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Abstract—The demand for sustainable railway transportation
is increasing over time. At the same time, the capacity of railway
networks is limited. Hence, efficient algorithms for generating
optimal timetables are of great interest. Previous research focuses
on trains being separated by classical fixed block signaling sys-
tems. With modern control systems based on moving block, e.g.,
within the European Train Control System (ETCS), the principles
of safely separating trains change significantly. Only limited
research on optimal routing on such modern railway networks
exists. With this work, we propose a simulation approach tailored
to be used with heuristic optimization algorithms to tackle this
problem. Moreover, we show how such a framework can allow for
more general inputs to jointly optimize what is usually planned
sequentially as of today. The simulation framework is included
within the open-source Munich Train Control Toolkit (MTCT)
available on GitHub at https://github.com/cda-tum/mtct.

I. INTRODUCTION

ASSENGER rail traffic in the European Union (EU) has
P increased by 35% in the last 30 years [[1]. The main driver
of this increase is high-speed rail traffic, which has risen on
average by 6% per year. At the same time, freight rail traffic
volume has stagnated, but, triggered by the European Green
Deal, freight traffic should be prioritized to be transported
by rail instead of road [2]]. However, many railway lines are
already operating at their capacity limit. A good planning
process and traffic management systems are crucial to cope
with the increasing demand. Some of the arising design tasks
are introduced in [3]].

The general railway planning process is commonly split into
multiple sub-problems. Solving these sub-problems sequen-
tially makes it possible to reduce complexity drastically. While
mathematical modeling of these singular steps is feasible and
widely implemented, an integrated approach remains out of
reach [4], [5].

In this work, we focus on timetabling on a predefined rail-
way network, or more precisely, how to optimally route trains
through a railway network to fulfill certain conditions. The
feasibility of a solution highly depends on the implemented
control system. Since trains cannot operate on sight due to
long braking distances, such signaling systems are crucial to
prevent collisions and ensure safe operation. Classically, block
signaling systems have been implemented. However, new train
control principles have also been defined considering the
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increasing demand. One of these extensions is the introduction
of Moving Block control systems, replacing classical block
signaling with dynamic supervision. Relevant details on these
systems are reviewed in Section

Much of the existing literature for train routing relies on
the properties of fixed-block signaling. There is only lim-
ited research on optimally routing trains through networks
equipped with modern moving block control systems [6], [7]],
[8]. They are based on Mixed Integer Linear Programming
and do not (yet) scale well. We aim to close this gap by
introducing an alternative heuristic approach based on sim-
ulation on a microscopic level, i.e., considering individual
tracks. Existing simulation tools, such as OpenTrack [9] or
OSRD [10], mainly focus on verifying and evaluating given
solutions. Instead, our work focuses on applying a simula-
tion framework already within the optimization process. Its
architecture is built from the ground up with a moving-
block approach, ditching old constraints. This allows us to
apply novel techniques to encode solutions more efficiently
to improve the performance of respective search algorithms
applied to our simulation framework. Our approach can even
include more complicated objectives. By doing so, it could
be extended to combine multiple planning steps jointly in one
optimization step. All work is integrated into the Munich Train
Control Toolkit (MTCM) available open-source on GitHub
at https://github.com/cda-tum/mtct.

For this Section [[I] reviews the basic principles of train
control systems, Section [[II] describes the routing problem,
Section introduces the underlying model and encoding
with the aim of reducing the search space, Section [V| provides
information on how this model can be used for optimization
purposes, and, Section |V]| evaluates the approach by conduct-
ing a case study on a small benchmark set. Finally, Section [VII|
concludes this work.

II. TRAIN CONTROL PRINCIPLES

Train signaling has been based on splitting a line into dis-
crete segments or blocks (fixed block), going back to the 19th
century, Once a train enters a block, it is marked occupied,
and access to other trains is forbidden. The status of a line
segment is indicated to the driver via a mechanical display,
called a semaphore, or later, an optical signal. This ensures
mutual exclusion for track segments and thus prevents train
collisions. Trackside Train Detection (TTD) uses electrical
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Fig. 1: Schematic drawings of signaling principles [8]]

circuits embedded in the tracks or discrete sensors triggered
by passing train axles to define the signal status.

Example II.1 (from [8]). Consider two trains following each
other on a single track as depicted in Figure [Id] Train try
can only move until the end of T'T'D2. It cannot enter T'T' D3
because it is still occupied and, hence, might have to slow
down in order to be able to come to a full stop before entering
the occupied block section.

With advances in communications technology, it has be-
come possible to soften the traditional block structure into
virtual and moving blocks. Virtual Subsections (VSS) obey the
same principles as fixed blocks but can be arbitrarily defined.
Position reporting relies no longer on trackside equipment but
continuous bidirectional communication with the train. This
alleviates the previously mentioned problems, especially with
small or large block sizes, and allows for changing the block
layout at any time.

Moving Block is a further evolution where blocks are
abolished altogether. All trains in the network self-report and
receive each other’s position and speed. This allows them to
calculate safe headway times dynamically, considering their
individual braking curves. Moving Block has been taken up
first on suburban railways, where risks are easier to manage. In
metro lines, technical efficiency was improved by 11.5% by
introducing moving block signaling and connected automa-
tion [11].

Example I1.2 (from [8]]). In contrast to Eample. consider
a moving block control implemented in Figure [ID] Because
trains operate at the ideal absolute braking distance, tro can
move up to the actual end of try (minus a little buffer).
In particular, it can already enter what has been TTD3
previously. Hence, trains can follow each other more closely.

III. TRAIN ROUTING UNDER MOVING BLOCK CONTROL

This work considers optimal train routing on a network
equipped with a moving block control system. The Train
Timetabling Problem (TTP) is part of the previously described
planning process in Section [} It aims to find a feasible
schedule and train routing under various constraints imposed
by requirements on the desired timetable and safety conditions
imposed by the control system as discussed in Section
Train routing on a microscopic level consists of assigning
trajectories and timings at the track level without imposing
conflicts between different train movements.

In this work, we consider a part of a network that is
equipped with a moving block control system, i.e., the problem
is given as:

Problem III.1 (Train Routing under Moving Block Control).
Given: A railway network, a list of trains including relevant
properties, and a set of demands for every train consisting of

o information on when and where the train enters the
network,
o information on when and where the train exits the net-
work, and
o a list of stationsE] the train should stop at.
Problem: Find a feasible train routing that minimizes over-
all travel time.

IV. SIMULATION MODEL

This section describes the underlying model of our micro-
scopic time-continuous simulator. First, we briefly discuss how
the railway network and train in Sections and
Finally, an efficient solution encoding is discussed with the
aim of preventing invalid solutions from being generated by
the optimizers presented in Section [V]

A. Network and Train Model

Our network model is based on [3]. At the same time, we
allow trains to move on railway tracks in arbitrary directions.
Thus, a railway network is an undirected graph G = (V, E)
with vertices V' = {vy,v9,v3,...,0,,} representing rail-
way switches, signals or other points of interest and edges
E = {ei1,es,e3,...,em}, € = {v;,vx} C V representing
railway tracks. Each edge e; also has an associated positive
weight /., representing track length and a maximum permitted
speed v;’:‘”ﬁdg@. Moreover, railroad switches can only be
traversed in specific directions, which is also modeled within
the railway network.

B. Train Model

Trains are objects of a certain length [!"%", maximal
velocity v™e®rain - and maximal acceleration/deceleratiorﬂ
amawtrain - We allow negative velocity values to include
directional information. If v > 0, the train moves forward;
if v < 0, it moves backward. In contrast to previous work [6],
[7]], [8]], this allows trains to also turn around if necessary, e.g.,
in stations where this commonly happens in practice. Without
loss of generality, we define a train’s position as its center
point and denote by e[t] € F the edge at time ¢

C. Solution Encoding

Choosing a purely heuristic approach affords us freedom
in the design of the entire optimization loop. This makes
it possible to limit the search space by intelligently pre-
processing our candidate solutions. We choose a representation

IThis only includes the station. The platform is not yet fixed, but it is to
be decided by the solving algorithm.

2For simplicity, the train’s maximal acceleration and deceleration are equal.
However, the model can also be extended to model that these are usually
different since braking and accelerating behavior differ.
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Fig. 2: Directional choice variable.

such that for each train, the decision variables map onto a
physically possible train trajectory. This way, we eliminate
solutions that contain overspeed, overacceleration, and invalid
paths.

1) Railway Switches: Since trains in our model can reverse
directions at any time, their trajectory describes an open,
undirected walk. Instead of generating a valid graph walk for
each solution, we compute it implicitly at simulation time with
no additional cost. For this, we introduce directional choices
D = {dy,...,dype=_ }, where each d; € [0,1] mimics
a steering wheel for a given decision point. If d; = 0, the
train wants to move left; if d; = 1, the train wants to move
right; see Figure Because d; € R, this allows us to also
choose middle tracks if a given switch allows for more than
two options. At the first switch, the route is chosen according
to di, at the second switch according to ds, and so on. That
means the route choice variables do not depend on time but
are a list of decisions that are made in order whenever it is
necessary to make a decision.

More precisely, assume that at time ¢, a train traverses a
switch v4., on edge e[t] and has to make its kth decision.
Assume that the list of possible successor edges allowed by
the switch T'(e[t], vtrqr) is ordered and contains j elements
€0,€1,--.,€5-1. Then

elt + At] = e|(a -1 M

where |-] denotes rounding to the closest integer.

2) Speed and Acceleration: We do not directly encode each
train’s velocity (and acceleration) because modeling future
speed limits (which might induce braking well in advance)
would be challenging to model. Instead, we choose a set of
speed target points S as decision variables, as time-velocity
pairings. More precisely, any s; = (7;,;) € S consists
of a time point 7; € [0,T},4.] and a normalized velocity
target v; € [0,1]. From S we create a piecewise constant
function £(t) by previous-neighbor interpolation and scaling
with pmaez:train je

§(t) =

where previous(S,t) := max{i: 7; < t} is the most current
speed target. From this, we induce the acceleration by attempt-

max,train
v ’ * Vprevious(S,t)» 2
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Fig. 3: Smoothing £ to a feasible trajectory.

ing to reach the current speed target as quickly as possible,
see Figure [3a] similar to a bang-bang controller known from
optimal control theory. If w < gmemitrain - then
v[t + At] = £(t), otherwise the train maximally accelerates
toward its target.

The track speed limit is much more difficult to encode
since train speed v[t] and edge position e[t] are interdependent.
Adjusting the speed can shift the time of an edge change or,
when reversing, even the edges themselves. We leverage this
by repairing v[t] during the simulation using backtracking,
a standard method for algorithmic constraint satisfaction as
shown in Figure [3b| When encountering a constraint violation,
the offending speed targets in S are removed and replaced
with the maximum allowed speed for the track section. The
simulation travels backward in time and applies just enough
braking to avoid overspeed. Similarly, we can force the train
to stop at a given point, e.g., at a station.

Encoding the target velocity curve as a set of discrete points
in this way reduces the dimensions of the solution space.
Any arbitrary curve in the solution space is still representable
by increasing the number of points until every timestep is
contained in S, amounting to a lookup table.

V. OPTIMIZATION USING SIMULATION

The combined encoding from Section [[V-C| gives us a space
of decision variables consisting of speed target points .S and
direction choices D that map onto individually feasible train
trajectories as previously discussed. Next, we evaluate the
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quality of each solution to define optimization criteria and
apply various heuristic algorithms to find reasonable solutions.

A. Objective Function

The objective function is a composite of soft constraints
fheadway, fdest» and a global objective fgtops, Which are
explained next. They form the multi-objective minimiza-
tion problem. Each objective can easily be normalized and
weighted as desired.

1) Headway: Arguably, the most critical constraint is to
avoid collisions, i.e., to apply long enough headways between
two consecutive trains. It is introduced into the objective
as a soft constraint fheqdway penalizing closeness beyond a
minimum safety distance hgqpe > 0.

Let d; ;(t) be the distance between tr; and ¢r;at time t.
Additionally, a distance penalty function w is chosen, which
is zero for distances greater than h,, ., for example, a triangle
function. The headway penalty can then be defined as

Nirains Ntrains

fheadway = Z Z Z W(di,j (t)) 3)

i=1  j=i+1 t

Using pre-computed all-pairs shortest paths for the entire
network, the effort to find the distance between two trains is
constant. The total number of necessary checks can be reduced
by skipping time steps where a collision is physically impos-
sible. For this, not that d; ; fulfills the following constraints:

di ;(t) >0,
d; ;j(t) < longest distance in network,

5 0)] < [oesten cand @
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Using Equation (@), we can calculate a grace period for each
distance check in which the trains cannot meet even when
taking the shortest path towards each other at full speed. As
seen in Figure ] more checks are performed when trains
are closer. Consequently, the computational effort for this
objective varies based on the density and maximum speed of
trains on the network. This method can be further improved
by considering acceleration constraints in the grace period
calculation and using a more efficient sampling of the distance
function.

2) Destination: The problem specifies that each train enters
and exits the network under consideration at some point in
time with respective target velocities. The former constraint
can be fulfilled by fixing the initial state of each train. Guid-
ance toward a final destination is added through another soft
constraint, penalizing the distance from the desired position
and the difference in speed.

3) Intermediate Stops: Stops en route can be introduced
by rewarding time spent with zero speed on scheduled edges.
However, we can increase the prevalence of solutions with
valid stops by encoding them using the repair algorithm
described in Section Each train passing an edge with
a stop will be forced to halt for a minimum amount of time.
In the objective evaluation, the fulfilled stops can be counted
at minimal cost.

B. Optimizer

As described in Section we are confronted with a gen-
eral, non-linear, constrained optimization problem. In addition,
the objective is non-convex and non-smooth, and its analytic
form is unknown. We already defined an unconstrained version
via relaxation using penalty functions; see Section [V-A] This
no longer guarantees solution feasibility for the combined
objective. However, feasibility can be verified by evaluating
the penalty functions.

The formulation gives rise to applying various heuristic
approaches to find a good solution, which are described in
the following paragraphs.

1) Random Search: A trivial baseline for search can be
achieved by randomly assigning decision variables and keep-
ing the best result. Such a method can be improved by
introducing local search steps in each iteration. , e.g., using
the Luus-Jakola method, a simple gradient-free local search
algorithm [12]. An initial solution is randomly perturbed in a
hypersphere with radius r. If the new candidate solution is an
improvement, it replaces the old one as a starting point. The
radius 7 contracts with each iteration by a contraction factor
Ccontract-

2) Greedy Search: Tt can be beneficial to mimic the behav-
ior of human timetable planners when generating candidate
solutions, as proposed in [13]. We, therefore, place trains
sequentially using a limited random search for each instance
in sequence. This approach breaks down the routing into sub-
problems. The order of train placement in our implementation
is randomized. Classic asynchronous routing usually schedules
trains by priority. Again, such an algorithm could be improved
using local search, leading to the Greedy Randomized Adaptive
Search Procedure (GRASP).

3) Genetic Algorithm: The use of genetic algorithms for
timetabling is widespread [14], [15]. We implemented a prim-
itive version, where crossover amounts to randomly choosing
a trajectory for each train from the two parent solutions.
Again, the iterations can be combined with local search.
The population is sorted by objective score. Individuals are
transferred from an elite set of top performers to the next



TABLE I: Search method comparison parameters.

Local Search Start Radius STinitial 0.4

and random+local | Stop Radius ST final 0.001

and GRASP Contraction Coefficient  ccontract 0.99

Greedy Search Per Train Stall Time 10ms

and GRASP

Genetic Search Population |P] 1000
Elite Fraction Nelite/| Pl 0.01
Mutation Rate 0.1
Crossover Fraction Nerossover/|P| | 0.7

T
Search Method

= genetic == random-+local ]

—— grasp = random

= greedy

Best Achieved Objective Score

generation without modification. The crossover fraction deter-
mines the subset of individuals selected as parents for the next
generation. Each offspring has a uniform chance to mutate,
called the mutation rate; in this case, a random perturbation of
all variables proportional to their maximum range is applied.
The size of this perturbation is scaled down non-linearly as
the generations progress. Our implementation uses the openGA
library [16]].

VI. CASE STUDY

Due to their different model assumptions and significant
limitations on publicly available data, the performance of
timetabling tools is difficult to compare quantitatively. Ulti-
mately, the most decisive measure is usefulness when applied
in day-to-day planning. With this case study, we demonstrate
the applicability of the proposed framework to the early stages
of timetable planning.

A. Benchmark

For this, we solve three sample problems of varying size
from [17]. These networks are included in the aforementioned
Munich Train Control Toolkit (MTCT) available open-source.
The first network, "Overtake," models a situation where faster
trains must overtake slower ones. The second "SimpleNet-
work" makes four trains cross at a central station. The last
network, "Stammstrecke," is a full-sized replica of the Munich
S-Bahn’s core network passing through the city center.

Each train is defined with a fixed schedule for arrival and
departure in the network and planned stops. In our test case, all
objective functions are designed such that an objective score of
zero indicates an optimal solution. This means all trains obey
the distance minima, visit their scheduled stops, and reach their
destination at the right speed and time. The collision objective
is weighted roughly 10 to 1 against the two others.

Table [I] shows the parameters chosen to compare all search
methods. They are a compromise across all test networks
drawn from previous parameter measurements not reported in
this paper due to space limitations. The numeric results for
the search parameters we obtained are not universal since they
depend heavily on problem parameters. However, we attempt
to make generalized statements about algorithm performance
wherever conclusive measurements allow.

B. Setup

Our C++ implementation is integrated into the open-
source Munich Train Control Toolkit available on GitHub
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at https://github.com/cda-tum/mtct. Each optimizer instance
was run on a single 4GHz core of a stock Intel 17-6700K
processor using DDR4 RAM at 2133 MHz. For each algorithm
instance, we record each improvement in objective score along
with the expired search time. After collecting a statistically
significant number of runs, we interpolate at 500 evenly spaced
points over the runtime of the longest run. We then calculate
the arithmetic mean score at each point. These mean score
progressions can then be compared to assess algorithm quality.

C. Evaluation

We compare the optimizers introduced in Section [V-B] For
the genetic algorithm, adding a local search step for each
generation did not improve outcomes while increasing search
time by an order of magnitude. For this reason, we excluded
local improvement from the results. For our sample problems,
all search methods stopped improving within the investigated
time period. Thus, we focus on the best score before stalling,
primarily reflecting solution quality.

Figure 5] pits all optimizers against each other. The random
search baseline performed worst in all cases, as expected. The
two local search methods dominated for the smallest instance.
Focusing on refinement is more fitting for a smaller fraction
of infeasible solutions. Greedy search was the overall best,
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delivering both fast results and a low floor over time. It can
efficiently generate many feasible solutions but will drop them
immediately. The genetic algorithm showed progressively im-
proved results for larger problem sizes, even overtaking greedy
search in final solution quality for the Stammstrecke instance.

By tracking individual objectives and visualizing the train
trajectories, we can assess the quality of the solutions for
these candidates. The objective values are normalized to
[0,1] or [0%,100%)] respectively. The best solutions for the
SimpleNetwork and Overtake instances exhibit no distance
violations, an average destination penalty of 7% and 11%,
and visit all reachable stops. The Stammstrecke solution does
contain collisions, a 34% average distance penalty, and 27%
average unfulfilled stops.

VII. CONCLUSIONS

We have reviewed current developments in railway planning
and shown the need for modern, flexible, and accessible simu-
lation platforms. We presented a new microscopic simulation
framework for train timetabling on networks equipped with
modern signaling systems based on moving block separation.
This allows for more flexible train movements than previous
approaches. We explained how architectural decisions and
constraint encoding could be chosen to help heuristic algo-
rithms find feasible trajectories quickly by implementing repair
heuristics. Our approach allows for flexible objectives so that,
e.g., line planning could be included in a joint optimization
using the presented framework.

We tested multiple optimizer configurations on example
timetabling problems to demonstrate functionality and gain
insights into problem structure. Greedy and population-based
search strategies proved superior to neighborhood-focused
ones. For small instances, this trend was reversed. Overall,
diversification, in combination with constraint satisfaction,
dictated solution quality rather than local refinement. The
smaller routing instances could be solved within a few minutes
and withstand hard constraints even with limited hardware.

At the same time, this hints that the repair step introduced
in the encoding to enforce feasible trajectories significantly
helps the heuristics progress. Note that not all solutions firmly
adhered to the headway constraints. Hence, the approach might
improve from an enhanced solution encoding, which ensures
safe distances by a backtracking repair step similar to the
one proposed to ensure satisfying track maximum speeds. It
is conjectured that this will highly benefit the quality of the
solution.

Overall, this work constitutes a promising approach for
using simulation frameworks to generate optimal timetables
and microscopic routes on general railway networks equipped
with modern moving block control systems. All code is
available open-source within the Munich Train Control Toolkit
(MTCT) on GitHub at https://github.com/cda-tum/mtct, which
is still under active development.
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