv4(e) =

{ẽ3, ẽ7}, if e = ẽ4

{ẽ4}, if e ∈ {ẽ3, ẽ7}
(3)

for the functions corresponding to turnouts.

In practice, a considered railway network will be connected to neighboring networks that are out of scope for

the respective design tasks. Hence, trains will enter and exit the network under consideration at these borders.

Definition II.4 (Border Vertices). The set of border vertices is denoted by B ⊆ V and all v ∈ B fulfill |Γ(v)| = 1,

where Γ(·) denotes the neighboring vertices, i.e., they cannot be in the interior of the network. It is assumed that

trains can only enter and exit the network with predefined headway times h : B → R≥0.

Example II.5. In the case of Example II.2, B = {v1, v5} could hold with h(v1) = h(v5) = 120s.

Using the above, we can now define a simple railway network as follows:

Definition II.6 (Railway Network). A railway network N =
(
G, len, {sv}v∈V

)
is defined by

• a directed graph G = (V,E) with vertices V being the set of points of interest and edges E being the railway

tracks between the aforementioned points of interest,

• a mapping len : E → R>0 denoting the length of each edge such that len(e) = len(e◦) for every pair of edges

e, e◦ ∈ E,

• a family of mappings {sv}v∈V , where sv : δin(v) → P (δout(v)) represents the valid movements over v, and

• border vertices B ⊆ V together with headway times h : B → R≥0.

However, railway networks do not only consist of turnouts where just three tracks are connected. For example,

they might also cross each other. Reasons for this might be double junctions, where simple crossings occur, as

depicted in Figure 5 or slip switches as depicted in Figure 6. The underlying graph structure is the same; however,

the respective successor functions differ. In general, tracks that cross each other can be modeled as shown in

Figure 7, where node vc corresponds to the crossing point.

In the case of a simple crossing, e.g., where the green and yellow lines cross each other in Figure 5, a train can

move from v1 (v2) via vc to v3 (v4) or vice versa, but it is not possible that a train moves from v1 via vc to v2 or

v4. To model this movement restriction, the corresponding successor function svc is given by

svc(ẽ1) = {ẽ3}, svc(ẽ2) = {ẽ4}, (4)

svc(ẽ3) = {ẽ1} and svc(ẽ4) = {ẽ2}. (5)

On the other hand, double slip switches as, e.g., shown in Fig. 6 are quite common in the entry to bigger stations

as their usage saves place, which is normally very limited in such. Their switch machines make changing the track
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from one side to the other possible. In this case, the successor function at vc changes to

svc(e) =

{ẽ2, ẽ3}, if e ∈ {ẽ1, ẽ4}

{ẽ1, ẽ4}, if e ∈ {ẽ2, ẽ3}
. (6)

Likewise, a single slip switch looks similar to double slip switches but allows fewer movements, i.e., for 2 out of

4 entry points, there is no possibility to change the track. More precisely, we can model this using

svc(ẽ1) = {ẽ2, ẽ3}, svc(ẽ3) = {ẽ1}, (7)

svc(ẽ2) = {ẽ1, ẽ4} and svc(ẽ4) = {ẽ2}. (8)

These examples demonstrate that any real-world railway network can be modeled using Definition II.6. Even if

further not-mentioned points of interest occur, they can be represented analog to the above examples.

Note that the above definition is somewhat similar to the double-vertex graph introduced by Montigel [40] even

though the successor functions are included in the double-vertices. At the same time, the choice to use these

successor functions is similar to how valid train movements are modeled in [41]. Because of how their specific

MIP model is constructed, they do not require directed edges, which we believe is vital in our solution-independent

description. Hence, the necessity to define train schedules, valid movements, and the possibility to add new sections

differs from their work.

In principle, it is not important which of the above infrastructure models is used. We chose successor functions

because we find this graph model to be more intuitive for the purpose of this work. The upcoming design tasks

could easily also be formulated on, e.g., Montigel’s double-vertex graph model[40].

Using the above definition, we can also formally define valid track sequences, which could be traversed by a

train and, hence, establish a connection between the edges of the graph and its successor functions.
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Definition II.7 (Track Sequence). For some k ∈ N, a track sequence is a k-tuple (e1, . . . , ek) ∈ Ek (ei = (vi, wi))

such that vi+1 = wi for all i = 1, . . . , k − 1. The track sequence is valid if, and only if, ei+1 ∈ swi
(ei) for all

i = 1, . . . , k − 1.

Example II.8. Consider again the network depicted in Figure 3. Assume that all edges ei are facing right and e◦i

are facing left. Then, (e◦2, e5, e6) is a track sequence since they form a path in the graph. However, the movement

from e◦2 to e5 is forbidden by the successor function describing the logic of turnout v2. Hence, the track sequence

is not valid. On the other hand, (e1, e5, e6) is a valid track sequence.

Finally, observe that the above description does not model reality up to every detail. For example, the defined

model cannot currently model dead-end stations. For this, trains must be allowed to turn around on certain edges

after a predefined waiting time. However, we believe we have covered the most essential properties described above.

Hence, it is reasonable to develop further work on the presented formulation first and, if they turn out promising,

add further constraints afterward.

B. Trains and Their Schedules

Until now, we have focused on modeling the railway network without considering the trains and their movements.

In this section, we define trains as well as their movements and schedules.

Definition II.9 (Train). A train tr :=
(
l(tr), v

(tr)
max, a(tr), d(tr), tim

(tr)
)

is a tuple, where

• l(tr) ∈ R>0 defines its length and,

• v
(tr)
max defines its maximal possible speed,

• a(tr) and d(tr) denote the maximal acceleration and deceleration respectively, and

• tim(tr) ∈ {true, false} denotes if tr is equipped with train integrity monitoring (TIM).

Train lengths do not necessarily coincide with the length of edges within a railway network

N =
(
G, len, {sv}v∈V

)
. In particular, trains might only be located on parts of an edge. For this, we denote a

track interval iv := (e, λ, µ) ∈ E × [0, 1]× [0, 1] such that λ ≤ µ, where λ denotes the start and µ the end of the

section in relative terms.

Definition II.10 (Track Range). A track range rg := (sin, iv1, . . . , ivk, sout) is then given by a series of track

intervals ivi = (ei, λi, µi) together with sin, sout ≥ 0. In this context, sin and sout denote the parts of the train

that are outside of the network at the rear (incoming vertex) and front (outgoing vertex), respectively. The following

conditions must hold by definition:

1) (e1, . . . , ek) is a valid track sequence according to Definition II.7,

2) λi = 0 for every 1 < i ≤ k,

3) µi = 1 for every 1 ≤ i < k,

4) sin ̸= 0 ⇒ e1 = (u, v) for some u ∈ B and λ1 = 0, and,

5) sout ̸= 0 ⇒ ek = (u, v) for some v ∈ B and µk = 1.
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Naturally, the lengths of the edges carry over to track intervals and ranges by setting len(iv) := (µ− λ) · len(e)

and

len(rg) := sin + sout +

k∑
i=1

len(ivi) = sin + sout +

k∑
i=1

(µi − λi) · len(ei). (9)

If k ≥ 2, then we can also write

len(rg) = sin + (1− λ1) · len(e1) +
k−1∑
i=2

len(ei) + µk · len(ek) + sout. (10)

At this point, it would be intuitive to define the position of a train at a given time as a track range rg with

len(rg) = l(tr). However, it is convenient to use a slightly different definition, which later makes it easier to

properly define separation trains (or headways) of different trains with respect to each other. Note that the entire

distance needed to brake has to be already cleared from other trains. Hence, one could say that a train does not

only occupy the track parts on which it is physically present, but also all of its braking distance ahead.

Definition II.11 (Train Route and Occupation). For a given train tr, a train route R(tr)
[a,b] :=

(
rg

(tr)
t

)
t∈[a,b]

is a

series of track ranges for every time t ∈ [a, b], such that len
(
rg

(tr)
t

)
= l(tr) + bd

(tr)
t , where bd

(tr)
t denotes the

distance tr requires to come to a full stop if it were to start decelerating at time t. In this context rg(tr)t is bound

by the trains rear end on the one and its moving authority on the other side.

Given some track range rg := (sin, (e1, λ1, µ1), . . . , (ek, λk, µk), sout), we denote

occ(rg) := {e1, . . . , ek} (11)

to be the occupied track segments. Naturally

occ
(tr)
t := occ

(
rg

(tr)
t

)
(12)

corresponds to the segments occupied by train tr at time t ∈ [a, b].

As of now, trains can theoretically move and jump around a railway network arbitrarily because the different

time steps are not linked with each other. Consider two track ranges

rg(1) =
(
s
(1)
in , (e

(1)
1 , λ

(1)
1 , µ

(1)
1 ), . . . , (e

(1)
l , λ

(1)
l , µ

(1)
l ), s

(1)
out

)
and

rg(2) =
(
s
(2)
in , (e

(2)
1 , λ

(2)
1 , µ

(2)
1 ), . . . , (e

(2)
k , λ

(2)
k , µ

(2)
k ), s

(2)
out

)
. They are said to intersect (in order) if there exists an

s ∈ {1, 2, . . . ,min{l, k}} such that e(1)l−s+i = e
(2)
i for all i ∈ {1, . . . , s}, i.e., the end of rg(1) and start of rg(2)

overlap. We then define

dist
(
rg(1), rg(2)

)
:=

(
s
(1)
in − s

(2)
in

)
︸ ︷︷ ︸

distance outside network

+

length of non-overlapping edges of rg(1)︷ ︸︸ ︷
l−s∑
i=1

(
µ
(1)
i − λ

(1)
i

)
len

(
e
(1)
i

)
+
(
λ
(2)
1 − λ

(1)
l−s+1

)
len

(
e
(1)
l−s+1

)
︸ ︷︷ ︸

length on overlapping edge

(13)

to be their distance. Using this, we can characterize the varying speed of a train at time t by the following definition.

Definition II.12 (Train Speed). A train tr :=
(
l(tr), v

(tr)
max,

(
rg

(tr)
t

)
t≥0

)
is said to respect its maximal speed if for

every t ≥ 0 and 0 < ε < l(tr)

v
(tr)
max

it holds that rg(tr)t and rg
(tr)
t+ε intersect in order with

dist
(
rg

(tr)
t , rg

(tr)
t+ε

)
≤ ε · v(tr)max. (14)
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Fig. 8: A train tr at two overlapping time steps

t and t+ ε

tr1

tr2

ẽ1

ẽ2

ẽ3

ẽ4

ẽ5

ẽ6

ẽ7

ẽ8

ẽ9 ˜e10

Fig. 9: Example train station Fig. 10: Turnout

Its speed at time t is then given by

v
(tr)
t :=

d
dε

[
dist

(
rg

(tr)
t , rg

(tr)
t+ε

)]
ε=0

= lim
ε→0

dist
(
rg

(tr)
t , rg

(tr)
t+ε

)
ε

. (15)

Moreover, the change in speed is bound by

−d(tr) ≤ d

dt

(
v
(tr)
t

)
≤ a(tr). (16)

A train respects its braking distance if for every t ≥ 0

bd
(tr)
t ≥ v

(tr)
t

2 · d(tr)
. (17)

By definition, t ∈ R, so that train velocity and occupation are defined continuously. When solving design tasks

proposed in Section III, time might or might not have to be discretized depending on the applied algorithm. However,

this does not affect the problem description itself, which assumes continuous time and is independent of proposed

solving strategies.

Of course, further details of train movements can be modeled within this framework as additional constraints. For

example, the train’s acceleration and deceleration properties might depend on its current speed and/or the underlying

track’s gradient. Hence, braking curves defined in the official specifications can also be considered [42] by altering

Equations (16) and (17) respectively. Usually, trains should not face red signals when planning their movements.

Such a requirement could, e.g., be included as further constraints on the speed to disallow stopping on an open

line.

Example II.13. Consider Figure 8 with an 210m-long train occupying (80, (e1, 0, 1), (e2, 0, 0.6), 0), which moved to

(0, (e2, 0.2, 1), (e3, 0, 0.4)) within 10 seconds (we have bd
(tr)
0s = bd

(tr)
10s = 150m). The distance dist

(
rg

(tr)
0s , rg

(tr)
10s

)
is given by (80m− 0m)︸ ︷︷ ︸

s
(0s)
in −s

(10s)
in

+ (1− 0)︸ ︷︷ ︸
µ
(0s)
1 −λ

(0s)
1

· 100m︸ ︷︷ ︸
len(e1)

+ (0.2− 0)︸ ︷︷ ︸
λ
(10s)
1 −λ

(0s)
2

· 300m︸ ︷︷ ︸
len(e2)

= 240m. Hence, we can approximate its speed

by 240m
10s = 24m

s .

Of course, a train does not drive anywhere on a network but has a fixed set of stations to visit or possibly even

a fixed schedule. We denote a train station to be a subset of edges S ⊆ E. A train tr is said to be in station S

at time t if occ
(tr)
t ⊆ S. It stops in S if additionally v(tr)t = 0. For example, a station can include all tracks of a

certain real-world train station. If necessary, we can also restrict it to only cover a subset, e.g., if some platforms

should be used solely by regional and others only by long-distance trains.
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Example II.14. Consider Figure 9, a station S = {ẽ4, ẽ5, ẽ6, ẽ7}, and the two trains depicted. Here, tr1 occupies

ẽ2 and ẽ4. Since ẽ2 ̸∈ S, tr1 is not in the train station. On the other hand, tr2 occupies ẽ5 ∈ S and ẽ7 ∈ S and,

hence, is in the train station.

Combining the above and adding time constraints, we are now ready to define train schedules.

Definition II.15 (Timetable Requests). Let tr1, . . . , trm be m trains on a railway network N . For every train tri,

a timetable request consists of

• an entry node v(tri)in together with a desired arrival interval [t(tri)in , t
(tri)
in ],

• an exit node v(tri)out together with a desired departure interval [t(tri)out , t
(tri)
out ], as well as,

• a list of mi stations S(tri)
1 , . . . , S

(tri)
mi ⊆ E together with

– desired arrival intervals [α
(tri)
1 , α

(tri)
1 ], . . . , [α

(tri)
mi , α

(tri)
mi ],

– desired departure intervals [δ
(tri)
1 , δ

(tri)

1 ], . . . , [δ(tri)mi
, δ

(tri)

mi
], and,

– minimal stopping times ∆t
(tri)
1 , . . . ,∆t

(tri)
mi ≥ 0.

A train tri respects its timetable request if,

• it enters the network at node v(tri)in at some time tin ∈ [t
(tri)
in , t

(tri)
in ], i.e., stin = len(tri) and ein ∈ occ

(tri)
t+dt for

all 0 < dt < ε for some ε > 0, where ein ∈ δout
(
v
(tri)
in

)
,

• it leaves the network at node v(tri)out at some time tout ∈ [t
(tri)
out , t

(tri)
out ], i.e., stout = len(tri) and eout ∈ occ

(tri)
t−dt

for all 0 < dt < ε for some ε > 0, where eout ∈ δin
(
v
(tri)
out

)
, and,

• for every j ∈ {1, . . . ,mi}, there exists an interval [t
(tri)
j , t

(tri)
j ] with t

(tri)
j − t

(tri)
j ≥ ∆t

(tri)
j ,

t
(tri)
j ∈ [α

(tri)
j , α

(tri)
j ], and t(tri)j ∈ [δ

(tri)
j , δ

(tri)

j ], such that tri stops in S(tri)
j for every t ∈ [t

(tri)
j , t

(tri)
j ].

C. Sections and Virtual Subsections in Railway Networks

As mentioned, trains cannot drive independently from each other, and running into each other is an unwanted

situation. For this, a control system ensures that a block is occupied by at most one train, which still needs to

be defined formally. To this end, Trackside Train Detection (TTD) systems, e.g., axle counters, are used to collect

corresponding information on the occupation of blocks. Accordingly, corresponding blocks are frequently also called

TTD sections.

Unfortunately, an edge e ∈ E of the graph definition from above does not match a TTD section. A TTD section

starts and ends with, e.g., axle counters. Three axle counters are usually used for a turnout: one for each of the

three tracks that meet at the turnout (see also Figure 4). In this case, the switch’s three-track segments (edges)

belong to the same block. To model such TTD sections, we introduce another helping function on the vertices,

also called border function, CV : V → {0 = no border, 2 = TTD-Border}, which indicates if a certain vertex is

equipped with trackside train detection and, thus, corresponds to a border between two TTD sections. A simple

turnout would typically correspond to one central node of value 0 and three outer nodes of value 2, in which case

the respective edges will have a rather small length corresponding to the distance between the turnout’s center

and the axle counters. This is depicted in Figure 10: A black filled node visualizes a vertex which represents a
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e2

e3

e◦1
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e◦3

e4 e5 e6

e◦4 e◦5 e◦6

Fig. 11: TTD sections

TTD-Border, i. e., CV evaluates to 2 = TTD-Border. A white filled circle visualizes a vertex which represents no

TTD-Border, i. e., CV evaluates to 0 = no border. Abstractly, we refer to a vertex v ∈ V with CV (v) = k to be a

border of level k. Further, we define by L′
k(G) := (V ′

k, E
′
k) an undirected graph interchanging the role of vertices

and edges and additionally ignoring borders of level ≥ k.

Formally, we define V ′
k := E and

E′
k := {{e1, e2} ⊆ V ′

k : e2 = e◦1 or ẽ1 ∩ ẽ2 ∩ CK ̸= ∅} , (18)

where CK := {v ∈ V : CV (v) < k} are the nodes with border value less than k. Now, if two nodes within L′
2(G)

are connected, then their corresponding track segments are not separated by any TTD; hence, they fall within one

TTD section. In particular, if we set

TTDs := {T1, . . . , Tm} = CC (L′
2(G)) , (19)

where CC(·) denotes the connected components, then T1, . . . , Tm correspond exactly to the TTD sections. Edges

within a section Ti ∈ TTDs are not separated by any TTD, whereas a TTD section Ti ∈ T is separated from any

other TTD section Tj ∈ TTDs− {Ti} by corresponding borders. Naturally, this provides a partition of the edges

of the original graph G.

Example II.16. Consider a graph with seven vertices as depicted in Figure 11. Vertices v1 to v4 represent a

simple turnout as in Figure 4 connected to a straight track up to v7. As before, corresponds to a TTD border

and to no border. Figure 11 shows how the network transforms into L′
2(G), which consists of two connected

components. The vertices of each connected component (i.e., edges in the original graph) compose one TTD section.

The corresponding sections are marked in both graphs in Figure 11.

With the introduction of hybrid train detection, sections do not have to be separated by TTDs. In particular,

this allows splitting existing TTD sections into virtual subsections (VSS). To also model these, we add a VSS-

Border element to the border function as follows: CV : V → {0 = no border, 1 = VSS-Border, 2 = TTD-Border}.

In figures, we plot VSS borders using . Similarly to Equation (19) the VSS sections V1, . . . , Vn are given by the

connected components of L′
1(G), i.e.,

{V1, . . . , Vn} := CC (L′
1(G)) . (20)



14

TIM TIM TIM TIM

different VSS ✓ same TTD E
different VSS ✓ different TTD ✓

same VSS E

Fig. 12: VSS condition

A key concept in train control is the division of the tracks into multiple blocks. A block is only allowed to be

occupied by at most one train. In the context of ETCS L2 HTD, these blocks are usually given by the VSS sections

that function essentially analog to their TTD counterparts.

The concrete control logic depends on if a train is equipped with train integrity monitoring (TIM) or not. A train

with TIM can safely reports its rear end, because it is determined with sufficient certainty that the train is still

complete and has not lost any wagons. Because of this a VSS section can be safely reported as free without the

need of any TTD hardware. Hence, any other train is permitted to enter this VSS that has just been cleared. On the

other hand, a train without TIM can only safely report its front position. Thus, a VSS remains occupied until the

corresponding TTD section is cleared by the trackside hardware. These cases are depicted in Figure 12, in which

only 4 out of 6 trains are equipped with TIM.

Hence, the respective control condition can be formalized as follows:

Definition II.17 (VSS Condition). Let V1, . . . , Vn be the VSS-sections as defined in Equation (20) and tr1, . . . , trm

be the trains operating on the respective railway network. The train control system ensures the following condition

for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . ,m} − {j}, and t ≥ 0:

Vi ∩ occ
(trj)
t ̸= ∅ ⇒ Vi ∩ occ

(trk)
t = ∅. (21)

Furthermore, let T1, . . . , Tl be the TTD-sections as defined in Equation (19). For any h ∈ {1, . . . , l}, j ∈ {1, . . . ,m},

and t ≥ 0 with Th ∩ occ
(trj)
t ̸= ∅ let

t̂
(trj)
h (t) := max

{
0, sup

{
τ : 0 ≤ τ ≤ t, Th ∩ occ(trj)τ = ∅

}}
. (22)

Using the above definition, for every j ∈ {1, . . . ,m} with tim(trj) = false as well as k ∈ {1, . . . ,m} − {j},

h ∈ {1, . . . , l}, i ∈ {1, . . . , n}, t ≥ 0 and τ ∈
[
t̂
(trj)
h (t), t

]
it has to additionally hold that

Th ∩ Vi ∩ occ(trj)τ ̸= ∅ ⇒ Vi ∩ occ
(trk)
t = ∅. (23)

Intuitively, in Definition II.17, Equation (21) ensures that only one VSS is occupied at any given time. t̂(trj)h (t)

is the time at which trj entered (began to occupy) Th. Equation (23) simply states that if a train without TIM

occupies a TTD section Th any VSS within Th previously occupied by that train is not yet cleared.

Because the braking distance was already included in each trains occupation (see Definition II.11), the conditions

in Definition II.17 ensure the safe distance required between following trains.
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Remark II.18. If all trains are equipped with TIM, only Equation (21) remains in Definition II.17. Using an

ETCS L2 control with fixed TTD sections and no VSS, Definition II.17, again, simplifies to Equation (21) with

T1, . . . , Th (TTD-sections) instead of V1, . . . , Vn (VSS-sections), i.e., Ti ∩ occ
(trj)
t ̸= ∅ ⇒ Ti ∩ occ

(trk)
t = ∅.

Overall, given a railway network N , a certain number of trains, and a list of timetable requests, the following

properties are desired whenever considering a design task:

• Every train respects its maximal speed and braking distance (Definition II.12)

• Every train respects its timetable request (Definition II.15).

• The VSS condition is satisfied (Definition II.17).

Again, note that one can, in theory, model the behavior of the control system in as much detail as desired. For

example, interlockings or time needed for turnouts to change their position could be considered using additional

constraints. Nevertheless, we believe the level of detail provided in this paper suffices for defining relevant design

tasks.

III. DESIGN TASKS AND THEIR COMPLEXITY

In this section, we define different design tasks that might occur in ETCS L2 HTD systems and could be valuable

to automate. They are formulated independently from whichever solution method might be chosen to solve them. In

Section III-A, we formulate a respective verification tasks. While the verification is arguably more of a theoretical

nature, it provides the basis for the design tasks proposed in Sections III-B and III-C. Especially the optimization

tasks in Section III-C, which use the added flexibility by HTD control systems to use specific timetable requests

instead of general schedule-independent KPIs, are both, of practical interest and not yet well studied.

The proposed design tasks in the following subsections are formulated to help infrastructure planners to find

optimal signaling layouts in terms of enabling the best operational outcome based on specific timetable requests.

They do not yet consider robustness with respect to delays. For classical signaling systems capacity was already

considered under disturbed conditions leading to real-time rescheduling problems [43]. Recently such rescheduling

problems have also been considered for modern (moving block) control systems [44]. At the same time, previous

work focuses on minimizing the effect of delays on a fixed signaling layout. An interesting extension to the presented

design tasks would be to also consider stochastic distributions on expected delays. In that case one could aim to

optimize the VSS layout to minimize the negative effects of expected rescheduling during operation. At the time

of writing, the proposed design tasks are not well studied even in the deterministic case. Hence, for now, we focus

on providing efficient solutions for the proposed design tasks. Once reasonable methods exist, adding expected

stochastic delays would be a natural extension.

A. Verification of Timetable Requests on ETCS L2 HTD Layouts

Note that a desired timetable request might be impossible on a particular railway network since only one train

can be located on each TTD/VSS section, a restricted track speed, or a limited train speed.
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ẽ3
5m

ẽ4
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Fig. 13: Infeasible verification task

VERIFICATION OF TIMETABLE REQUESTS (TR-VER)

Input: A railway network N = (G, len, {sv}v∈V ); border function CV : V → {0, 1, 2}; trains tr1, . . . , trm; a list of

timetable requests for tr1 to trm.

Task: Do there exist train routes R(tr1), . . . , R(trm) such that the VSS condition is fulfilled and all trains respect their

speed and timetable requests? If yes, provide a certificate.

Example III.1. Consider the train network in Figure 13 and three trains tr1 to tr3. As before, corresponds to a

TTD border and to no border. Also, we are given one real-world train station S := {ẽ5, ˜e10}, which is marked

in blue. The timetable requests are specified as follows:

tr1: Entering at vl at t = 120 (i.e., within [120,120]), leaving at vr at t = 645 (i.e., within [645, 645]), and

stopping in S from t = 240 to t = 300 (i.e., arriving within [120,240], leaving within [300,645], and stopping

for a minimal time of ∆t = 60).

tr2: Entering at vl at t = 0, leaving at vr at t = 420, and stopping in S from t = 120 to t = 300.

tr3: Entering at vr at t = 0, leaving at vl at t = 420, and stopping in S from t = 180 to t = 300.

where time is measured in seconds. Observe that the station S only consists of two blocks; hence, a maximum of

two trains can stop at a time. However, the timetable requests require all three trains to be stopped at the station

at time t = 270, for example. Hence, there are no train routes such that the VSS condition is fulfilled, the trains

respect their timetable requests, and the verification task returns infeasibility.

Observe that the routing on a fixed VSS layout might differ slightly from systems using trackside-oriented

train detection, see also discussion around Definition II.17. This is because trains equipped with train integrity

monitoring (TIM) can report VSS sections free independently of their corresponding TTD sections. Any train can

follow closely. At the same time, trains without TIM need TTD hardware (e.g., axle counters) to report a section

as free. Hence, a train can only follow if a non-TIM train has cleared an entire TTD section.

If all trains are equipped with TIM, the situation simplifies. In that case, there is no logical difference between TTD

and VSS sections, and the block layout is fixed for the verification tasks defined above. Hence, TR-VER is essentially

equivalent to the task on classical layouts in this (simplified) case. Scheduling under such classical signaling systems

is known to be NP-hard in general [38], [24]. In particular, it is reasonable to assume that TR-VER has similar

complexity. At the same time, there are minor differences to the scheduling problems considered so that the proof

does not carry over formally. While the following complexity result is not unexpected, we formally include them for

reasons of completeness. Moreover, it serves as a basis for the following design tasks in Sections III-B and III-C,

which are tailored to ETCS L2 HTD.
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Theorem III.2. TR-VER is NP-complete even if all routes and exact stopping times in train stations are fixed and

the railway network is planar.

Proof. Given a certificate, we can check feasibility using the definitions in polynomial time; hence, TR-VER is in

NP. To show NP-completeness, we reduce Monotone 3-SAT-(≤ 2,≤ 2) to TR-VER. Monotone 3-SAT-(≤ 2,≤ 2)

are all SAT instances in which every clause contains three literals (all of which contain only unnegated or only

negated variables), and every variable appears in clauses at most twice unnegated and twice negated. Monotone

3-SAT-(≤ 2,≤ 2) is known to be NP-complete [45].

For reduction, we are given an instance of Monotone 3-SAT-(≤ 2,≤ 2) on variables x1, . . . , xn defined by

clauses C = {C1, . . . , Cm}, each consisting of three literals. For every clause, we add two vertices c
(j)
in and

c
(j)
out for j = 1, . . . ,m. Moreover, we add nodes x0 and xn+1. W.l.o.g., assume that clauses C1, . . . , Ck contain

only nonnegated literals and clauses Ck+1, . . . , Cm contain only negated literals. Then we add edges (c
(j)
in , x0)

and (xn+1, c
(j)
out) for every 1 ≤ j ≤ k as well as (c

(j)
in , xn+1) and (x0, c

(j)
out) for every l + 1 ≤ j ≤ m. For

every literal, we add vertices x(1)j , x
(2l)
j , x

(2)
j , x

(2r)
j , and x

(3)
j for every 1 ≤ j ≤ n. We connect them using edges

(x
(1)
j , x

(2r)
j ), (x(2r)j , x

(3)
j ), (x(3)j , x

(2l)
j ), (x(2l)j , x

(1)
j ), (x(1)j , x

(2)
j ), (x(2)j , x

(3)
j ), (x(3)j , x

(2)
j ), and (x

(2)
j , x

(1)
j ). Finally,

we add vertices x(l)j,j+1 and x
(r)
j,j+1 for every 0 ≤ j ≤ n to connect the aforementioned segments. This is done

using edges (x
(3)
j , x

(r)
j,j+1), (x

(r)
j,j+1, x

(1)
j+1), (x

(1)
j+1, x

(l)
j,j+1), and (x

(l)
j,j+1, x

(3)
j ). W.l.o.g., we can assume that all edges

have length 1 and the successor functions sv(e) := δout(v) do not restrict any movement. Moreover, we define one

station

S :=

m⋃
j=1

{
(x

(1)
j , x

(2)
j ), (x

(2)
j , x

(3)
j ), (x

(3)
j , x

(2)
j ), (x

(2)
j , x

(1)
j )

}
. (24)

The resulting network is planar and consists of

2m+ 2 + 5n+ 2(n+ 1) = 2m+ 7n+ 4 = O(n+m) (25)

nodes and

2m+ 8n+ 4(n+ 1) = 2m+ 12n+ 4 = O(n+m) (26)

edges. In particular, the problem size has no exponential blow-up, and the reduction is polynomial.

As an example consider the monotone 3-SAT-(≤ 2,≤ 2) instance
3∧

i=1

Ci with

C1 = x1 ∨ x3 ∨ x4, C2 = x2 ∨ x3 ∨ x4, C3 = ¬x1 ∨ ¬x2 ∨ ¬x4. (27)

Figure 14 shows the graph resulting from Equation 27 together with respective trains and routes, which we add in

the next proof step. Moreover, the station S is marked in orange.

Finally, we add one train tri (of length 1 and with maximal steed 1) per clause Ci for every 1 ≤ i ≤ m. For

1 ≤ i ≤ k, the trains use the following edges

1) c
(i)
in → x0 → x

(r)
0,1

2) For every j = 1, 2, . . . , n they traverse

a) If xj ∈ Ci, then x(r)j−1,j → x
(1)
j → x

(2)
j → x

(3)
j → x

(r)
j,j+1
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Fig. 14: Reduction from Monotone 3-SAT-(≤ 2,≤ 2) to TR-VER

b) If xj ̸∈ Ci, then x(r)j−1,j → x
(1)
j → x

(2r)
j → x

(3)
j → x

(r)
j,j+1

3) Finally, x(r)n,n+1 → xn+1 → c
(i)
out

For k + 1 ≤ i ≤ m, trains travel in the opposite direction, i.e.,

1) c
(i)
in → xn+1 → x

(l)
n,n+1

2) For every j = n, n− 1, . . . , 1 they traverse

a) If xj ∈ Ci, then x(l)j,j+1 → x
(3)
j → x

(2)
j → x

(1)
j → x

(l)
j−1,j

b) If xj ̸∈ Ci, then x(l)j,j+1 → x
(3)
j → x

(2l)
j → x

(1)
j → x

(l)
j−1,j

3) Finally, x(l)0,1 → x0 → c
(i)
out

Every train’s route consists of 2 + 4n+ 2 = 4(n+ 1) =: Tn edges. They are marked in Figure 14 accordingly.

All trains shall enter at time t = 0 at their respective entry node c(i)in . They required to stop in S from time

t = m ·Tn +4 to t = m ·Tn +6, and shall leave the network at time t = m ·Tn +6+m ·Tn = 2mTn +6 at their

respective exit node c(i)out. Since 2mTn + 6 = O(m · n), all specified times are still polynomial in the input size.

Assume that the given monotone 3-SAT-(≤ 2,≤ 2) instance is feasible. From any particular solution, define

A := {j : xj is true} and AC := {1, . . . ,m} − A = {j : xj is false}. For 1 ≤ i ≤ k, define x̃(i) := min{j : j ∈

A and xj ∈ Ci}. For k + 1 ≤ i ≤ m, we have x̃(i) := min{j : j ∈ AC and ¬xj ∈ Ci}. The order in which trains

traverse shared edges is not predefined; hence, w.l.o.g. assume that x̃(i) ≥ x̃(i + 1) for every 1 ≤ i ≤ k − 1 and

x̃(i) ≤ x̃(i+1) for every k+1 ≤ i ≤ m−1. Otherwise, we can rename the trains at this point. For 1 ≤ i ≤ m, we let

tri stop on (c
(1)
in , x0) until t = (i−1) ·Tn+1. Afterwards, trains i = 1, . . . , k travel at maximal speed all the way to

(x
(r)
x̃(i)−1,x̃(i), x

(1)
x̃(i)) or (x(3)x̃(i)−1), x

(r)
x̃(i)−1,x̃(i)) if the previous edge is already occupied. Because a literal appears in

only two clauses, it cannot happen that both edges are already occupied. Similarly, for trains traveling in the reverse

direction (i = k + 1, . . . ,m), travel at maximal speed all the way to (x
(l)
x̃(i),x̃(i)+1, x

(3)
x̃(i)) or (x(1)x̃(i)+1), x

(l)
x̃(i),x̃(i)+1)

if the previous edge is already occupied. Again, because a literal appears in only two clauses, it cannot happen

that both edges are already occupied. All trains will arrive latest at time t = i · Tn. At time t = m · Tn, they can



19

all traverse two edges into stop S within at most four time steps. Finally, they can proceed in the same order to

the respective exit vertices in, again, at most m · Tn time steps and wait on their last edge without affecting other

trains. There are no conflicts because of the chosen order and feasibility of the monotone 3-SAT-(≤ 2,≤ 2). In

particular, this constitutes a feasible solution to the corresponding TR-VER instance. In Figure 14, the trains are

depicted at t0 = 1, t1 = m ·Tn, and t2 = m ·Tn +5. This setting corresponds to setting x1 to false and x4 to true.

On the other hand, if we are given a feasible timing of the corresponding TR-VER instance, we check the

positions at time t = m ·Tn+5. We set xj to be true if (x(1)j , x2j ) or (x(2)j , x3j ) is occupied and to false if (x(3)j , x2j )

or (x
(2)
j , x1j ) is occupied. All other variables are chosen arbitrarily. Note that a variable cannot be set to true and

false because then trains would collide on the opposing tracks. Hence, this constitutes a feasible solution to the

corresponding monotone 3-SAT-(≤ 2,≤ 2) instance by design.

Combining the above, we have argued that a monotone 3-SAT-(≤ 2,≤ 2) instance is feasible if, and only if, the

corresponding TR-VER instance is. Hence, we have polynomially reduced Monotone 3-SAT-(≤ 2,≤ 2) to TR-VER,

proving the latter’s NP-completeness.

Observe that no VSS is created in a verification setting. Instead, the layout is fixed. Hence, the above results

essentially carry over to fixed-block systems such as classical ETCS L2.

B. Generation of VSS Layouts

As mentioned before, the potential of hybrid train detection is that virtual subsections can be added without

requiring expensive track-side detection hardware. In particular, what adding VSS sections means within our

framework needs to be formalized. Namely, they correspond to inserting a VSS border vertex to separate a given

edge into two or rather split both directional edges at the same position as follows.

Definition III.3 (VSS Addition Operator). For an edge e⋆ = (v1, v2) ∈ E and a scalar ρ ∈ (0, 1), the VSS

addition operator ψρ
e⋆ takes as an input a railway network N = (G, len, {sv}v∈V ), a border function CV , and a

set of stations S . It then adds a VSS border ρ · len(e⋆) away from v1. More formally, it outputs a new network

N ′ = (G′, len′, {s′v}v∈V ′), a border function CV ′ , and a set of stations S ′ as follows:

The vertices are expanded by a new vertex denoting a new VSS border, i.e.,

V ′ = V ∪ {vnew} CV ′(v) =

CV (v), if v ∈ V

1, if v = vnew

. (28)

Edges e⋆ and possibly e◦⋆ are split at the new vertex into e1 := (v1, vnew) and e2 := (vnew, v2) plus possibly their

reverse edges, i.e., using

E∆−
:= {e⋆, e◦⋆} ∩ E E∆+

:=

{e1, e2}, if e◦⋆ ̸∈ E

{e1, e2, e◦1, e◦2}, if e◦⋆ ∈ E

(29)

we have

E′ =
(
E − E∆−

)
∪ E∆+

. (30)
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Fig. 15: VSS addition operator

The lengths are updated according to parameter ρ, i.e.,

len′(e) =


len(e), if e ∈ E

ρ len(e⋆), if e ∈ {e1, e◦1}

(1− ρ) len(e⋆), if e ∈ {e2, e◦2}

. (31)

The successor functions {s′v}v∈V ′ are updated accordingly to represent the same movements in practice, i.e., using

E1 := {e ∈ δinE (v1) : e⋆ ∈ sv1(e)} and E2 := {e ∈ δinE (v2) : e
◦
⋆ ∈ sv2(e)} we have

s′v = sv for all v ∈ V ′ − {v1, v2, vnew} s′vnew
(e) =

{e2}, if e = e1

{e◦1}, if e = e◦2

(32)

s′v1(e) =


(sv1(e)− {e⋆}) ∪ {e1}, if e ∈ E1

sv1(e
◦
⋆), if e = e◦1

sv1(e), otherwise

s′v2(e) =


(sv2(e)− {e⋆}) ∪ {e◦2}, if e ∈ E2

sv2(e⋆), if e = e2

sv2(e), otherwise

(33)

If a station includes e⋆ or its reverse, it is updated accordingly, i.e., using f (e⋆) := {e1, e2}, f (e◦⋆) := {e◦1, e◦2},

and

∆−(S) := {e⋆, e◦⋆} ∩ S ∆+(S) :=
⋃

e∈∆−(S)

f(e) (34)

we have

S ′ =
{(
S −∆−(S)

)
∪∆+(S) : S ∈ S

}
. (35)

We denote by Ψ the set of all VSS addition operators.

Example III.4. Consider the graph depicted in Figure 15. Assume we want to separate the track between v1

and v2 into two VSS sections corresponding to adding a VSS border, say w0. The first section has a length of

0.6 · 200m = 120m, the latter of 80m. The transformation is shown in Figure 15 and corresponds to the operator

ψ0.6
e1 , which is equivalent to ψ0.4

e◦1
.

Some elements (e.g., turnouts) require special treatment and classical train separation. In our formulation, this can

be achieved by marking some of the TTD sections as unbreakable. It is then forbidden to apply the VSS addition

operator on an edge within any unbreakable TTD section. For example, any TTD section containing a turnout could

be marked in such a way. By doing this, the control logic around switches would not change, while at the same

time allowing optimization using VSS on all permitted tracks (only).
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150mẽ9 ˜e11

Fig. 16: Generation of VSS layout (t = 300)

By leaving the TTDs fixed and only adding VSS sections, we can change the block structure at a low cost. Because

of this, it might be possible to change the virtual subsections when a new train schedule should be implemented.

Hence, we can somewhat “overfit” to the current timetable requests without relying solely on schedule-independent

KPIs (e.g., headway). This leads to the following design task of generating VSS layouts.

GENERATION OF VSS LAYOUT (VSS-GEN)

Input: A railway network N = (G, len, {sv}v∈V ); border function CV : V → {0, 1, 2}; trains tr1, . . . , trm; a list of

timetable requests for tr1 to trm.

Task: Determine a minimal number of VSS addition operators ψ(1), . . . , ψ(k) ∈ Ψ (and train routes R(tr1), . . . , R(trm))

such that on ψ(k) ◦ . . . ◦ ψ(1)(·) the VSS condition is fulfilled and all trains respect their speed and timetable

requests or output that no such operators exist.

If possible, we try to keep the number of additional virtual subsections small to keep it tractable for the control

system during operation. In particular, we do not require a hard optimum because one section more or less will

likely not pose any additional costs. On the other hand, it might be interesting to still have a minimal number of

subsections to make given timetable requests realizable. In a later stage, one could then add more subsections to

improve robustness; if the generated VSS layout from this design task is minimal, there might be more space to

add subsections to improve robustness.

Example III.5. Again, consider the setting from Example III.1 and Figure 13. If we separate ẽ10 into two virtual

subsections by including a VSS border ( ), the train station S0 has three blocks. In fact, we can now route the

trains as shown in Figure 16, i.e., in the end, trains tr1 and tr2 can occupy the newly created subsections and train

tr3 the other track. Hence, by adding one VSS border, we have made the previously infeasible timetable requests

realizable. Note that we could also have added additional subsections, e.g., split track ẽ5 and have tr3 occupy two

blocks in the end. However, as said, our objective is to add rather few VSS borders, and one additional VSS border

suffices to make the timetable requests realizable.

Since VSS-GEN is not a decision problem, NP-completeness is not defined in this context. However, NP-hardness

can be shown by relating it to one of the previously defined verification tasks, where we use the more general

definition that a problem is NP-hard if it can be reduced from some NP-complete problem, hence, not requiring

the NP-hard problem to be of decision type [46].
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Theorem III.6. VSS-GEN is NP-hard even if all routes and exact stopping times in train stations are fixed and the

railway network is planar.

Proof. Consider an instance of TR-VER. Assume we are given an oracle to solve any instance of VSS-GEN. The

given TR-VER instance constitutes valid input to VSS-GEN. Let k⋆ be the number of VSS addition operators used

in an optimal solution of VSS-GEN on the respective input or let k⋆ = ∞ if no feasible solution exists. Then, the

solution to the given TR-VER instance is “yes” if, and only if, k⋆ = 0. In particular, we have polynomially reduced

TR-VER to VSS-GEN. The claim follows directly from Theorem III.2.

Remark III.7. Instead of adding additional vertices in a continuous setting using VSS addition operators, we

might also consider a discretized version, which might be easier to handle computationally. In this setting, we

would require the railway network N to consist of all nodes that could possibly become a VSS border. Adding a

VSS border is then equivalent to changing CV (v) from 0 to 1 for some v ∈ V with |Γ(v)| ≤ 2, where Γ denotes

the neighborhood (ignoring the direction of edges).

C. Schedule Optimization Using the Potential of VSS

In practice, minimizing VSS sections might not be of great interest. Instead, one might want to optimize the

operational outcome, e.g., by minimizing travel times. Intuitively, one might think that this is an (computationally)

easy problem, because the “best” layout is creating very small VSS (e.g., every meter or even less). In that case, trains

would basically operate as if a moving block control system were implemented. However, according to industry

experts, such an implementation would not be feasible because every virtual block has to be specified within the

interlocking and the Radio Block Center (RBC). These components must fulfill the safety integrity level (SIL) 4 and

are time-consuming and costly to develop and maintain. Because many such systems were developed and approved

for classical control systems, the address space for block sections has limited capacity.

Thus, in practice, there is a significant upper limit on how many VSS can be defined, which should be considered

within the planning process. Hence, the question arises on strategically placing these VSS to optimize the operational

outcome. In particular, a proposed solution of placing a VSS every meter is likely not feasible.

SCHEDULE OPTIMIZATION (VSS-OPT)

Input: A railway network N = (G, len, {sv}v∈V ); border function CV : V → {0, 1, 2}; trains tr1, . . . , trm; a list of

timetable requests for tr1 to trm; an upper bound Kmax.

Task: Determine VSS addition operators ψ(1), . . . , ψ(k) ∈ Ψ (and train routes R(tr1), . . . , R(trm)) such that k ≤ Kmax,

on ψ(k) ◦ . . . ◦ ψ(1)(·) the VSS condition is fulfilled and all trains respect their speed and timetable requests or

output that no such operators exist. Among all feasible solutions, the one with minimal travel times is returned.

As an objective, one might, e.g., minimize the (weighted) sum of travel times or the longest travel time.

Another operational objective might be to maximize capacity. Assume, e.g., one plans a mixed railway network

on which passenger trains should operate, adhering to certain scheduling constraints. On the other hand, there are

additional requests for freight trains running through the network. In this setting, one might want to maximize the
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number of freight trains without negatively affecting the timetable requests of passenger trains by using the full

potential of VSS sections.

CAPACITY OPTIMIZATION (VSS-CAP)

Input: A railway network N = (G, len, {sv}v∈V ); border function CV : V → {0, 1, 2}; trains tr1, . . . , trm1
and

t̃r1, . . . , t̃rm2
; a list of timetable requests for every train; an upper bound Kmax.

Task: Determine VSS addition operators ψ(1), . . . , ψ(k) ∈ Ψ, a subset R ⊆ {1, . . . ,m2}, train routes

R(tr1), . . . , R(trm) and R(t̃rj) (j ∈ R) such that k ≤ Kmax, on ψ(k) ◦ . . . ◦ ψ(1)(·) the VSS condition is

fulfilled and all routed trains respect their speed and timetable requests or output that no such operators exist.

Among all feasible solutions, the one maximizing |R| (i.e., the number of routed optional trains).

Theorem III.8. VSS-OPT and VSS-CAP are NP-hard even if all (potential) routes and exact stopping times in

train stations are fixed, and the railway network is planar.

Proof. Consider an instance of TR-VER. Assume we are given an oracle to solve any instance of VSS-OPT. The

given TR-VER instance constitutes valid input to VSS-OPT. Let t⋆ be the optimal travel time objective or t⋆ = ∞

if no feasible solution exists. Observe that it is easy to deduce a theoretical upper bound on t⋆ in the feasible case,

say t, from the latest possible exit times ttr1out, . . . , t
trm
out , e.g., t = t

tr1
out + . . .+ t

trm
out if the objective is given by the

sum of travel times. Then, the solution to the given TR-VER instance is “yes” if, and only if, t⋆ ̸= ∞, i.e., t⋆ ≤ t.

The given TR-VER instance also constitutes valid input to VSS-CAP. Let r⋆ = |R⋆| be the maximal number of

optional trains t̃r1, . . . , t̃rm2 that are routed or r⋆ = −∞ if the problem is infeasible even for R = ∅. Then, the

solution to the given TR-VER instance is “yes” if, and only if, r⋆ ̸= ∞, i.e., r⋆ ≤ m2.

In particular, we have polynomially reduced TR-VER to VSS-OPT and VSS-CAP. The claim follows directly

from Theorem III.2.

IV. CONCLUSIONS

In this paper, we formalized important properties of ETCS L2 HTD and corresponding design tasks. Moreover,

we argued that the framework could eventually also model more realistic train movements as additional constraints

by stating some examples of possible extensions in Section II. While the verification tasks in Section III-A are

analog to older level systems (since the block layout is fixed), the two latter tasks (Sections III-B and III-C) make

use of the new freedom provided by virtual subsections. Furthermore, we proved that these tasks are NP-hard

(or NP-complete, respectively). By this, we provided a theoretical foundation for further developing corresponding

design methods for ETCS L2 HTD. These methods will be integrated into the Munich Train Control Toolkit (MTCT)

hosted on GitHub (https://github.com/cda-tum/mtct).

The results confirm that previously proposed heuristics and exact methods (presented, e.g., in [35], [36]), which

only generate non-optimal results or have a severely limited scalability, respectively, do not suffer from insufficient

methodology but complexity reasons. Overall, for the first time, a solid basis for developing (ideally scalable)

design automation solutions incorporating the freedom allowed by virtual subsections within ETCS L2 HTD is

https://github.com/cda-tum/mtct


24

provided. These methods might be a valuable addition to the already existing work on fixed-block control systems

summarized in Section I. It will also be interesting to see how these methods tailored to hybrid train detection

systems perform compared to previously designed methods that do not consider the specific timetable requests for

generating signaling layouts.
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