
MNT Designer:
A Comprehensive Design Tool for Field-coupled Nanocomputing

Simon Hofmann, Jan Drewniok, Marcel Walter, and Robert Wille
https://www.cda.cit.tum.de/research/nanotech/

Abstract— Field-coupled Nanocomputing (FCN) is a class
of post-CMOS technologies that operate at the nanoscale
without relying on electrical current. Its potential was re-
cently demonstrated by the fabrication of a fully functional
OR gate occupying less than 30 nm2, using Silicon Dan-
gling Bonds (SiDBs). A key step toward commercializing
FCN is the development of software tools capable of auto-
matically generating fabrication-ready, cell-level layouts. In
this work, we present a novel, GUI-based tool that spans
the complete design flow—from Verilog to atoms—including
physical design algorithms, post-layout optimization, verifica-
tion, and gate design. The tool is released as open-source
at https://github.com/cda-tum/mnt-designer and
is also available as a pip package.

I. INTRODUCTION

Field-coupled Nanocomputing (FCN, [1]) represents a
promising class of post-CMOS technologies that replace
electric current with the repulsion of physical fields to enable
ultra-low-power, high-speed computation at the nanoscale.
The field has recently gained further momentum through
breakthroughs in manufacturing using Silicon Dangling
Bonds (SiDBs, [2], [3]). As FCN moves closer to practical
deployment, there is a heightened need for comprehensive
design tools that automate and streamline the transition from
high-level logic descriptions to cell-level layouts.

Although notable progress has been made in FCN design
algorithms and tools [4]–[28], existing solutions either focus
on isolated aspects, such as layout generation or simulation,
without providing a single environment that supports the
entire design flow, or do not offer a visual interface to facil-
itate co-design. As a result, researchers and designers face
significant overhead when shifting among multiple software
frameworks for synthesis, physical design, verification, and
the actual design of gates made out of SiDBs on the atomic
level. Additionally, due to the many constraints imposed by
FCN, new tools have to be developed for almost every part
of the design flow, as standard tools for CMOS are not
applicable.

This paper presents MNT Designer (part of the Munich
Nanotech Toolkit [29], available fully open-source at
https://github.com/cda-tum/mnt-designer),
a novel, GUI-based tool that addresses this limitation

Simon Hofmann, Jan Drewniok, Marcel Walter, and Robert Wille are
with the Chair for Design Automation, Technical University of Munich,
Munich, Germany. Simon Hofmann, Marcel Walter, and Robert Wille are
also with the Munich Quantum Software Company GmbH, Garching near
Munich, Germany. Robert Wille is also with the Software Competence
Center Hagenberg GmbH, Hagenberg, Austria. E-mail: {simon.t.hofmann,
jan.drewniok, marcel.walter, robert.wille}@tum.de

by offering a complete FCN design pipeline with a
graphical user interface. Starting from a Verilog-based
logic description, the tool guides the user through
advanced physical design algorithms to produce gate-level
layouts, then further enables post-layout refinement,
integrated verification, and gate design. Together, these steps
bridge the gap between logic descriptions and cell-level
implementations, ready for simulation or fabrication,
thereby surpassing existing solutions in both scope and
flexibility [19]–[23], [25].

Furthermore, it is a co-design tool that excels due to the
synergy of human expertise and design automation algo-
rithms. While the whole physical design flow can be achieved
using automated methods only, users can alter the outcome
by editing the Verilog description, manually moving gates
around or tweaking the parameters for the gate design. These
features culminate in a comprehensive design environment
that seamlessly transitions from high-level logic descriptions
to verified, atomically precise layouts—while still offering
sufficient flexibility for designers to intervene and explore
alternative implementations. By bridging each stage of the
design flow in a single, open-source platform, MNT Designer
minimizes the overhead associated with switching among
multiple tools, significantly accelerating FCN research and
development.

The remainder of this paper is organized as follows: Sec-
tion II provides a concise overview of FCN fundamentals and
the design flow required to generate fabrication-ready lay-
outs. Section III surveys the existing FCN design frameworks
and identifies key gaps that our proposed tool addresses.
Section IV introduces MNT Designer, describing its core
components and functionalities. Section V demonstrates how
the tool can be applied in practice through a running exam-
ple. Finally, Section VI concludes the paper and outlines
future research directions.

II. BACKGROUND

This section reviews the fundamentals of FCN and outlines
the design flow for creating cell-level layouts.

A. Field-coupled Nanocomputing

FCN is a promising class of post-CMOS technologies
that achieves signal transmission and computation at the
nanoscale without relying on electrical current, thus lower-
ing power consumption and reducing greenhouse gas emis-
sions [1].

https://www.cda.cit.tum.de/research/nanotech/
https://github.com/cda-tum/mnt-designer
https://github.com/cda-tum/mnt-designer
mailto:simon.t.hofmann@tum.de
mailto:jan.drewniok@tum.de
mailto:marcel.walter@tum.de
mailto:robert.wille@tum.de


(a) Polarization states
of individual cells.

(b) Wire segment. (c) Majority gate.

Fig. 1: Elementary QCA cells and compound structures.

1 nm

(a) H-Si(100)-2×1
surface structure.

0

0

0 1

1

0 0

1

1 1

1

1

Input perturber

Output perturber

DB pairs

(b) Recreation of a binary-dot OR gate [32], adapted
from [33].

Fig. 2: SiDBs on an H-Si(100)-2×1 lattice implementing
logic.

1) Quantum-dot Cellular Automata (QCA): QCA encodes
binary information through electron polarization in cells
composed of four quantum dots arranged in a square frame,
as illustrated in Fig. 1a. Neighboring cells interact via their
electric fields, enabling the creation of binary wires (shown
in Fig. 1b) and majority gates (shown in Fig. 1c). These
fundamental building blocks power complete Boolean logic
libraries such as QCA ONE [30], enabling the creation of
more complex circuits.

2) Silicon Dangling Bonds (SiDBs): SiDBs are created
by selectively removing hydrogen atoms from a passivated
silicon (H-Si(100)-2×1) surface [2], [31], forming atomically
precise quantum dots [32]. This structure enables ultra-
compact gate designs, illustrated by the sub-30 nm2 OR gate
in Fig. 2b, with a simplified cell schematic shown in Fig. 2a.

3) Technology Constraints: FCN design is constrained
by strict planarity requirements and the necessity of syn-
chronized signal propagation. Clocking addresses these de-
mands by partitioning the circuit into uniformly activated
regions subject to sequential four-phase signals [34], [35].
Predefined clocking schemes like 2DDWave [36] ensure
unidirectional, acyclic data flow to facilitate scalable layout
generation [8]–[12]. Additionally, wire segments impose the
same area and delay cost as standard gates, while crossings
are only possible over a tile that host at most one other wire.
All these constraints prevent the reuse of standard placement
and routing algorithms, necessitating the development of
tools tailored to FCN. While some tools and methods can
be reused for other parts of the design flow, like ABC [37]
or Yosys [38] for logic synthesis and technology mapping or
equivalence checking [39] for formal verification, they still
have to be adapted to the constraints and peculiarities of this
emerging technology.

B.
 Placement

&
Routing 

C.
Clocking

D. 
Post-Layout
Optimization

QCADesigner (*.qca)

MagCAD (*.qll)

SCERPA (*.qll)

QCA-STACK (*.fqca)

SiQAD (*.sqd)

E. 
Technology-specific

Gate Libraries

F. 
Tool

Compatibility

MNT Bench (*.fgl)

1

2

2

1

4

3

3

43 2

1

4

1

2

2

1

4

3

3

43 2

1

4

4 31 2

ToPoliNano (*.qcc, *.qll)

MagCAD (*.qll)

iNMLSiDBQCA

A.
 Logic

Synthesis 
& 

Technology
Mapping 

Fig. 3: The FCN physical design flow as available in the
MNT, adapted from [29].

B. The Design Flow in FCN

Designing FCN circuits involves a sequence of steps that
methodically transition a high-level logic specification into
a dot-accurate, fabrication-ready layout, which is illustrated
in Fig. 3:

1) Logic Synthesis and Technology Mapping: Starting
from a high-level logic network, synthesis algorithms
and technology mapping techniques are applied to pro-
duce a network representation suitable for the placement
and routing stage, making sure the gates in the logic
network match the available gate library.

2) Physical Design: Employing specialized physical de-
sign algorithms and a chosen clocking scheme, a gate-
level layout is generated that satisfies all FCN-specific
constraints. Refinement of the layout follows, with post-
layout optimization strategies addressing critical param-
eters such as area and delay by relocating gates and
removing excess wiring, thus improving overall circuit
efficiency.

3) Gate Design: Each gate and wire is replaced with
a dot-accurate implementation. Designers can either
utilize predefined gate libraries or deploy custom gate
design algorithms for technology-specific parameteriza-
tions.

4) Simulation: Finally, the dot-accurate layout is verified
through simulation to confirm correct operation and
performance. Once validated, the design is ready for
fabrication, completing the transition from high-level
specification to physical realization.

The following sections dive into two pivotal steps: physical
design and generating dot-accurate gate representations.

1) Physical Design: Physical design in FCN translates
logic networks into circuit layouts, aiming for minimal area
while respecting constraints such as planarity, clocking, and
signal synchronization.

Exact algorithms [7], [40] approach layout generation by
encoding the design task symbolically to determine optimal
results. Despite their high quality, these methods are limited
to smaller networks due to the NP-complete nature of the
physical design problem [41].



Heuristic approaches, such as ortho [9], address larger de-
signs by reducing the search space. Although these heuristics
typically yield larger layouts than exact methods, they are
more scalable and can be applied to more complex networks.

Most existing physical design techniques have been de-
vised for Cartesian QCA layouts. To support SiDB imple-
mentations, a 45° rotation algorithm [14] adapts Cartesian
layouts into hexagonal, row-wise clocked configurations,
leveraging the advances made in QCA design for SiDBs.

2) Generating Dot-Accurate Gate Representations: This
step involves replacing each gate in the gate-level layout
with its dot-accurate representation, such as those based on
QCA cells or SiDBs. These representations are typically
obtained from pre-generated libraries [30], [33]. While QCA
technologies often require manual effort to create these
representations, SiDB technology utilizes automated gate
design methods. The move toward automation in SiDB gate
design is motivated by its advantages over QCA. SiDBs
offer a broader design space, enabling more complex and
diverse configurations. Their advanced physical models also
facilitate highly realistic simulations [6], [42]. Moreover,
variations in the physical parameters of the H-Si(100)-2×1
surface—on which SiDBs are generated—can render prede-
fined gate libraries unusable, necessitating the creation of
gates “on-the-fly”, as described in the literature [43]. The
automated gate design process for SiDBs works as follows:

1) Standardized I/O pins, formed by SiDBs, are estab-
lished, alongside an area between them where additional
SiDBs can be placed, referred to as the canvas.

2) A specific arrangement of SiDBs within the canvas
must be determined such that the SiDB layout correctly
implements the desired logic. To verify if a given
arrangement is a valid gate implementation for the given
Boolean function, physical simulations are conducted
for up to 2n input patterns (where n is the number of
inputs), ensuring that the charge distribution accurately
represents the intended logic.

Example 1. Fig. 4 shows the process of verifying whether a
given SiDB layout is a valid OR gate implementation. In this
example, three SiDBs are placed in the canvas, enclosed by a
dashed rectangle. In Fig. 4a, the input pattern 00 is applied.
Physical simulation reveals an output of 0, as expected for
an OR gate (fOR(00) = 0). In Fig. 4b, the input pattern
01 is applied. Physical simulation of the charge distribution
shows again an output of 0, while a result of fOR(01) = 1
is needed, indicating that the output is incorrect. The same
issue is observed for the input patterns 10 and 11 in Fig. 4c
and Fig. 4d, respectively. As a result, this SiDB layout does
not represent a valid OR gate implementation.

III. RELATED WORK ON FCN TOOLS

Tools for FCN offer varying levels of design automation
and technology independence. We broadly sort them into two
groups, those that include a graphical user interface and those
that do not.

0 0

0
(a) Input pattern 00.

0

0 1

(b) Input pattern 01.

0

1 0

(c) Input pattern 10.

0

1 1

(d) Input pattern 11.

Fig. 4: Validation procedure to determine the Boolean func-
tion implemented by an SiDB layout. Here, the result is
compared against the OR function as a specification [4].

A. GUI-Based Tools

SiQAD [25] is a CAD tool for SiDB logic with an
interactive, plugin-based GUI and multiple physics engines.
However, its focus on the design and simulation of dot-
accurate SiDB gates and layouts limits its applicability and
automation features (e.g., missing gate-level abstractions and
no equivalence checking).

QCADesigner [19] provides a GUI for designing and
simulating QCA layouts. While it supports custom, clocked
QCA designs with basic physics simulation, its outdated fea-
ture set and narrow focus restrict modern design automation.

ToPoliNano [22] and MagCAD [20] offer hierarchical
design and simulation environments for nanomagnetic logic
(iNML, pNML, as well as mQCA in MagCAD). They
support intuitive layout creation and integrate external syn-
thesis/solver tools, yet are limited by closed-source status
and technology dependence.

iFCN [44] is an open-source platform for designing, visu-
alizing, and analyzing mFCN circuits, offering both manual
and automatic design flows for placement and routing [13],
[15], [23] and physical simulations that support both bistable
and coherence-vector models [27].

MNT Bench [45] provides gate-level layouts for various
gate libraries and clocking schemes, generated with state-of-
the-art physical design and optimization algorithms, which
can be filtered, selected and downloaded using its GUI. It
also includes the best area results discovered.



Fig. 5: Graphical user interface of MNT Designer.

B. Non-GUI Tools

SCERPA [46] is an iterative analysis method that evalu-
ates electrostatic interactions among molecules, utilizing two
optimization modes (Interaction Radius and Active Region)
to efficiently simulate and characterize complex mQCA
circuits, but lacks a GUI and is only applicable to mQCA.

Ropper [21] focuses on automation with technology-
agnostic placement and routing algorithms, integrating logic
synthesis frameworks like mockturtle [47]. Lacking a GUI, it
operates solely at the gate-level abstraction and offers limited
visualization and equivalence-checking capabilities.

NanoPlaceR [16], [26] is a reinforcement learning-based
physical design tool for FCN that generates compact layouts
for logic networks of up to about 200 gates. Its reliance
on abstract signal flow directions makes it independent of
specific clocking schemes. The resulting gate-level layouts
can subsequently be implemented using multiple FCN tech-
nologies.

fiction [24] is a C++ framework for FCN that integrates
technology-independent design automation tasks, including
logic synthesis, placement, routing, clocking, formal veri-
fication, and physical simulation. It provides flexible data
structures and gate libraries that can be easily adapted to
various FCN technologies, along with a header-only library
(plus Python bindings), an ABC-like CLI, and an experi-
ments sandbox for rapid prototyping. Due to its versatility,
fiction is used as the backend for MNT Designer.

C. Summary

GUI-based tools facilitate interactive, visual design but are
typically tailored to specific FCN technologies and involve
manual workflows. In contrast, existing non-GUI tools in the
domain emphasize broad automation at the gate level, suiting
large-scale or technology-agnostic design tasks, but do not
offer a visual interface for the designer.

IV. MNT DESIGNER

This section outlines the main functionalities of the pro-
posed physical design tool called MNT Designer,1 that covers
the whole design flow from Verilog to atoms.

A. High-Level Description

In MNT Designer, the user can start with a high-level
circuit description, for example in Verilog, which can be
opened and edited directly in an integrated code editor.
This import capability ensures that designers can quickly
transition from a hardware description language specification
to the initial stages of physical design.

B. Physical Design Algorithm Application

After importing a synthesized Verilog logic network, de-
signers can select from several well-established algorithms
to generate a gate-level layout. These include scalable al-
gorithms like ortho [9] and IO SDN [11]; an exact [7]
algorithm, which systematically guarantees optimal area us-
age for smaller logic networks; and gold [8], [18], which
leverages A∗-search to explore a vast design space more
efficiently. By clicking the corresponding buttons in MNT
Designer’s interface (see Fig. 5) and setting algorithm-
specific parameters, users can execute these algorithms and
observe the resulting layouts.

C. Layout Refinement

While automated methods [10], [12], [28] generally reduce
surplus wiring and position gates in near-optimal locations,
certain adjustments are most effectively accomplished by
human expertise. Within MNT Designer’s GUI, designers
can click on any gate and move it to a new location. They
can also add additional gates (e.g., AND, OR, XNOR) or
remove redundant wire segments and gates. Because FCN
technologies—such as QCA and SiDB—require an equal
area and latency cost for both wire segments and logic
gates, minimizing interconnect is critical. The tool’s inter-
active environment allows designers to iteratively balance
these objectives, combining algorithmic outputs with domain
knowledge to achieve more efficient layouts.

D. Formal Verification

Throughout the refinement process, MNT Designer sup-
ports Design Rule Checking (DRC) to ensure circuit cor-
rectness [49]. At any point, designers can trigger a DRC to
confirm that the layout still meets FCN constraints—such as
clocking scheme requirements, planarity considerations, or
signal synchronization. By offering immediate feedback, the
tool reduces the risk of introducing design flaws during man-
ual edits. Consequently, users can confidently iterate on gate
placement and wiring strategies while preserving functional
validity of the overall circuit. Furthermore, equivalence of
the layout and the logic specification in the editor can be
checked to preserve the intended functionality via formal
verification [49].

1Extending the co-design tool published in [48].



(a) Verilog code.

1

2

2

1

4

3

3

43

214

21 3

(b) Initial layout.

1

2

2

1

4

3

3

43

214

(c) Refined layout.

1

1 1

2 2

2

3 3 3

4 4 4

(d) Hexagonalization. (e) Gate design. (f) SiDB export (.sqd).

Fig. 6: Illustration of the complete design flow from Verilog to atoms.

E. Gate Design

At this stage, designers can replace the previously gen-
erated and refined gate-level layout with a dot-accurate
representation for each gate, either using predefined gate
libraries [30], [33] or by designing gates “on-the-fly”
utilizing the Automatic Exhaustive Gate Designer [4].
The behavior of SiDB layouts is influenced by material-
and technology-specific physical parameters—µ−, ϵr, and
λtf [32], [50], [51]—which users can configure to suit
specific use cases.

F. Layout Export

After the gates have been designed on the atomic level,
the resulting cell-layouts can be exported to a suitable format
(e.g., as gate-level, QCA or SiDB layouts) for downstream
processing, simulation, or further refinement in third-party
environments like QCA Designer [19] or SiQAD [25].

V. TOOL APPLICATION

To illustrate the end-to-end design flow, we showcase a
simple three-input circuit described in Verilog. We then apply
an exact physical design algorithm [7] to produce an initial
layout, refine it to reduce area, rotate the layout to match a
hexagonal tile scheme [14], and conclude by designing the
atomic gates “on-the-fly” [4] and exporting the final layout
for use in external tools such as SiQAD [25].

A. Logic Network Description

The network in Fig. 6a takes three inputs (a, b, c)
and computes out by first creating two intermediate signals
(and1 and and2) and then taking the disjunction of those
signals. Specifically, and1 and and2 are each the conjunc-
tion of a with either b or c, respectively.

B. Physical Design

We used an exact algorithm [7] to map the logic network
to an initial gate-level FCN layout shown in Fig. 6b. By sys-
tematically exploring all possible placements and routings,
the exact approach guarantees a layout that is minimal with
respect to the cost metric tile count.

C. Layout Refinement

After generating the initial placement, we applied a small
but impactful refinement: replacing one fanout node with
two outgoing inverters by an inverter followed by a fanout
node in Fig. 6c, which can be done by hand using the
respective buttons for deleting, moving, and creating gates.
This modification saved one row encompassing three tiles,
reducing both area and delay. Using this simplification, the
refined layout requires less area while preserving the original
logical functionality. While the exact algorithm created the
optimal layout w.r.t. area for the logic network shown as
Verilog in the editor, the user was able to improve the layout
even further by changing the number of gates in the layout,
which is usually only done in the logic synthesis phase,
further highlighting how MNT Designer covers multiple
design stages.

D. Transformation to Hexagonal Tiles

While the exact algorithm produces a Cartesian layout,
we require a hexagonal geometry to accommodate Y-shaped
SiDB gates. To address this, we rotated the entire layout by
45° [14]. Each rectangular tile was then elongated vertically
to form a hexagonal tile arrangement as shown in Fig. 6d.
This geometric transformation preserves connectivity and
signal flow directions yet aligns the layout with the row-wise
clocking scheme.

E. Gate Design

To design the dot-accurate gate implementations “on-the-
fly” as illustrated in Fig. 6e, we have chosen commonly used
values: µ− = −0.32 eV, ϵr = 5.5, and λtf = 5.0 nm.

F. Cell-Level Layout Export

Finally, after creating each gate and wire segment, the
resulting design, as shown in Fig. 6f, is exported to an .sqd
file, compatible with SiQAD [25]. This export step completes
our end-to-end pipeline from Verilog to atoms, enabling
rapid progress from high-level logic descriptions to gate-level
layouts and “on-the-fly” designed cell-level layouts.

VI. CONCLUSION

This work introduced a comprehensive, fully open-source,
GUI-based tool that advances the design of Field-coupled



Nanocomputing circuits from high-level logic specifications
through to fabrication-ready, cell-level layouts. By unifying
previously separate stages such as physical design, “on-the-
fly” gate design, and verification in a graphical user inter-
face, the tool streamlines an otherwise fragmented workflow.
Specifically, it enables researchers and designers to import
and edit high-level logic descriptions, generate and refine
gate-level layouts, verify design-rule compliance, and export
completed designs for simulation and fabrication.

The modularity and scalability of the proposed approach
accommodate both exact and heuristic algorithms, offering
flexibility in tackling the wide range of problems and con-
straints inherent to FCN technologies. The ability to manu-
ally adjust layouts alongside automated post-layout optimiza-
tion algorithms further empowers experts to explore custom
solutions for performance-critical or domain-specific designs.
Moreover, the integrated gate-design functionality for SiDBs
facilitates rapid prototyping and testing of new concepts.
Overall, by integrating these capabilities into a single, user-
friendly environment, the presented tool fills a critical gap in
existing FCN design tools. It thereby accelerates research and
development in nanoscale computing, ultimately paving the
way for more efficient, reliable, and scalable FCN circuits.

Future work will focus on expanding the available physical
design algorithms, the inclusion of logic synthesis tools and
more parameters for the gate design algorithm.

REFERENCES

[1] N. Anderson and S. Bhanja, Eds., Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer, 2014.

[2] R. Achal et al., “Lithography for robust and editable atomic-scale
silicon devices and memories,” Nat. Commun., vol. 9, no. 1, 2018.

[3] J. Pitters et al., “Atomically Precise Manufacturing of Silicon Elec-
tronics,” ACS Nano, 2024.

[4] J. Drewniok et al., “Minimal Design of SiDB Gates: An Optimal Basis
for Circuits Based on Silicon Dangling Bonds,” in NANOARCH, 2023.

[5] R. E. Formigoni et al., “A Survey on Placement and Routing for Field-
Coupled Nanocomputing,” JICS, vol. 16, pp. 1–9, 2021.

[6] J. Drewniok et al., “The Need for Speed: Efficient Exact Simulation
of Silicon Dangling Bond Logic,” in ASP-DAC, 2024.

[7] M. Walter et al., “An Exact Method for Design Exploration of
Quantum-dot Cellular Automata,” in DATE, 2018, pp. 503–508.

[8] S. Hofmann et al., “A* is Born: Efficient and Scalable Physical Design
for Field-coupled Nanocomputing,” in IEEE-NANO, 2024, pp. 80–85.

[9] M. Walter et al., “Scalable Design for Field-Coupled Nanocomputing
Circuits,” in ASP-DAC, 2019, pp. 197–202.

[10] S. Hofmann et al., “Post-Layout Optimization for Field-coupled Nan-
otechnologies,” in NANOARCH, 2023.

[11] M. Walter et al., “Versatile Signal Distribution Networks for Scalable
Placement and Routing of Field-coupled Nanocomputing Technolo-
gies,” in ISVLSI, 2023.

[12] S. Hofmann et al., “Late Breaking Results: Wiring Reduction for
Field-coupled Nanotechnologies,” in DAC, 2024.

[13] Y. Li et al., “Field-Coupled Nanocomputing Placement and Routing
with Genetic and A* Algorithms,” IEEE TCAS-I, vol. 69, no. 11, pp.
4619 – 4631, 2022.

[14] S. Hofmann et al., “Scalable Physical Design for Silicon Dangling
Bond Logic: How a 45 ◦ Turn Prevents the Reinvention of the Wheel,”
in IEEE-NANO, 2023, pp. 872–877.

[15] G. Li et al., “A QCA Placement and Routing Algorithm Based on the
SA Algorithm,” Int. J. Electron, 2023.

[16] S. Hofmann et al., “Late Breaking Results From Hybrid Design
Automation for Field-coupled Nanotechnologies,” in DAC, 2023.

[17] B. Zhang et al., “Quantum-dot Cellular Automata Placement and
Routing with Hierarchical Algorithm,” Nano Commun. Netw., vol. 39,
p. 100495, 2024.

[18] S. Hofmann et al., “Physical Design for Field-coupled Nanocomputing
with Discretionary Cost Objectives,” in LASCAS, 2025.

[19] K. Walus et al., “QCADesigner: A Rapid Design and Simulation Tool
for Quantum-Dot Cellular Automata,” TNANO, vol. 3, no. 1, pp. 26–
31, 2004.

[20] F. Riente et al., “MagCAD: Tool for the Design of 3-D Magnetic
Circuits,” JXCDC, vol. 3, pp. 65–73, 2017.

[21] R. E. Formigoni et al., “Ropper: A Placement and Routing Framework
for Field-Coupled Nanotechnologies,” in SBCCI. ACM, 2019.

[22] F. Riente et al., “ToPoliNano: A CAD Tool for Nano Magnetic Logic,”
IEEE TCAD, vol. 36, no. 7, pp. 1061–1074, 2017.

[23] F. Peng et al., “Spars: A Full Flow Quantum-Dot Cellular Automata
Circuit Design Tool,” TCAS-II, vol. 68, no. 4, pp. 1233–1237, 2021.

[24] M. Walter et al., “fiction: An Open Source Framework for the Design
of Field-coupled Nanocomputing Circuits,” 2019.

[25] S. Ng et al., “SiQAD: A Design and Simulation Tool for Atomic
Silicon Quantum Dot Circuits,” IEEE TNANO, vol. 19, pp. 137–146,
2020.

[26] S. Hofmann et al., “Thinking Outside the Clock: Physical Design for
Field-coupled Nanocomputing with Deep Reinforcement Learning,” in
ISQED, 2024.

[27] F. Peng et al., “Automatic Object Model Generation for Nanoelec-
tronics using C++ Meta Programming,” Electronics Letters, vol. 55,
no. 24, pp. 1286–1288, 2019.

[28] S. Hofmann et al., “Efficient and Scalable Post-Layout Optimization
for Field-coupled Nanotechnologies,” TCAD, 2025.

[29] M. Walter et al., “The Munich Nanotech Toolkit (MNT),” in IEEE-
NANO, 2024, pp. 454–459.

[30] D. Reis et al., “A Methodology for Standard Cell Design for QCA,”
in ISCAS, 2016, pp. 2114–2117.

[31] M. Haider et al., “Controlled Coupling and Occupation of Silicon
Atomic Quantum Dots at Room Temperature,” PRL, vol. 102, p.
046805, 2009.

[32] T. Huff et al., “Binary atomic silicon logic,” Nat. Electron., vol. 1,
no. 12, pp. 636–643, 2018.

[33] M. Walter et al., “Hexagons Are the Bestagons: Design Automation
for Silicon Dangling Bond Logic,” in DAC, 2022, pp. 739–744.

[34] C. Lent and P. Tougaw, “A Device Architecture for Computing with
Quantum Dots,” Proc. IEEE, vol. 85, no. 4, pp. 541–557, 1997.

[35] K. Hennessy and C. S. Lent, “Clocking of Molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[36] V. Vankamamidi et al., “Clocking and Cell Placement for QCA,” in
IEEE-NANO, vol. 1, 2006, pp. 343–346.

[37] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
strength Verification Tool,” in CAV, 2010.

[38] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/.
[39] P. Molitor and J. Mohnke, Equivalence Checking of Digital Circuits:

Fundamentals, Principles, Methods. Springer Science & Business
Media, 2004.

[40] M. Walter et al., “One-pass Synthesis for Field-coupled Nanocomput-
ing Technologies,” in ASP-DAC, 2021, pp. 574–580.

[41] ——, “Placement and Routing for Tile-based Field-coupled Nanocom-
puting Circuits is NP-complete,” J. Emerg. Technol. Comput. Syst.,
vol. 15, no. 3, 2019.

[42] J. Drewniok et al., “QuickSim: Efficient and Accurate Physical Sim-
ulation of Silicon Dangling Bond Logic,” in IEEE-NANO, 2023, pp.
817–822.

[43] ——, “On-the-fly Defect-Aware Design of Circuits based on Silicon
Dangling Bond Logic,” in 2024 IEEE 24th International Conference
on Nanotechnology (NANO), 2024, pp. 30–35.

[44] Y. Li et al., “iFCN: Automated Design Platform for Molecular FCN
Circuits,” https://github.com/li-yangshuai/iFCN, 2025.

[45] S. Hofmann et al., “MNT Bench: Benchmarking Software and Layout
Libraries for Field-coupled Nanocomputing,” in DATE, 2024.

[46] Y. Ardesi et al., “SCERPA: A Self-Consistent Algorithm for the
Evaluation of the Information Propagation in Molecular Field-Coupled
Nanocomputing,” TCAD, vol. 39, no. 10, pp. 2749–2760, 2020.

[47] H. Riener et al., “Scalable Generic Logic Synthesis: One Approach
to Rule Them All,” in DAC, 2019.

[48] S. Hofmann et al., “Late Breaking Results: Physical Co-Design for
Field-coupled Nanocomputing,” in DATE, 2025.

[49] M. Walter et al., “Verification for Field-coupled Nanocomputing
Circuits,” in DAC, 2020.

[50] T. Huff et al., “Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon
Surface,” ACS nano, vol. 11 9, pp. 8636–8642, 2017.

[51] M. Walter et al., “Reducing the Complexity of Operational Domain
Computation in Silicon Dangling Bond Logic,” in NANOARCH, 2023.

https://yosyshq.net/yosys/
https://github.com/li-yangshuai/iFCN

	Introduction
	Background
	Field-coupled Nanocomputing
	Quantum-dot Cellular Automata (QCA)
	Silicon Dangling Bonds (SiDBs)
	Technology Constraints

	The Design Flow in FCN
	Physical Design
	Generating Dot-Accurate Gate Representations


	Related Work on FCN Tools
	GUI-Based Tools
	Non-GUI Tools
	Summary

	MNT Designer
	High-Level Description
	Physical Design Algorithm Application
	Layout Refinement
	Formal Verification
	Gate Design
	Layout Export

	Tool Application
	Logic Network Description
	Physical Design
	Layout Refinement
	Transformation to Hexagonal Tiles
	Gate Design
	Cell-Level Layout Export

	Conclusion
	References

