
Automatic Design for Modular Microfluidic Routing Blocks
Philipp Ebner∗, Maria Emmerich†, Eric Safai‡, Aniruddha Paul§, Mathieu Odijk¶,

Joshua Loessberg-Zahl‡§ and Robert Wille†∥
∗Institute for Integrated Circuits and Quantum Computing, Johannes Kepler University Linz, Austria

†Chair for Design Automation, Technical University of Munich, Germany
‡Department of Bioengineering Technologies, University of Twente, The Netherlands

§BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, The Netherlands
¶Integrated Devices and Systems (IDS), University of Twente, The Netherlands
∥Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria

philipp.ebner@jku.at, maria.emmerich@tum.de, { e.r.safai, a.paul, m.odijk, j.t.loessberg-zahl }@utwente.nl,
robert.wille@tum.de

https://www.cda.cit.tum.de/research/microfluidics/

Abstract—Microfluidics is a rapidly growing field that aims to simplify
complex analytical procedures by moving them to small-scale devices.
A particularly interesting application of microfluidics are so-called
Organs-on-Chips, i.e., microfluidic devices that mimic the structure and
function of human organs and, therefore, allow studying the effects of
drugs and diseases. Recent recognition of the need for standardization in
this domain has led to the generation and uptake of new ISO standards—
providing the basis of modular and reusable microfluidic building blocks
that allow for various organ-on-chip setups. However, designing these
building blocks, especially so-called routing blocks that interconnect
pumps, cell cultures, and other modules is a cumbersome, repetitive task
that is still conducted manually. In this work, we propose a design and
routing method that significantly simplifies the design of such routing
blocks by fully automating the process of interconnecting components of
a microfluidic chip. The evaluation of physical, fabricated routing blocks
that were designed using the proposed method showcases its feasibility in
real-world applications and its potential to reduce design effort and time
significantly. In order to make the work accessible to the microfluidic
community, we provide implementations of the resulting methods in the
form of a user-friendly, interactive online tool, provided as part of the
Munich Microfluidic Toolkit (MMFT).

Index Terms—Microfluidics, Routing Block, Organ-on-Chip, Design
Method

I. INTRODUCTION

Microfluidic chips, typically called Lab-on-a-Chip (LoC), can
manipulate fluids at the microscale level, allowing for precise control
and analysis of biological and chemical samples [1]–[3]. LoCs have
various applications, such as drug delivery, point-of-care diagnostics,
or environmental monitoring [4]–[6].

One promising application of microfluidics is provided through
the development of Organs-on-Chip [7]–[11], which are microscale
models of human organs that mimic their physiological functions.
These devices allow researchers to study the effects of drugs, toxins,
and diseases on specific organs in a more accurate and controlled
manner. It is hoped that they can largely replace animal testing and,
therefore, enable a more ethical approach in drug development.

Until recently, microfluidics in general, and the organs-on-chip
subfield in particular, suffered from a lack of standardization, leading
to a limited interoperability of different devices. Fortunately, this is
beginning to change with the introduction of ISO 22916:2022 [12], an
international standard that aims to improve this and, therefore, enable
more complex and interconnected microfluidic devices. Derived from
this ISO standard, additional design rulesets, such as the Translational
Organ-on-chip Platform (TOP) Design Rules (TDRs), were recently
introduced [13].

TOP is an open-source design architecture for modular mi-
crofluidics to enable the integration of microfluidic building blocks

(i.e., modules) essential for organ-on-chip experiments includ-
ing organs-on-chips, pumps, sensors, liquid storage – onto a
microtiter-sized Fluidic Circuit Board (FCB), fitting parts of the
ANSI-SLAS standards [14] for microtiter plates. Any microfluidic
component that implements the ISO-compliant TDRs is compatible.
In this work, the Stand-Alone Reconfigurable and Translational
(STARTER) platform [15], a TOP-based platform, is considered
as a representative implementation of these standards. STARTER
increases device interoperability and design freedom for the user due
to its modularity, reconfigurability, and material-agnostic interfacing.

The platform’s architecture allows for experiment flexibility
through a central component, the so-called routing block, which
dictates fluidic connections between the interfaced components. Such
connections are established by microfluidic channels that carry the
fluid between different ports (i.e., interfaces to other components) of
the routing block. Depending on the complexity of the experiment
setup, and, therefore, on the number and characteristics of desired
connections to be implemented, designing these routing blocks con-
stitutes a complex task.

Despite this complexity, the design of routing blocks is still
conducted manually, resulting in a time-consuming and repetitive
process. Although there are many design automation tools for certain
microfluidic applications [16], e.g., for flow-based chips [17]–[24],
valve-controlled chips [25]–[29] or digital biochips [30]–[33], they
do not yet consider the constraints of the ISO 22916 standard due to
its novelty. While there is little preliminary work that does consider
the standard [34], it is not specific enough to be employable for
routing blocks and lacks interfaces that make it accessible to the
microfluidic community [35]. Ultimately, for the problem presented
herein, no automatic process exists yet.

In this work, we present a design method that can solve
this task in a fully automatic fashion. To this end, we em-
ploy a procedure that takes advantage of the design charac-
teristics of routing blocks in order to efficiently route mi-
crofluidic channel connections. The proposed procedure ensures
that routing block designs can be generated in real-time. Ad-
ditionally, we provide a user-friendly online tool (available at
https://github.com/cda-tum/mmft-routing-block-channel-router) that
allows users to design routing blocks in an intuitive, push-button
fashion as part of the Munich Microfluidic Toolkit (MMFT) [36]. To
bridge the gap to the community, we provide options to import routing
block configurations from external file formats that are predominantly
used in the microfluidic community. In the end, we also provide
exports to common CAD formats such as DXF that can then be
directly used in fabrication or further refined.
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(a) STARTER platform (b) Multi-Organ-on-Chip cultures (c) Routing block

Fig. 1: STARTER platform and routing blocks

We evaluate the applicability and performance of the resulting
method and tool by both performance benchmarks as well as an
experimental case study. To show that the proposed tool can indeed
generate designs for the introduced task in near real-time, we provide
benchmarks for 5000 randomly generated, generic routing blocks.
Finally, we demonstrate feasibility for real-world applications by
testing fabricated routing blocks that have been designed using the
proposed tool.

The remainder of this work is structured as follows: First, we
review the context of the given routing problem in Sec. II. In Sec. III,
we present the proposed method. Fabricated examples (designed us-
ing the method and tool), performance benchmarks, and the resulting
tool are discussed in Sec. IV, before the paper is concluded in Sec. V.

II. BACKGROUND AND DESIGN TASK

In order to introduce the context of the proposed method, we first
review the characteristics of the STARTER platform routing blocks.
Afterwards, we sketch the resulting design task and main idea behind
the proposed solution.

A. STARTER and Routing Blocks

In this work, we consider the STARTER platform [15] as
a representative implementation of the ISO 22916 standard and
Translational Organ-on-chip Platform (TOP) Design Rules (TDRs).
STARTER consists of an Fluidic Circuit Board (FCB) that houses
key components for organ-on-chip experiments. As an example,
Fig. 1a depicts a STARTER system that accommodates a pump block,
3 reservoirs, a sensor, 3 organ-on-chip cultures, and a routing block
that is mounted on the bottom of the FCB. Fig. 1b shows an active
STARTER system where red loops are recirculating fluid and the
green path is a solution of blue and yellow perfused through all
3 organ cultures. All these components interface fluidically with the
FCB using silicone o-rings and are held in place with mechanical
clamps.

In prior work [37], [38], a new FCB was almost always required
for each new use case, as each FCB contains a fixed set of fluidic
circuits. Thanks to the ISO standard, the routing block component
of STARTER allows the same FCB to realize many different fluidic
circuits. Here, the fluidic channels simply connect the ports of other
microfluidic building blocks, e.g., pumps, sensors, or organ cultures,
to ports in a single central interfacing area on the bottom face of the
FCB, highlighted in Fig. 1a, where a single, compact routing block
is located. Fluidic connections established within this routing block,
therefore, fully determine the fluidic circuits present in the STARTER
system. By simply manufacturing a new routing block, experiments

can be fully (re)designed while using the same set of microfluidic
building blocks and organs-on-chips.

The properties of routing blocks are derived from the TDRs [13] as
well as the ISO 22916 standard [12]. These standards govern various
geometric aspects, which are illustrated in Fig. 1c. More precisely:

a) Size: Routing blocks have a rectangular shape with a certain
width and height, as depicted in Fig. 1c, where both width and height
are restricted to multiples of 15mm. Currently, routing blocks of two
different sizes are used in the STARTER platform: 30mm× 15mm
and 105mm × 15mm [15]. However, in principle, other sizes are
possible as well. The upper-left corner is called the reference point
with coordinate (0, 0).

b) Ports: Routing blocks interoperate with other components
of microfluidic chips via circular ports, i.e., openings on top or at
the bottom that allow for fluid exchange with other components.
The permitted locations of ports are aligned in rows and columns
on a grid, as illustrated in Fig. 1c. Rows of ports are identified by
letters (A,B,C, . . .), whereas columns are identified by numbers
(1, 2, 3, . . .). As a result, each port has a unique port identifier, e.g.,
the first column in Fig. 1c consists of the three port locations A1,
B1, and C1. While Fig. 1c illustrates all possible port locations for
the given routing block, ports that are not end points of connections
(e.g., all except A2, A5, B4, C3, and C5) have no function and,
therefore, would not actually be fabricated. The uniform distance
between rows and columns of ports is called port pitch. The grid itself
has a certain offset relative to the reference point in both directions,
i.e., the upper-left port A1 has coordinates of pitch offset X and pitch
offset Y. The size of ports is given by their diameter.

c) Connections: Connections between ports are realized by
channels of either rectilinear (i.e., vertical and horizontal segments)
or octilinear (i.e., also diagonal segments) layout. These channels
have a certain width as well as a required minimum spacing towards
other channels in order to allow for defect-free fabrication of the
resulting design. A single connection can encompass between two and
four ports. 2-port connections are simple point-to-point connections
via a single channel, e.g., the 2-port connection in Fig. 1c connects
ports A2 and B4 using a rectilinear layout. For 3-port and 4-port
connections, the channels leading to each port join at a common
branch point, e.g., the 3-port connection in Fig. 1c connects ports
A5, C3, and C5 with three branches (i.e., channel sections) that
meet at the indicated branch point using an octilinear layout. Since
unused ports (i.e., ports that are not part of a connection) are not
actually present on the fabricated routing block, channels may be
routed through their locations (e.g., the 2-port connection crosses the
location of unused port B3).



TABLE I: Input Parameters

Symbol Description
bx, by . . . block width and height [mm]
chw, chsp . . . channel width and channel

spacing [mm]
p . . . pitch [mm]
pox, poy . . . pitch offsets [mm], pox ≥ p,

poy ≥ p
pd . . . port diameter [mm]
l . . . layout (rectilinear or octilinear)
con . . . number of connections
coi . . . i-th connection, 0 ≤ i < con↰

copin . . . number of ports of coi,
2 ≤ copin ≤ 4↰

copi,k . . . k-th port of coi, 0 ≤ k < copin↰

copi,kx , copi,ky . . . column and row of the port1↰

brpi . . . connection branch port (op-
tional)↰

brpix, brpiy . . . column and row of the branch
port1 (optional)

B. Design Task and Main Idea

The design task that naturally emerges from designing a routing
block is to find and draw the channel connections introduced above
while, at the same time, following the ISO standard, i.e., respecting
the given geometric requirements. Until now, this task was exclu-
sively done manually, resulting in a time-consuming and repetitive
workflow. In this work, we propose a design automation method that
can solve this task not only in a fully automated fashion but is also
fast enough to deliver near-instant results.

The expected input parameters largely correspond to the aspects
introduced in Sec. II-A and Fig. 1c. Table I provides a detailed list
of these parameters. More precisely, routing block size (width bx
and height by) and channel size (width chw and required spacing
chsp) must be provided, as well as pitch size p and offsets pox/y .
Additionally, port diameters pd are part of the input as well as the
layout l that is used for all channels, either rectilinear or octilinear.
Finally, a list of connections to be routed has to be provided, where
each connection coi consists of 2 to 4 connection ports copi,k, and
an optional branch point brpi in the form of another, unused port
location1.

Given this input, we propose a design automation method that can
route channel connections between ports automatically and efficiently.
More precisely, the proposed procedure consists of five major steps:

1) Discretization of Search Space: The area of the routing block is
partitioned into a uniform cell grid.

2) Area Reservation: Cells around ports are reserved for the corre-
sponding connection.

3) Branch Point Computation: The cells where channels of 3-port
and 4-port connections should meet are computed.

4) Reordering of Connections: Connections to be routed are ordered
in a specific way to reduce mutual obstruction.

5) Sequential Routing: Connections are routed based on A*.

The following sections explain these steps in detail and demonstrate
that the proposed solution indeed provides fast and reliable results.

1We assume that port identifiers are given as indexed columns and rows
here (e.g., copi,k

x/y
= (3, 0) for A4, copi,k

x/y
= (0, 3) for D1, etc).
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Fig. 2: Discretization of search space

III. PROPOSED METHOD

In this section, we cover the details of the proposed design au-
tomation solution, consisting of the five steps Discretization of Search
Space, Area Reservation, Branch Point Computation, Reordering of
Connections, and Sequential Routing.

A. Discretization of Search Space

In order to simplify the design process, the area of the routing block
is split into a uniform grid of square cells, as illustrated in Fig. 2b. To
achieve this, the size of these cells is determined first. The minimum
cell size mcs (depicted in Fig. 2a) is derived from the channel width
chw and spacing chsp such that two adjacent cells may be occupied
by parallel channels without violating spacing constraints, i.e.,

mcs = chw + chsp. (1)

Consequently, the number of cells between ports on the port grid
along each axis, i.e., the cells per port pitch cpp (depicted in Fig. 2b),
can be computed by

cpp =
⌊ p

mcs

⌋
. (2)

However, the previously computed cell size mcs is merely an ideal
value that is implementable only if the cell grid aligns perfectly with
the port grid, i.e., each port must be located at the center of a cell.
If this is not yet the case, the actual cell size cs is computed by

cs =
p

cpp
. (3)

The resulting cell grid with cells of size cs now aligns perfectly
with the port grid.

Subsequently, it needs to be determined how many cells are
actually needed to discretize the entire routing block. As depicted
in Fig. 2b, there are cells that cover the port grid, the main cells.
However, there may still be unused space left towards the boundaries
of the routing block, especially if the pitch offsets pox/y are signifi-
cantly larger than the pitch p itself. Hence, the number of additional
offset cells is computed as well.

To this end, the number of rows and columns of port slots are
determined. More precisely, the number of columns of available port
slots npx and rows of port slots npy (cf. Fig. 1c) depend on the
dimensions of the routing block, bx and by , as well as on the offsets
of the port grid, pox and poy

2, i.e.,

npx/y =

⌊
bx/y − 2pox/y

p

⌋
+ 1. (4)

2By vx/y we denote that both values vx and vy have to be computed
separately.



(a) Area reservation (b) Branch point computation

Fig. 3: Preparatory steps

Consequently, the number of main cells mcellsx/y (along each
axis) that cover the main area around the ports (illustrated in Fig. 2b)
is then determined by2

mcellsx/y = npx/y · cpp+ 1− cpp mod 2. (5)

Next, the number of additional offset cells ocellsx/y towards each
boundary (also illustrated in Fig. 2b) with columns ocellsx and rows
ocellsy is determined by2

ocellsx/y = max

{⌊
pox/y −

⌊
cpp
2

⌋
· cs− cs+chsp

2

cpp

⌋
, 0

}
. (6)

Finally, the total number of cells along each axis (ncx and ncy ,
cf. Fig. 2b) is given by2

ncx/y = mcellsx/y + 2 · ocellsx/y. (7)

In other words, the resulting grid consists of cells ci,j with
0 ≤ i < ncx and 0 ≤ j < ncy . By ci,jx and ci,jy , we denote the cell’s
center coordinates.

Ultimately, a port location copi,k can be mapped to a cell ci,j with
a port-to-cell function ptc, i.e.,

ptc
(
copi,k

)
i/j

=
⌊cpp

2

⌋
+ cpp · copi,kx/y + ocellsx/y. (8)

With the computed cell grid as a result, in principle, the routing
task is now reduced to finding paths on the cell grid between cells
that represent the positions of connection ports. However, before
the actual routing takes place, some additional preparatory steps are
necessary in order to minimize mutual interference of connections.

B. Area Reservation

In the previous step, only the cell location of (the center of) ports
was considered. However, ports may also be larger than a single cell
(depicted in Fig. 3a), depending on the value of the port diameter
pd (e.g., when channels are small compared to ports). To ensure that
no foreign connections are routed through ports, all cells that are too
close to a port of a connection are marked as reserved to be usable
only by that connection. To this end, we define a port influence radius
pir that encompasses all cells that are too close to the port, i.e.,

pir =
pd

2
+

chw

2
+ chsp. (9)

All cells with centers within that range of a port center cell
cptc(cop

i,k) are marked as reserved for the corresponding connection
(illustrated in Fig. 3a), i.e., all cells cjl that fulfill the condition

d
(
cptc(cop

i,k), cjl
)
< pir, (10)

(a) Rectilinear (b) Octilinear (c) Check

Fig. 4: Routing

where d
(
cij , ckl

)
is the Euclidean distance between two cells cij

and ckl, i.e.,

d
(
cij , ckl

)
=

√(
cijx − cklx

)2
+

(
cijy − ckly

)2
. (11)

C. Branch Point Computation

As previously introduced in Sec. II-A, 3-port or 4-port connections
are implemented in such a way that each port connects to a common
branch point. Such branch points can be either user-specified as part
of the input (cf. Table I), or automatically computed if not provided.
With regard to the algorithm, a branch point simply translates to a
cell that is reserved for that particular connection.

The following steps are performed for each connection: If the
branch point is given as input, it directly maps to a cell (cf. Eq. 8
in Sec. III-A). Otherwise, a suitable branch cell is automatically
computed for 3-port and 4-port connections. To this end, a first
candidate is the centroid, i.e., the cell that is the geometric center
of all of the connection’s port cells (illustrated in Fig. 3b). However,
this cell may already be reserved for other connections, e.g., if it lies
within another port’s influence radius. In that case, a breadth-first
search is conducted to find the nearest unoccupied cell (indicated by
the arrows in Fig. 3b). In either case, the eventually determined cell
is marked as reserved for the connection.

D. Reordering of Connections

Since connections are routed sequentially, the order in which
routing takes place has an impact on the quality of the results.
As a reasonable choice in the context of this work, we order the
connections to be routed in the following way.

Connections with branch points are routed first. In fact, each branch
is treated like a single point-to-point connection. Thus, branches
are ordered according to their Euclidean distance between their end
points, such that shorter branches are routed first. After branched
connections, 2-port connections without branch points are routed in
the same order: Connections with shorter direct distances between
their end ports are routed first.

E. Sequential Routing

Finally, the actual routing is conducted sequentially for each
connection and for each branch of a connection. To this end, the
shortest path of cells from a start cell to a target cell (i.e., a port
or branch point), is determined by conducting an A* search. To this
end, an open list of observed but not yet visited cells is maintained,
originally containg just the start cell (examples of which are marked
as open cells in Fig. 4). Similarly, a closed list of all already
expanded cells is maintained as well (examples of which are marked
as expanded cells in Fig. 4). Fig. 4a and Fig. 4b exemplarily illustrate
the progression of the search for rectilinear and octilinear layouts,
respectively.

In each step, the cell from the open list that is currently the most
promising candidate for finding the shortest path to the target cell is
selected. In this context, most promising is measured as a combination



(a) Parallel cultures (b) MOOC cultures (c) MOOC cultures with sensors

Fig. 5: Fabricated routing blocks
of the already covered path length to that cell and an estimate of the
remaining path length (i.e., a heuristic). As a heuristic, the Euclidean
distance between two cells ci,j and ck,l (i.e., between the cell on the
open list and the target cell) is used (cf. Eq. 11). The thereby selected
candidate is expanded, meaning that the suitable successor cells are
selected.

For rectilinear layouts (cf. 4a), there are three successor cells: the
straight-ahead cell with respect to the previous pathway and the two
cells to the left and right that implement a 90◦ turn. However, blocked
cells or cells reserved for other connections are discarded.

For octilinear layouts (cf. 4b), there are also three successor
cells: Again, the straight-ahead cell with respect to the previous
pathway and the two cells to the diagonal left and diagonal right
that implement a 45◦ turn. Likewise, blocked cells or cells reserved
for other connections are discarded. However, there is an additional
corner case to be aware of, as illustrated in Fig. 4c: For a diagonal
move to be valid, the two adjacent cells must not be blocked or
reserved by other channels in order to ensure proper channel spacing.

After this expansion step, the successor cells are placed on the
open list while the current candidate is moved to the closed list of
already expanded cells and will not be considered again. A valid
path is found when the target cell is expanded. Finally, the resulting
sequence of cells that realizes the connection is marked as blocked
for future searches. If the search ends without a result (i.e., the
open list becomes empty), no path can be found for the current
connection, and, therefore, the algorithm can only return a partial
result. Eventually, carrying out this procedure for all connections
results in channels for all connections that conform to the design
constraints of routing blocks.

IV. PERFORMANCE AND RESULTING TOOL

In the following, we analyze the performance of the proposed
method on fabricated examples and a large set of benchmarks as
well as showcase the applicability of the resulting tool.

A. Fabricated Examples and Performance

Benchmarks evaluating the proposed method were conducted for
both fabricated routing blocks and larger generic cases. All bench-
marks were conducted natively on an AMD Ryzen 7 8840HS.

a) Fabricated Cases: In order to analyze the quality of the
generated routing blocks, three designs generated by the proposed
method were fabricated and tested. For each routing block, Fig. 5
shows the experimental setup diagram, the corresponding CAD
file (generated by the proposed method), and the fabricated routing
blocks that were micromilled from poly(methyl methacrylate) and

liquid-filled with food dye. Each one of these routing blocks has a size
of 105mm×15mm, implements 14-18 connections, and orchestrates
complex organ-on-chip cultures. More precisely:

• Parallel cultures (Fig. 5a): Connects 6 different organ-on-chip
cultures with 1 pump and 1 reservoir each.

• MOOC (Multi-Organ-on-Chip) cultures (Fig. 5b): Connects
3 different organ-on-chip cultures with 4 pumps and 4 reser-
voirs.

• MOOC+Sensors cultures (Fig. 5c): Features the same compo-
nents as the MOOC routing block, with an additional 3 sensors.

These fabrications demonstrate that the designs generated by the pro-
posed method, in terms of quality, do not differ from the previously
handcrafted designs.

Moreover, in order to demonstrate that the proposed implemen-
tation can efficiently generate routing blocks for these real-world
applications, the time needed to generate the designs for the fabricated
routing blocks above has been measured. To this end, Table II shows
the running times needed to generate the three different routing
blocks, all of which have low running times of up to ∼2ms (only
octilinear layouts were fabricated). Overall, this impressively shows
that the proposed method is capable of automatically generating the
desired designs in negligible runtime and still providing the required
quality for a successful fabrication and execution of experiments.

b) Generic Cases: To further demonstrate the broad appli-
cability of the proposed method, we considered further generic
benchmarks. Results of those evaluations are provided in Table III
which features 10 groups of generic, larger benchmarks (G1 through
G10) for both octilinear and rectilinear layouts. For each group
and layout, 250 unique cases with randomly generated connection
ports were examined, amounting to a total number of 5000 single
benchmark cases. In addition to averaged running times for each
group, Table III also provides minimum and maximum running times
(i.e., the best and worst test cases), which demonstrates that there are
no extreme outliers. All designs can be automatically generated in
fractions of a second, i.e., in negligible time.

Attempting to mimic the distribution seen in real-world use cases,
the total number of connections for each case is composed of 10%
3-port connections and 10% 4-port connections, with the remaining
80% being 2-port connections. Routing blocks of three different
sizes were tested, i.e., 30mm× 15mm (G1-G3), 105mm× 15mm
(G4-G7), and 105mm× 105mm (G8-G10).

Generally, the measured running times clearly scale with the size
of the cell grid, indirectly proportional to the channel size, as well
as with the number of connections. For the smallest routing block
size (G1-G3) and up to 30 channels, average running times of up to



TABLE II: Fabricated cases performance benchmarks

Case Routing Block Size # Connections Channel Size Runtime [ms]width [mm] height [mm] total 3-port 4-port width [mm] spacing [mm]
Parallel 105 15 18 0 0 0.4 0.3 0.20
MOOC 105 15 14 0 0 0.4 0.3 1.74

MOOC+Sensors 105 15 17 0 0 0.4 0.3 2.20

TABLE III: Generic cases performance benchmarks

Group Routing Block Size # Connections Channel Size Runtime Octilinear Runtime Rectilinear
width [mm] height [mm] total 3-port 4-port width [mm] spacing [mm] min [ms] avg [ms] max [ms] min [ms] avg [ms] max [ms]

G1 30 15 10 1 1 0.4 0.4 0.02 0.04 0.09 0.02 0.05 0.13
G2 30 15 20 2 2 0.2 0.2 0.20 1.68 4.38 0.71 1.89 4.49
G3 30 15 30 3 3 0.1 0.1 11.16 32.80 65.79 10.26 22.62 42.44
G4 105 15 20 2 2 0.4 0.4 0.11 0.19 0.57 0.15 0.28 0.61
G5 105 15 30 3 3 0.2 0.2 4.73 13.61 24.03 5.48 11.45 18.34
G6 105 15 40 4 4 0.1 0.1 77.14 203.53 373.92 70.15 123.09 182.07
G7 105 15 50 5 5 0.1 0.1 89.79 188.98 311.11 70.35 120.57 188.74
G8 105 105 50 5 5 0.4 0.4 5.73 10.79 18.19 6.53 9.91 13.61
G9 105 105 100 10 10 0.2 0.2 152.67 254.68 393.63 123.92 174.96 232.01
G10 105 105 200 20 20 0.2 0.2 134.77 188.90 274.89 105.91 134.88 176.47

Fig. 6: Interface of the tool
∼33ms were measured. For the largest real-world routing blocks
(G4-G7) and up to 50 channels, average running times of up to
∼200ms were measured. The largest size (G8-G10) with up to 200
connections exceeds currently used routing blocks by far but was
included to demonstrate the feasibility of the implementation to adapt
to future, likely larger use cases. Still, a solution could be obtained
for all presented cases within a very reasonable time, i.e., no single
case took longer than ∼400ms.

B. Applicability and Resulting Tool

Finally, we demonstrate the applicability of the proposed method.
Originally, routing blocks were designed manually in CAD software
starting from a routing block template. This design process needed
to be repeated for each new application. Furthermore, human errors
made in this manual design process were often only discovered after
fabrication or, in the worst case, at experiment run time.

The proposed method helps speeding up the design process of
routing blocks and reduces the risk of human errors. In order

to make the implementations available to the microfluidic com-
munity, we provide a user-friendly online tool that is available
at https://github.com/cda-tum/mmft-routing-block-channel-router as
part of the Munich Microfluidic Toolkit (MMFT). Fig. 6 shows
excerpts of the most important functionalities of the tool. It provides
inputs that mirror the necessary parameters previously introduced
in Table I. Connections can be created in a click-and-point fashion
by selecting the desired ports in a provided preview of the routing
block or by typing the corresponding port identifiers. Additionally,
connections can also be imported from a CSV file. Finally, the tool
offers the option to export the generated design of the routing block
as DXF, a popular CAD format that can be used for fabrication.

Use of the routing tool streamlines the design process for routing
block designers. The flexibility of the fluidic routing also enables
simple addition of sensing elements external to the organs-on-chips,
simplifying experiment iteration and forgoing the requirement of
complex fabrications. The designer needs only to specify the desired
connections rather than to draw the channel geometry themselves
in CAD. By using this tool, a reduction from originally ∼2 h to
merely ∼30min was observed during the design and fabrication of
the examples in Sec. IV-A (of course, depending on the complexity
and on the prior experience of the designer). Errors were reduced as
well, as designers could focus on simply checking that the correct
connections were selected, rather than needing to extensively check
the full channel geometry. Last but not least, this shift in focus
encourages collaborations with those who may have less design
experience.

V. CONCLUSION

In this work, we proposed a design method and corresponding
tool for microfluidic routing blocks. This tool makes it possible to
automatically generate designs of routing blocks with correspond-
ing microfluidic channels that adhere to the associated geometric
design constraints with just a few clicks. Real-world applicability
and performance have been thoroughly examined through bench-
marks and fabricated examples. The developed tool is available
at https://github.com/cda-tum/mmft-routing-block-channel-router as
part of the Munich Microfluidic Toolkit.
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