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Abstract—Ashenhurst-Curtis decomposition (ACD) is a
Boolean decomposition technique widely used in logic synthesis
for tasks such as the decomposition of multi-valued relations, the
encoding of multi-valued networks, and technology mapping into
standard cells for ASICs and lookup tables (LUTs) for FPGAs.

A recent truth-table-based implementation of ACD has proven
effective for delay-driven LUT mapping while also reducing
the number of lookup tables for improved area efficiency.
This method offers better runtime performance and a higher
decomposition success rate, making ACD a practical and scalable
technique for modern synthesis flows. However, it does not lever-
age the additional flexibility provided by don’t-care conditions.

In this paper, we enhance ACD by incorporating controllability
don’t-cares extracted from cuts. By exploiting these additional
degrees of freedom during decomposition, the proposed method
achieves a higher decomposition success rate and a lower average
number of LUTs per cut function. Specifically, we demonstrate
that the decomposition success rate of practical functions into
6-LUTs increases from 51% to 53.4%, while the average number
of LUTs per decomposition decreases from 2.50 to 2.46.

Moreover, in cases where state-of-the-art methods struggle
to find valid decompositions—particularly with large fixed free
sets—our method shows clear improvements. Success rates in-
crease from 16.11% to 23.27% for four late-arriving variables
and from 1.58% to 4.44% for five, with only a 1.5x runtime
overhead.

I. INTRODUCTION

Ashenhurst-Curtis Decomposition (ACD) [1], [2], also
known as Roth-Karp decomposition [3], is an effective
Boolean decomposition algorithm that breaks down complex
Boolean functions into smaller sub-functions and a composi-
tion function with reduced input support. By identifying a sub-
set of variables and partitioning the function accordingly, ACD
enables more efficient logic representations. This method has
found wide application in logic optimization and technology
mapping, including mapping to standard-cell libraries [4] and
field-programmable gate arrays (FPGAs) [5], the decomposi-
tion of multi-valued relations [6], and the encoding of multi-
valued networks [7].

In the context of FPGA design [8], ACD plays a key role
in mapping Boolean functions into k-input lookup tables (k-
LUTSs) [5], which can implement any function with up to k
inputs. This process, known as LUT mapping, is a central stage
in FPGA synthesis flows. Modern LUT mappers operate on
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a technology-independent graph representation of the circuit,
referred to as the subject graph, which is first optimized
independently of the mapping stage.

While this separation between optimization and technol-
ogy mapping simplifies the overall flow, it also introduces
challenges. The quality of the final mapping result is highly
sensitive to the structure of the subject graph—a phenomenon
known as structural bias. To improve mapping outcomes, syn-
thesis flows employ structural choices [9]-[11], where multi-
ple functionally equivalent representations are maintained to
guide better mapping decisions. Additionally, techniques such
as local collapsing and Boolean decomposition are applied to
restructure logic for improved delay and area characteristics.

Among Boolean decomposition techniques, ACD is particu-
larly effective. By partitioning the input variables into distinct
subsets, it facilitates delay-driven technology mapping [12],
wherein critical (i.e., late-arriving) variables are strategically
assigned to the free set (FS). If a valid decomposition is
identified under this configuration, it yields a two-level decom-
position in which the FS variables serve as direct inputs to the
composition function. As a result, these variables traverse only
a single LUT, thereby minimizing their delay under the unified
delay model. Recent advances in truth-table-based ACD [12]
have demonstrated significantly faster runtimes and higher
decomposition success rates compared to earlier methods [5],
[6], [13], enabling improved mapping quality even for complex
LUT architectures.

However, this ACD formulation does not exploit the opti-
mization potential of don’t-care conditions. Don’t-cares rep-
resent input combinations for which the circuit output is
irrelevant to its overall correctness and offer additional degrees
of freedom that can be used to find valid decompositions.

In this work, we present a novel enhancement to ACD by
incorporating don’t-care information directly into the decom-
position process. Our method leverages functional flexibility
by utilizing controllability don’t-cares, which are extracted
from cuts identified during LUT mapping through windowing.
This added flexibility allows the decomposition algorithm to
achieve the following:

1) Enable more two-level decompositions for given sets of
late-arriving variables, and
2) Produce decompositions that require fewer LUTs.

This suggests that, with our enhancement, delay-driven
technology mapping and resynthesis engines can be made
more powerful, provided an effective method for extracting
don’t-cares during mapping or resynthesis [14] is available.
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Fig. 1: Truth table representation with corresponding bi-
nary/hexadecimal encoding, cofactor extraction, and variable
swapping of x(y and zs.

The remainder of this paper is organized as follows. Sec-
tion II introduces the necessary preliminaries, Section III
reviews related work on state-of-the-art ACD, Section IV de-
scribes our don’t-care-enhanced ACD approach, and Section V
provides experimental results. Finally, Section VI concludes
the paper and outlines directions for future work.

II. PRELIMINARIES

This section introduces the fundamental notations, defi-
nitions, and background related to logic networks, Boolean
decomposition, and don’t-cares.

A. Definitions

A completely specified Boolean function (CSF) is a mapping
from an n-dimensional Boolean space to a single-dimensional
one:

where n > 0.

f:{0,1}" = {0, 1}, (1)

A truth table representation of a k-input Boolean function
f:{0,1}k — {0,1} is a bit string b = b;_1...by, i.e., a
sequence of bits of length [ = 2*. A bit b; € {0, 1} at position
0 < i < [ corresponds to the function value under the input
assignment @ = (ag, . . .,ax—1), computed as:

i=2" a4+ 20 a.
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The positive cofactor of a Boolean function f with respect
to a variable z;, denoted as f;,, is obtained by setting x; = 1.
Similarly, the negative cofactor, denoted as fz,, is derived by
setting z; = 0.

In truth table representations, the leftmost input variable
(e.g., ap—1) is commonly interpreted as the most significant
variable, while the rightmost input variable (e.g., ag) is the
least significant variable. Swapping two input variables alters
the structure of the truth table by exchanging the correspond-
ing two-variable cofactors.

A don’t-care condition in a Boolean function represents an
input combination for which the output can be either 0 or
1. The set of all such input combinations forms the don’t-
care set. If a function has at least one don’t-care condition,

it is referred to as an incompletely specified Boolean function
(ISF). The complement of the don’t-care set is the care set,
which specifies input assignments where the output must be
preserved. The care set can be represented by a truth table,
where a value of 1 indicates a significant output and O indicates
a don’t-care condition.

Example 1. Consider the truth tables depicted in Figure 1.
The functions are derived from one another by swapping
the inputs xo and xo. For both truth tables, the cofactors
with respect to the two most significant variables are shown.
Additionally, their representations in binary and hexadecimal
formats are provided.

An assignment of n Boolean variables to specific values is
called a minterm. A positive minterm evaluates to 1, whereas
a negative minterm evaluates to 0. In a CSF, every minterm is
assigned either O or 1, forming the care minterms. In an ISF,
some minterms may have a don’t-care condition, referred to
as don’t-care minterms.

A CSF is compatible with an ISF (i.e., it implements the
ISF) if it can be obtained by assigning either O or 1 to each
don’t-care minterm. One ISF is considered larger than another
if it contains more don’t-care minterms.

A Boolean function f essentially depends on a variable v if
there exists at least one input assignment for which toggling
v changes the function’s output.

The support of f is the set of all variables on which f
essentially depends. Two functions have disjoint supports if
they share no common variables. A set of functions is disjoint
if the supports of all functions in the set are pairwise disjoint.

A Boolean network is a directed acyclic graph (DAG),
where each node represents a Boolean function. The graph’s
sources are the primary inputs (PIs), and its sinks are the
primary outputs (POs). A node may have multiple fanins
(nodes driving it) and fanouts (nodes it drives). If there is
a path from node a to node b, then a belongs to the transitive
fanin (TFI) of b, and b belongs to the transitive fanout (TFO)
of a. The TFI of b, denoted TFI(b), includes b and all nodes
on paths from the PlIs to b. Similarly, TFO(b) includes b and
all nodes on paths from b to the POs. If the nodes represent
k-input lookup tables, the network is called a k-LUT network.

An And-Inverter Graph (AIG) is a Boolean network where
all internal nodes are two-input AND gates. Inversions are not
represented as separate nodes but are instead encoded as edge
attributes.

A cut of a node n is a set of nodes, called leaves, such that:

1) Every path from any PI to n passes through at least one
leaf node.

2) For each leaf node in the cut, there exists a path from
some PI to n that passes through that leaf and no other
leaf in the cut.

The node n is referred to as the root of the cut. A trivial
cut contains only the node n and covers no other nodes. A
non-trivial cut includes multiple nodes and covers all nodes
on paths from the leaves to the root, excluding the leaves.



B. Boolean Decomposition

Boolean decomposition refers to the process of breaking
down a Boolean function into smaller, simpler components.
The result of such a decomposition is typically a Boolean
network whose primary outputs (POs) remain functionally
equivalent to the original function.

One of the most fundamental and well-known Boolean de-
compositions is the Shannon decomposition, which expresses
a Boolean function f in terms of its cofactors with respect to
a single variable x. It is defined as:

where f, = fr—1 and fz = f,—¢ are the positive and negative
cofactors of f with respect to x.

The Shannon decomposition is a special case of more
general Boolean function decompositions. One of the most
fundamental and widely used forms is the Ashenhurst-Curtis
Decomposition (ACD) [1]-[3], which provides a systematic
way to decompose complex functions into simpler sub-
functions by partitioning input variables into disjoint sets. The
ACD of a single-output Boolean function f can be expressed
as:

f(beafswffs) = g(h(fbwfss)zfss,ffs) €]

Here, %y, @, and &g denote the bound set (BS), shared set
(SS), and free set (FS), respectively. These are disjoint subsets
of variables that together form the support of f.

The function £ represents a vector of BS functions, which
may be multi-output but typically have fewer outputs than
the number of variables in the BS. The function g is the
composition function, often implemented as a single k-input
LUT in LUT-based decomposition.

The overall ACD structure is shown in Figure 2, where the
BS, SS and FS all feed into the composition function.

C. Don’t Cares

There can be two types of don’t-cares in a logic net-
work: observability don’t-cares (ODCs) [15] and controlla-
bility don’t-cares (CDCs) [16].

An ODC is associated with a node n and a primary
input assignment x € B™. The assignment z is considered
unobservable at n if flipping the value of n does not affect
any primary output. In such cases, x is an ODC of n because
its value has no impact on the circuit’s observable behavior.
Although ODCs are effective for logic optimization, they re-
quire compatibility handling—such as computing compatible
ODCs (CODCs) [15], [17]—to ensure correctness.

CDCs are computed by constructing a window, defined
by collecting the TFI of a cut. The window is bounded by
a leaf/root relationship: every path from a primary input to
a root node must pass through at least one leaf, and the
window includes all nodes on such paths, excluding the leaves
themselves. To improve CDC quality, the window is often
expanded to include reconvergent paths, where signals diverge
from a common origin and reconverge through different fan-
ins. The window is then simulated to enumerate all reachable
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Fig. 2: General ACD structure with disjoint 4-variable bound
set (BS), l-variable shared set (SS) and 2-variable free
set (FS).

input patterns at the cut leaves. CDCs are identified as those
input combinations that never occur in the simulation. This
procedure, known as projection, has exponential complexity
in the number of cut leaves. This work focuses on CDCs,
which can be safely used in synthesis and mapping without
compatibility checks.

III. RELATED WORK

This section reviews related work on truth-table-based
ACD [12], an efficient and scalable decomposition technique
that enables delay-driven LUT mapping, resynthesis, and
mapping into LUT cascade structures. The method structurally
transforms Boolean functions using a multiplexer-like (MUX)
decomposition pattern, as illustrated in Figure 2.

The approach begins by checking whether a valid decom-
position exists through a partitioning of the function’s support
into three disjoint sets: the bound set (BS), shared set (SS), and
free set (FS). As introduced earlier, placing late-arriving (i.e.,
critical) variables into the FS allows them to bypass additional
logic levels, enabling delay optimization. For simplicity, only
the BS and FS are considered in this section, leading to the
following partitioning of the functional support:

e Let NV be the number of variables in the support of the
Boolean function to decompose.

e Let P be the number of variables selected for the FS; the
remaining N — P variables form the BS.

« The number of possible FS selections is (7).

« To enable a feasible two-level decomposition into k-input
LUTs, it is often useful to set P = N — k, so that the
BS contains at most % variables.

Due to the MUX-like structure of Ashenhurst-Curtis de-
composition, each assignment to the BS selects one cofactor
(i.e., a P-input subfunction) defined over the FS variables.
Therefore, for each FS partition, all such cofactors must be
evaluated from the truth table:

o The truth table is first reordered with a dedicated proce-
dure so that the FS variables occupy the least significant
positions.



« With this ordering, the 2V =" cofactors appear as con-
tiguous blocks, each of size 2% pits.
o These blocks are extracted at offsets i - 2, with i €
[0,2N=F), directly from the reordered truth table.
Further, the number of unique FS functions is referred to
as the column multiplicity . A decomposition into M BS
functions is possible if:

p<2M = M > [log,(p)]. ©)

If P+ M < k, the composition function fits into one k-input
LUT, and the decomposition is considered k-feasible.

To find such decompositions:

. All (11\37) FS choices are iterated.

e For each FS, the number of unique FS functions (i.e.,
column multiplicity) is computed.

o If M+ P < k and N — P < k, the decomposition is
immediately feasible.

Example 2. Consider the truth table on the left in Figure 1.
Assume a FS of size 1, which results in FS functions of size
2% = 2 bits each. Without considering don’t-cares, all possible
2-bit FS functions appear—00, 01, 10, and 11—leading to
the maximum column multiplicity of 4. When the variables
xo and xo are swapped, the truth table changes accordingly,
and so do the FS functions under the new variable ordering.
The updated truth table, shown on the right, yields a reduced
column multiplicity of 3. This demonstrates that by reordering
variables and evaluating the resulting column multiplicity, the
algorithm can determine whether a valid decomposition exists.

After evaluating that a decomposition exists, a functional
encoding step, combined with support minimization, is used to
derive the BS functions and the composition function, resulting
in the final ACD structure. Since these steps are not modified
in this work, the authors refer to [12] for further reading.

IV. DON’T-CARE-BASED ACD

This section presents the core contribution of this work by
extending the truth-table-based ACD formulation introduced
in [12] to incorporate don’t-care conditions. As described in
Section III, ACD first evaluates whether a valid decomposition
exists by partitioning the support into a free set (FS) and a
bound set (BS). If decomposition is possible, the algorithm
then attempts to maximize the support and derive functional
encodings for both the BS and the composition function. In
the don’t-care-aware version of ACD, only the decomposition
evaluation step is modified, which is the primary focus of this
section.

A. Decomposition Evaluation Using Don’t-Cares

For decomposition evaluation, a valid composition exists if
the column multiplicity p is sufficiently small, i.e., pu < oM
where M is the number of BS functions. In other words, the
number of unique FS functions determines whether decom-
position is possible. In the state-of-the-art approach, all FS
functions are treated as completely specified functions (CSFs),
where each minterm is assigned either O or 1. The column

multiplicity is then computed by counting the number of
unique FS functions.

When incorporating don’t-care conditions, some FS func-
tions are instead represented as incompletely specified func-
tions (ISFs), which include don’t-care minterms. This makes
evaluating the number of unique FS functions non-trivial, as
one ISF can be collapsed onto another ISF or onto a CSF
if their outputs differ only on don’t-care minterms. Such col-
lapsing can reduce the number of unique FS functions, thereby
lowering the overall column multiplicity x4 and enabling more
decompositions.

Example 3. Consider again the truth table on the left in
Figure 1, which results in a column multiplicity of 4 when
using ACD without don’t-cares. Now assume that a care set
(CS) is provided alongside the output function. A value of 0 in
the care set marks a don’t-care condition, meaning the output
for that input can be freely assigned.

With don’t-cares taken into account, the FS functions be-
come: 0-, =0, 11, and —0. Among these, only 11 is fully
specified. The others contain one don’t-care each and can
potentially be treated as equivalent to other FS functions.
Although none of these partial functions can be merged with
11 (since they all have a fixed 0 where 11 has 1), they
can all be collapsed into the function 00, which is consistent
with their defined bits. As a result, instead of four distinct FS
functions, we now only need two: 11 and 00. This reduces
the column multiplicity to 2.

However, determining which functions to collapse is not a
straightforward task. The goal of this work is to leverage the
additional information provided by the care set to minimize
column multiplicity. This enhancement introduces new compu-
tational challenges in the decomposition evaluation step, which
are examined in the following section.

B. Complexity

The decomposition evaluation problem corresponds to find-
ing a minimum-size set of CSFs, C, that covers a given set
of FS functions, F, where each f; € F is either a CSF or an
ISF, and each ISF must be compatible with at least one ¢ € C.
This constitutes a domain-specific variant of the classical set
cover and minimum hitting set problems, both of which are
known to be NP-hard.

The core challenge arises from the exponential number of
completions for each ISF. Given an FS function of size P,
there are 2° input minterms. If d of these are don’t-care
minterms, then the number of compatible CSFs for a single
ISF is 29, since each don’t-care minterm can independently
take on a value of O or 1.

Furthermore, the total number of distinct FS functions
(CSFs or ISFs) grows as 22" For ISFs, excluding the fully
unspecified function (where all outputs are don’t-cares), the
number of ISFs with exactly d don’t-cares is given by:

oF .
Nd:<d>~22 —d,

(6)



Algorithm 1: Column Multiplicity Minimization

Algorithm 2: Covering with Best CSFs for P < 2

1: Input: Set of FS functions F (CSFs and ISFs)
Output: Covering set C’
C' < all CSFs in F
U < all ISFs in F
P < size of the FS
if P <2 then

C' += CoverWithBestCSFs(U,C,C’) /I (Algorithm 2)
else if 3 < P <5 then

C' += AddUncoveredISF(U,C,C’) /I (Algorithm 3)
end if
: Return: C’

R A A S
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Hence, the total number of ISFs is:
2
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d=1

Due to this double-exponential growth, exact algorithms
become impractical even for moderate values of P. Conse-
quently, practical solutions employ heuristics and approxi-
mation algorithms to reduce column multiplicity by merging
ISFs into compatible CSFs while ensuring the decomposition’s
correctness [18]. Although these heuristic methods do not
guarantee an optimal solution, they offer scalable and effective
means of minimizing column multiplicity in practice, thereby
making don’t-care-aware decomposition feasible for larger
support sizes.

C. Greedy Column Multiplicity Minimization

To efficiently approximate the solution to the column mul-
tiplicity minimization problem, we employ several greedy
heuristics inspired by classical covering algorithms. The over-
all strategy is outlined in Algorithm 1. First, all completely
specified FS functions are collected and directly added to the
final covering set, as shown in Line 3. Starting from Line 6,
the remaining ISFs are processed using different strategies
depending on the size of the FS:

a) Case P =1: For P = 1, we have 22" — 4 CSFs: 00,
01, 10, and 11. The number of ISFs is:

133 5 (e

d=1
These correspond to: 0—, 1—, -0, and —1. All four ISFs can
be covered by two CSFs. For example, the pair 00 and 11
covers all ISFs and is therefore complementary. Alternatively,
the pair 01 and 10 also suffices.

The general greedy algorithm described for P = 2 (see
Algorithm 2) iteratively selects the CSF that covers the largest
number of remaining ISFs and adds it to the covering set. This
approach also applies to the case P = 1, but the problem
simplifies significantly. Due to the small number of CSFs
and ISFs, and the existence of complementary CSF pairs that
jointly cover all ISFs, it is sufficient to exhaustively evaluate
all CSF pairs and select one that fully covers the ISF set.

1: Input: Set of uncovered ISFs U, set of all CSFs C,
current cover C’
Output: Updated cover C’
for all c € C’' do
U + U \ CoveredISFs(c)
end for
while ¢/ # () do
c* < argmax.cc\¢s |CoveredISFs(c) N U|
C'+ C' U{c*}
U + U\ CoveredISFs(c*)
end while
: Return: C’

R RN

—_ =
—_— O

b) Case P < 2: There are 22° — 16 CSFs. The number
3

of ISFs is:
<4>_24d
d=1 d
(1) 5+ (o) 4+ ) 2
1 2 3
=4-846-4+4-2
= 64.

[l =

For this small FS size, the problem remains tractable. Each
CSF can be represented as a 4-bit vector, and compatibility
with ISFs can be efficiently encoded using bitmasks. Specifi-
cally, for each CSF, a bitmask of size 64 can be precomputed,
where each bit indicates whether the CSF is compatible with
a corresponding ISE. This enables constant-time compatibility
checks during the algorithm.

The greedy strategy is outlined in Algorithm 2. CSFs that
already appear in the input FS set are included in the covering
set C'. In Line 4, each such CSF is used to remove the ISFs
it covers from the uncovered set /. The main loop begins
in Line 6, where the algorithm repeatedly selects the CSF
that covers the largest number of remaining ISFs, as shown in
Line 7. This CSF is then added to the cover in Line 8, and the
set U is updated accordingly in Line 9. The process continues
until all ISFs are covered. This bitmask-based greedy approach
yields high-quality coverings while remaining computationally
efficient.

c) Case 3 < P < 5: For larger free set sizes P = 3,4, 5,
the number of possible CSFs and ISFs grows rapidly, making
the enumeration of all ISFs to solve a minimum hitting set
problem computationally infeasible. Specifically, we observe
6,304 ISFs for P = 3, over 52 million for P = 4, and more
than 1.3 x 103 for P = 5.

However, for a truth table of size 2%, the number of
FS functions that can actually be extracted is bounded by
2N=P This significantly reduces the number of FS functions
encountered during decomposition. Moreover, the number of
unique CSFs derived from these FS functions is typically even
smaller.



Algorithm 3: Covering Uncovered ISFs for3 < P < 5
1: Input: Set of extracted FS functions F

: Output: Covering set C’

: C' <+ all CSFs in F

: U + all ISFs in F

: for all f €U do

if exists ¢ € C’ such that f is compatible with ¢ then
continue

else
C'+C'U{f}

end if

: end for

: Return: C’

—_ = =

To efficiently handle this case, we employ the incremental
covering strategy outlined in Algorithm 3. Instead of solving a
full minimum hitting set problem, the algorithm first collects
all CSFs observed among the extracted FS functions, as shown
in Line 3. The remaining FS functions are treated as ISFs
in Line 4. For each ISF, the algorithm checks whether it is
compatible with any CSF in the current cover, as described in
Line 6. If so, the ISF is considered covered. Otherwise, it is
added to the cover as a new CSF in Line 9.

This approach avoids pairwise ISF compatibility checks and
provides a lightweight yet effective approximation in practice.

V. EXPERIMENTS

This section presents an experimental evaluation of the
proposed don’t-care-based ACD algorithm and compares it
against the state-of-the-art ACD approach on practical func-
tions from the EPFL benchmark suite [19]. To this end,
the benchmarks are mined for cuts of sizes 7 to 11 and
classified by NPN-equivalence. For each NPN class, one care
set is tracked to ensure the overall number of functions
remains manageable for this evaluation. The algorithms were
implemented in C++17 within the open-source logic synthesis
framework Mockturtle', and the experiments were conducted
on a machine equipped with an AMD Ryzen 7 PRO 6850U
processor and 32 GB of DDR5 RAM.

A. Comparison With Baseline ACD

To enable a fair comparison between the two ACD algo-
rithms, we track several key metrics. All experiments use
decomposition into 6-input LUTs, consistent with the baseline
used in the state-of-the-art approach [12]. For each configura-
tion, we record the decomposition success rate, which refers
to the percentage of decompositions where all late-arriving
variables are included in the FS. Additionally, we report the
average number of LUTs produced after decomposition, as
well as the average runtime per decomposition.

These measurements are collected for cuts of size 7 to 11
variables. For each cut size, we vary the number of late-
arriving variables from 0 to 5 and exhaustively enumerate all
possible combinations, averaging the results over all outputs.

! Available at: https://github.com/Isils/mockturtle

Table I shows the results of the proposed approach using
CDCs with a window size of 11, compared to the state-of-the-
art ACD method. The size 11 is based on prior work, where it
offers a good trade-off between the number of extracted don’t-
cares and runtime, and is commonly used in rewriting [20] and
resynthesis [21].

As expected, the decomposition success rate decreases for
both ACD methods as the number of late-arriving variables
increases, since including all late variables in the FS becomes
less likely. Similarly, larger function sizes lead to lower suc-
cess rates due to increased number of possible FS functions.

Across all input configurations, our don’t-care-based ACD
consistently outperforms the baseline in terms of decomposi-
tion success rate. The largest improvements are observed for
smaller functions, particularly for cuts of size 7. In this case,
the average success rate improves from 72.03% to 77.37%,
representing an absolute increase of more than 5 percentage
points. The effect is even more pronounced when more late-
arriving variables are present. For instance, for functions with
seven variables and five late-arriving variables, our method
achieves a success rate of 15.92% compared to just 6.06% in
the baseline—an improvement of nearly 10 percentage points.
In relative terms, this means that our method can decompose
over two and a half times as many functions in this scenario.

In addition to improving the number of successful decompo-
sitions, our approach also yields structurally better results. The
average number of LUTs per decomposition is consistently
lower than that of the baseline; for example, the overall
average LUT count is reduced from 2.50 to 2.46. This suggests
that, when integrated into a synthesis or mapping engine, the
don’t-care-based ACD can contribute not only to improved
delay but also to area savings. These benefits come at the cost
of increased computational effort, with the average runtime
per decomposition increasing from 2.07 to 3.48, representing
a 1.5x overhead, which is considered a reasonable trade-off
given the observed improvements and the additional search
space introduced by don’t-care handling.

B. Impact Of Don’t Care Extraction Quality

The benefit of using don’t-cares becomes less significant as
the function size increases. For functions with 11 variables, the
amount of available don’t-care information is limited, resulting
in only a minor improvement in decomposition success. This
highlights the correlation between the quantity of available
don’t-cares and the potential for optimization.

Table II presents a comparison of the ACD approach using
CDCs extracted through windowing with sizes 11, 14, and
16. Increasing the window size allows a larger portion of
the logic cone to be captured, yielding more effective don’t-
cares. A steady improvement in the average decomposition
success rate is observed as the window size increases: from
53.04% with a window size of 11 to 55.15% with size 14,
and 56.20% with size 16. Similarly, the average number
of LUTs per decomposition decreases from 2.46 to 2.43
and 2.42, respectively, indicating that the effectiveness of
don’t-care-based ACD depends on the quality of don’t-care



Table I: Comparison of SOTA ACD and ACD DC 11 across varying late input counts and input sizes.

N Late  Metric 7 vars 8 vars 9 vars 10 vars 11 vars Avg
SoTA DC 11 SoTA DC 11 SoTA DC 11 SoTA DC 11 SoTA DC 11 SoTA DC 11
0 DC Success  100.00%  100.00%  100.00%  100.00%  98.05%  98.06%  90.20%  90.62%  32.88%  32.88% 84.23% 84.31%
Avg LUT 2.13 2.07 2.46 2.35 2.51 2.44 2.52 2.50 2.00 2.00 2.32 2.27
Time(s) 0.12 0.21 0.99 2.34 5.19 12.26 23.40 32.79 7.51 11.44 7.44 11.81
1 DC Success  100.00%  100.00%  100.00%  100.00%  97.57%  97.62%  83.24%  84.08% 16.53% 16.53% 7947%  79.65%
Avg LUT 2.33 2.24 2.70 2.59 2.76 2.69 2.71 2.69 2.00 2.00 2.50 2.44
Time(s) 0.09 0.21 0.57 1.32 2.57 5.74 8.50 13.66 3.23 5.25 2.99 5.24
2 DC Success  100.00%  100.00%  100.00%  100.00%  93.47%  93.98%  60.65%  62.85% 7.11% 7.11% 72.25%  72.79%
Avg LUT 2.57 2.46 3.05 2.92 3.08 3.01 2.82 2.81 2.00 2.00 2.70 2.64
Time(s) 0.05 0.11 0.26 0.55 0.96 1.99 2.93 5.34 1.48 2.54 1.14 2.11
3 DC Success 87.31% 92.64% 74.23% 79.77% 68.45%  72.16%  30.50%  33.60% 2.56% 2.56% 52.61% 56.15%
Avg LUT 2.78 2.68 3.19 3.07 3.34 3.26 2.87 2.86 2.00 2.00 2.84 2.71
Time(s) 0.03 0.05 0.11 0.22 0.33 0.65 0.88 1.67 0.83 1.56 0.44 0.83
4 DC Success 38.82% 55.64% 19.15% 30.03% 12.79% 18.50% 9.07% 11.48% 0.70% 0.70% 16.11%  23.27%
Avg LUT 2.55 2.63 2.71 2.79 2.84 2.85 2.87 2.87 2.00 2.00 2.61 2.63
Time(s) 0.02 0.03 0.05 0.09 0.14 0.25 0.36 0.69 0.60 1.19 0.23 0.45
5 DC Success 6.06% 15.92% 1.13% 4.18% 0.41% 1.36% 0.20% 0.54% 0.11% 0.21% 1.58% 4.44%
Avg LUT 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Time(s) 0.01 0.02 0.04 0.07 0.10 0.20 0.27 0.55 0.62 1.32 0.21 0.43
Avg DC Success  72.03% 77.37% 65.75% 69.00% 61.79% 63.61% 45.64% 47.20%  9.98% 10.00% 51.04%  53.43%
Avg LUT 2.39 2.35 2.70 2.62 2.76 2.71 2.63 2.62 2.00 2.00 2.50 2.46
Time(s) 0.05 0.11 0.34 0.77 1.55 3.52 6.06 9.12 2.38 3.88 2.07 3.48

Table II: Average results across all benchmarks for SOTA ACD and DC-based variants.

N Late  Metric SoTA ACD ACDDC11 ACDDC14 ACD DC 16

0 DC Success 84.23% 84.31% 84.46% 84.60%
Avg LUT 2.32 2.27 2.244 2.226
Time(s) 7.44 11.81 11.044 10.696

1 DC Success 79.47% 79.65% 79.95% 80.23%
Avg LUT 2.50 2.44 2.406 2.388
Time(s) 2.99 5.24 4,984 4.864

2 DC Success 72.25% 72.79% 73.69% 74.33%
Avg LUT 2.70 2.64 2.600 2.572
Time(s) 1.14 2.11 2.032 1.986

3 DC Success 52.61% 56.15% 58.97% 60.61%
Avg LUT 2.84 2.77 2.734 2.708
Time(s) 0.44 0.83 1.010 0.802

4 DC Success 16.11% 23.27% 27.53% 29.83%
Avg LUT 2.61 2.63 2.602 2.606
Time(s) 0.23 0.45 0.434 0.434

5 DC Success 1.58% 4.44% 6.33% 7.63%
Avg LUT 2.00 2.00 2.000 2.000
Time(s) 0.21 0.43 0.422 0414

Avg DC Success 51.04% 53.43% 55.15% 56.20%
LUTs 2.50 2.46 243 242
Time(s) 2.07 3.48 3.32 3.20

extraction. However, the employed procedure for don’t-care
extraction does not scale well enough for integration into a
full technology mapper, which is why the evaluation is limited
to this experimental setup.

VI. CONCLUSION

This paper presents an enhanced version of Ashenhurst-
Curtis decomposition (ACD) that incorporates controllabil-
ity don’t-cares, extending the capabilities of existing truth
table-based approaches. While prior work achieves strong
decomposition rates for small functions or limited numbers
of late-arriving variables, the proposed method consistently

outperforms it—particularly in scenarios with larger fixed free
sets. For cases with four or five late-arriving variables, the
decomposition success rate more than doubles on average.
The results highlight the importance of high-quality don’t-care
extraction, as the effectiveness of the approach scales with the
amount of extracted flexibility. This includes, for example, the
use of compatible observability don’t-cares or other forms of
don’t-care computation that may be available in mapping or
resynthesis engines. However, integrating scalable don’t-care
extraction directly into a technology mapping flow remains
an open challenge and is left for future work. Although this



step can introduce additional computational effort, it enables
significantly improved decomposition outcomes and opens
new opportunities for delay-optimized LUT mapping. As such,
the method offers a promising path toward more flexible and
timing-aware synthesis flows.
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