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Aaron Sander ,1, ∗ Maximilian Fröhlich ,2, † Martin Eigel ,2 Jens Eisert ,3, 4 Patrick Gelß ,3, 5

Michael Hintermüller ,2 Richard M. Milbradt ,1 Robert Wille ,1, 6, 7 and Christian B. Mendl 1

1Technical University of Munich, Munich, Germany
2Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

3Freie Universität Berlin, Berlin, Germany
4Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany

5Zuse Institute Berlin, Berlin, Germany
6Munich Quantum Software Company GmbH, Munich, Germany

7Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
(Dated: January 31, 2025)

Understanding the precise interaction mechanisms between quantum systems and their environment is crucial
for advancing stable quantum technologies, designing reliable experimental frameworks, and building accurate
models of real-world phenomena. However, simulating open quantum systems, which feature complex non-
unitary dynamics, poses significant computational challenges that require innovative methods to overcome. In
this work, we introduce the tensor jump method (TJM), a scalable, embarrassingly parallel algorithm for stochas-
tically simulating large-scale open quantum systems, specifically Markovian dynamics captured by Lindbladi-
ans. This method is built on three core principles where, in particular, we extend the Monte Carlo wave function
(MCWF) method to matrix product states, use a dynamic time-dependent variational principle (TDVP) to sig-
nificantly reduce errors during time evolution, and introduce what we call a sampling MPS to drastically reduce
the dependence on the simulation’s time step size. We demonstrate that this method scales more effectively
than previous methods and ensures convergence to the Lindbladian solution independent of system size, which
we show both rigorously and numerically. Finally, we provide evidence of its utility by simulating Lindbladian
dynamics of XXX Heisenberg models up to a thousand spins using a consumer-grade CPU. This work repre-
sents a significant step forward in the simulation of large-scale open quantum systems, with the potential to
enable discoveries across various domains of quantum physics, particularly those where the environment plays
a fundamental role, and to both dequantize and facilitate the development of more stable quantum hardware.

I. INTRODUCTION

Classical simulations are currently one of the most useful
tools for comparing quantum theory with experimental re-
sults, as well as for providing benchmarks for the practical
performance of quantum computers. Simulation results allow
us to gain a deeper understanding of the underlying intricate
physical mechanisms at work in complex quantum systems,
as well as to build and scale more stable, reliable quantum
computers and simulators. Quantum systems are notoriously
difficult to simulate due to the exponential growth of parame-
ters needed to represent larger systems. This growth leads to
both increasing memory requirements to store exponentially
many complex values and longer computational times to per-
form the operations needed to simulate their dynamics.

Tensor network methods, particularly matrix product states
(MPS) [1–3], are famously at the forefront of classical tools
for quantum simulation [4, 5] as they facilitate the reduction
of memory usage and computational time compared to a full
state vector representation, especially in the case of manage-
able entanglement growth [6–9]. Rather than representing
quantum systems, i.e., quantum states, as state vectors that
grow exponentially in dimension with system size, MPSs en-
able the system to be split into a tensor train [3] with each ten-
sor representing a local system. This makes it possible to not
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only store the state of the quantum system with substantially
fewer parameters, but also reduces many key components
needed to simulate dynamics to local rather than global op-
erations. This ansatz captures common correlation and entan-
glement patterns that present in quantum many-body systems
well [2, 10]. This property has led to the development of the
time-evolving block decimation (TEBD) algorithm [11] which
is a critical simulation method for MPS dynamics. The caveat
is that for increasingly entangled states, especially those gen-
erated during time evolution, the bond dimension between
these tensors grows, with the upper bound becoming expo-
nential as the system gets larger. The ability to truncate the
bonds to much lower dimensions has been proven to be a suc-
cessful approximation method that enables TEBD and MPS to
be reliable as an accurate simulation method for local Hamil-
tonians [12], even for highly-entangled states. However, trun-
cation can break symmetries, violate energy conservation, and
poorly approximate long-range interactions on fixed bond di-
mension manifolds. The time-dependent variational principle
(TDVP) [13–16] addresses these issues by evolving quantum
states in time through provably optimal MPS approximations
with lower bond dimensions. TDVP thus has the advantage
of preserving energy conservation and symmetries by avoid-
ing TEBD’s truncation errors, as well as not being confined to
local interactions.

Substantial progress has been made in simulating quantum
systems, such as finding ground states and closed-system time
evolution [1–3, 6–16] and, more recently, quantum circuits
[17–19]. However, simulating open quantum systems remains
comparatively underexplored [20–24], even though environ-
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mental effects such as relaxation, dephasing, and thermal ex-
citations are critical to understanding and mitigating noise in
quantum technologies. Importantly, these interactions lead to
unstable quantum computing architectures; in fact, quantum
noise is the core antagonist in quantum technologies. In or-
der to build better quantum devices, we need to precisely un-
derstand these noise processes to mitigate the error that they
cause.

Lindblad master equations [25, 26] (or Lindbladians) have
long been the standard theoretical framework for modeling
dissipative dynamics. This approach is the most general form
of a completely positive and trace-preserving quantum dy-
namical semi-group. It evolves the density matrix ρ(t) ∈
CdL×dL

directly, where d is the physical dimension of one site
and L is the number of sites. Storing ρ(t) as a dense matrix
requires O(d2L) computer memory and becomes intractable
with growing system size. An alternative is the Monte Carlo
wave function method (MCWF) [27–32], which stochastically
simulates individual quantum trajectories of pure states to ap-
proximate the corresponding density matrix. Although this
approach partially circumvents the complexity of large den-
sity matrices, the computational cost still grows exponentially
with system size as it relies on state vectors |Ψ(t)⟩ ∈ CdL

.
Early work towards achieving scalable approaches has fo-

cused on using matrix product operators to simulate open
quantum systems [20, 21]. However, this can lead to a sit-
uation in which such tensor networks are no longer positive
semi-definite and hence do not represent valid quantum states.
Tensor network approaches that are not based on unravelings
can be easily overburdened by the undecidability of checking
positivity [33]. Alternative approaches use tensor networks
that are positive semi-definite by construction [22]. In the lit-
erature, one also discriminates approaches that simulate time
evolution from those that study stationary states [34]. It is
known that the bond dimension can grow large during time
evolution, while the stationary state only requires small bond
dimensions [35].

Other forms of stochastic unravelings of open quantum sys-
tems using tensor network states have been explored in several
works [36–38], e.g., using quantum state diffusion. Our ap-
proach builds most directly on the seminal ideas of Ref. [37],
yet surpasses that method substantially by (i) employing a dy-
namic time-dependent variational principle to tackle scalabil-
ity and accuracy constraints for larger systems, and (ii) incor-
porating higher-order Trotterization for more precise tensor
network updates. Additionally, unlike t-DMRG approaches
[39] that rely on truncations and lack proven convergence
guarantees, our framework provides provably optimal unitary
evolution of the state vector on a manifold with an adaptive
bond dimension. Moreover, the quantum jump-based unravel-
ing here draws on foundational work from the 1990s in quan-
tum optics [27–32], serving not only as a calibration tool for
quantum simulators but also as a step toward “dequantizing”
challenging regimes where one expects a quantum advantage.

Concretely, we utilize the dynamic TDVP with an adap-
tive bond dimension, the stochastic Monte Carlo wave func-
tion (MCWF) approach, and what we term a sampling MPS
to form a scalable simulation method for open quantum sys-

tems called the tensor jump method (TJM). We implement the
MCWF procedure within a tensor network algorithm that uses
single-site as well as two-site integration schemes to adapt
the bond dimension before restricting it to a specified mani-
fold. Employing a sampling MPS, derived from the higher-
order Trotterization of the time-evolution operator, allows us
to retrieve the state at intermediate times with substantially re-
duced sensitivity to the time-step size. We then show analyt-
ically and numerically that the TJM converges independently
of system size, providing a scalable and robust new tool for
open system simulations. Finally, we demonstrate its utility
by extending its application well beyond the current computa-
tional state-of-the-art.

II. SIMULATION OF OPEN QUANTUM SYSTEMS

A. Lindbladian master equations

A large variety of processes in quantum physics can be cap-
tured by quantum Markov processes. On a formal level, they
are described by the Lindblad master equation (or Lindbla-
dian) [40, 41]

d

dt
ρ = −i[H0, ρ] +

k∑
m=1

γm

(
LmρL

†
m − 1

2
{L†

mLm, ρ}
)
.

(1)
This gives rise to a dynamical semi-group that generalizes the
Schrödinger equation. The quantum state ρ and the Hamil-
tonian H0 are Hermitian operators in the space of bounded
operators B(H), acting on the Hilbert space of pure states of
a quantum system H. The first term −i[H0, ρ] corresponds
to the unitary (closed/noise-free) time-evolution of ρ, where
we have set ℏ = 1 to simplify notation. The summation
captures the non-unitary dynamics of the system such that
{Lm}km=1 ⊂ B(H) is a set of (non-unique) jump operators.
These can be either Hermitian or non-Hermitian and corre-
spond to noise processes in the system where {γm}km=1 ⊂
R+ is a set of coupling factors corresponding to the strength
of each of these processes. These quantum jumps are defined
as a sudden transition in the state of the system such as relax-
ation, dephasing, or excitation, which occur instantaneously,
differentiating it from classical processes.

Directly computing the Lindbladian is one of the stan-
dard tools for exactly simulating open quantum systems [42].
However, its dependence on the dimension of the operator
ρ ∈ CdL×dL

limits the numerical computation of non-unitary
dynamics to small system sizes This highlights the need for
substantially more scalable simulation methods of large-scale
open quantum systems.

B. Monte Carlo wave function method

To decouple the simulation of open quantum systems from
the scaling of the density matrix, the Lindbladian can be sim-
ulated stochastically using the Monte Carlo wave function
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FIG. 1. This figure shows the algorithm to perform the the Monte Carlo wave function (MCWF) method. An initial state vector |Ψ(t)⟩ is
time-evolved with a non-unitary time-evolution operator e−iHeffδt

. The stochastic factor caused by the dissipation of this evolution δp =
1−⟨Ψ(i)(t+ δt)|Ψ(i)(t+ δt)⟩ is compared to a random number ϵ ∈ [0, 1]. If ϵ ≥ δp, the result of the stochastic process is the dissipated state
vector |Ψ(i)(t + δt)⟩. Otherwise if ϵ < δp, the probability of each jump occurring is calculating for all operators L1, . . . , Lm. According to
this probability distribution, a jump is selected and applied to the state at the original time t such that the result is Lj |Ψ(t)⟩. The result of the
stochastic process is then normalized and the time updated. This is repeated until a given elapsed time t = T .

method (MCWF) [27, 29–32]. The MCWF breaks the dynam-
ics of an open quantum system into a series of trajectories that
represent possible evolutions of a time-dependent pure quan-
tum state vector |Ψ(t)⟩ ∈ CdL

. Each trajectory corresponds
to a non-unitary time evolution of the quantum state followed
by stochastic application of quantum jumps, which leads to a
sudden, non-continuous shift in its evolution. By averaging
over many of these trajectories, the full non-unitary dynamics
of the system can be approximated without directly solving
the Lindbladian. More formally speaking, it gives rise to a
stochastic process in projective Hilbert space that, on average,
reflects the quantum dynamical semi-group.

Using the same jump operators as in Eq. (1), a non-
Hermitian Hamiltonian can be constructed as

H = H0 +HD, (2)

consisting of the system Hamiltonian H0 and dissipative
Hamiltonian defined as

HD = − i

2

k∑
m=1

γmL
†
mLm. (3)

Formally, this non-Hermitian Hamiltonian defines a time-
evolution operator

U(δt) = e−iHδt, (4)

which can be used to evolve the state vector as

|Ψ(i)(t+ δt)⟩ = e−iHδt |Ψ(t)⟩ , (5)

where H acts as an effective Hamiltonian in the time-
dependent Schrödinger equation. The superscript (i) denotes
the initial time-evolved state vector, which is not yet stochas-
tically adjusted by the jump application process. Additionally,
the dissipation caused by this operator does not preserve the
norm of the state.

For the purpose of the MCWF derivation, the time evolu-
tion can be represented by the first-order approximation of the
matrix exponential, where all O(δt2) terms are dropped in the
MCWF method [27]

⟨Ψ(i)(t+ δt)|Ψ(i)(t+ δt)⟩ = 1− δp(t). (6)

The denormalization δp(t) can be used as a stochastic factor
to determine if any jump has occurred in the given time step

where it can be seen as a summation of individual stochastic
factors corresponding to the denormalization caused by each
noise process

δpm(t) = δtγm ⟨Ψ(t)|L†
mLm|Ψ(t)⟩ , m = 1, . . . , k, (7)

such that

δp(t) =

k∑
m=1

δpm(t). (8)

A random number ϵ is then sampled uniformly from the in-
terval [0, 1] and compared with the magnitude of δp. If ϵ ≥ δp,
no jump occurs and the initial time-evolved state is normalized
before moving onto the next time step

|Ψ(t+ δt)⟩ = |Ψ(i)(t+ δt)⟩√
⟨Ψ(i)(t+ δt)|Ψ(i)(t+ δt)⟩

=
|Ψ(i)(t+ δt)⟩√

1− δp(t)
.

(9)
If ϵ < δp, a probability distribution of the possible jumps at
the given time is created by

Π(t) = {Π1(t), . . . ,Πk(t)} (10)

with the normalized stochastic factors Πm(t) = δpm(t)/δp(t)

such that
∑k

m=1 Πm(t) = 1. A jump operator Lm is then
selected according to this probability distribution and applied
directly to the pre-time-evolved quantum state

|Ψ(t+ δt)⟩ =
√
γmLm |Ψ(t)⟩√

⟨Ψ(t)|L†
mγmLm|Ψ(t)⟩

=

√
γmLm |Ψ(t)⟩√
δpm(t)/δt

,

(11)
simulating that the dissipative term has caused a jump during
this time step. This methodology is then repeated until the
desired elapsed time T is reached, resulting in a single quan-
tum trajectory and a final state vector |Ψ(T )⟩. This process,
which can be seen in Fig. 1, gives rise to a stochastic process
in projective Hilbert space called a piece-wise deterministic
stochastic process in the limit δt→ 0.

This stochastic process is not only a classical Markovian
stochastic process: In expectation, it exactly recovers the
Markovian quantum process that is described by the dynami-
cal semi-group generated by the master equation in Lindblad
form

ρ(t) = lim
δt→0

E (|Ψj(t)⟩ ⟨Ψj(t)|) . (12)
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For N trajectories, the quantum state ρ(t) at time t is esti-
mated as

µ̄(t) =
1

N

N∑
j=1

|Ψj(t)⟩ ⟨Ψj(t)| . (13)

Details of this observation can be found in Appendix A.
Rather than directly calculating the quantum state, the trajec-
tories of state vectors can be stored and manipulated individ-
ually to calculate relevant expectation values. While this does
not solve the exponential scaling with system size, it does pro-
vide a computational advantage over exactly calculating the
quantum state in form of the density operator ρ(t).

III. TENSOR JUMP METHOD

While the MCWF improves the scalability of simulating
open quantum systems in comparison to the exact Lindbla-
dian computation, it still is bounded by the exponential scal-
ing of state vectors. In conjunction with the success of MPS in
simulating quantum systems, this provides an opportunity to
extend the MCWF to a tensor network-based method which
motivates this work. While directly solving the Lindbladian
with MPDOs has been explored [22, 43], approaching this
problem stochastically has only been examined for relatively
small systems (L = 16) and only with fixed bond dimensions
of an MPS [38, 44].

In this section, we introduce the components required for
the tensor jump method (TJM). We first provide a general
overview of the steps needed for the algorithm, without jus-
tification or explicit details, before walking the reader through
the individual steps afterwards. We present the TJM with the
aim to tackle the simulation of open quantum systems by de-
signing every step to reduce the method’s error and computa-
tional complexity as much as possible to maximize scalability.

A. General mindset

The general inspiration for the TJM is to transfer the
MCWF to a highly efficient tensor network algorithm in
which an MPS structure can be used to represent the trajecto-
ries, from which we can calculate the density operator or ex-
pectation values of observables. The stochastic time-evolution
of one trajectory in the TJM consists of three main elements:

1. A dynamic TDVP U [δt].

2. A dissipative contraction D[δt].

3. A stochastic jump process Jϵ[δt].

The steps of the TJM described in this section are depicted in
Fig. 2 and defined in Sec. III C–III E.

We begin with an initial state vector |Ψ(0)⟩ at t = 0 en-
coded as an MPS. We wish to evolve this from some time
t ∈ [0, T ] (T = nδt (n > 0)) according to a Hamiltonian
H0, where we use bold font whenever the Hamiltonian is en-
coded as an MPO, along with some noise processes described

FIG. 2. This figure depicts the steps of the tensor jump method.
First, the sampling MPS |Φ(jδt)⟩ is created from |Ψ(0)⟩ by applying
F0[δt] = Jϵ[δt] D

[
δt
2

]
(j = 1). This is then evolved continuously

by repeatedly applying Fj [δt] = Jϵ[δt] D[δt] U [δt] (j ← j + 1).
At any time, the quantum state vector |Ψ(jδt)⟩ can be sampled by
applying Fn[δt] = Jϵ[δt] D

[
δt
2

]
U [δt] to the sampling MPS. The

details of the unitary evolution U , the dissipative contraction D, and
the tensorized jump process Jϵ can be found throughout Sec. III.
This process is analogous to the MCWF algorithm shown in Fig. 1.

by the set of jump operators {Lm}km=1. Using the above el-
ements, we can express the time-evolution operator U(T ) of
one trajectory of the TJM as

U(T ) =

n∏
i=0

Fn−i[δt]. (14)

which consists of n subfunctions corresponding to each time
step

Fj [δt] =



Jϵ[δt] D
[
δt
2

]
U [δt], j = n,

Jϵ[δt] D[δt] U [δt], 0 < j < n,

Jϵ[δt] D
[
δt
2

]
, j = 0.

(15)

This set of subfunctions follows from higher-order Trotteriza-
tion used to reduce the time step error (see Sec. III B). How-
ever, this Trotterization causes the unitary evolution to lag be-
hind the dissipative evolution by a half-time step, which is
only corrected when the final operator Fn[δt] is applied.

To maintain the reduced time step error while being able to
sample at each time step t = 0, δt, 2δt, . . . , T during a single
simulation run, we introduce what we call a sampling MPS
(denoted by Φ while the quantum state itself is Ψ.) This is
initialized by the application of the first subfunction to the
quantum state vector

|Φ(0)⟩ = F0[δt] |Ψ(0)⟩ . (16)

We use this to iterate through each successive time step∣∣Φ((j + 1)δt
)〉

= Fj [δt] |Φ(jδt)⟩ . (17)

At any point during the evolution, we can retrieve the quantum
state vector |Ψ(jδt)⟩ by applying the final function Fn to the
sampling MPS as

|Ψ(jδt)⟩ = Fn[δt] |Φ(jδt)⟩ . (18)
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This allows us to sample at the desired time steps without
compromising the reduction in time step error from applying
the operators in this order.

We then repeat this time-evolution for N trajectories from
which we can reconstruct the density operator in MPO format
ρ(t) according to Eq. (13)

ρ(t) =
1

N

N∑
i=1

|Ψi(t)⟩ ⟨Ψi(t)| , (19)

or, more conveniently, we can calculate the expectation values
of observables O (stored as tensors or an MPO denoted by the
bold font) for each individual trajectory

⟨O(t)⟩ = 1

N

N∑
i=1

⟨Ψi(t)|O |Ψi(t)⟩ . (20)

This results in an embarassingly parallel process since each
trajectory is independent and may be discarded after calculat-
ing the relevant expectation value.

B. Higher-order Trotterization

This section explains the steps to derive the subfunctions
from Eq. (15) and provides our justification for doing so. We
first define a generic non-Hermitian Hamiltonian created by
the system Hamiltonian H0 and the dissipative Hamiltonian
HD exactly as in Eq. (2)

H = H0 +HD. (21)

From this, we create the non-unitary time-evolution operator
that forms the basis of our simulation

U(δt) = e−i(H0+HD)δt. (22)

In many quantum simulation use cases, including the deriva-
tion of the MCWF in Eq. (4), this operator would be split ac-
cording to the first summands of the matrix exponential defini-
tion or Suzuki-Trotter decomposition [11, 45–47]. However,
higher-order splitting methods exist, which exhibit lower er-
ror [48–51]. While this comes at the cost of computational
complexity, we show that in this case Strang splitting [51] (or
second-order Trotter splitting) can be utilized to reduce the
time step error from O(δt2) → O(δt3) with negligible change
in computational time.

Applying Strang splitting, the time-evolution operator be-
comes

U (i)(δt) = e−iHD
δt
2 e−iH0δte−iHD

δt
2 +O(δt3), (23)

where superscript (i) denotes the initial time-evolution oper-
ator, which is not yet stochastically adjusted by the jump ap-
plication process. These individual terms then define the dis-
sipative operator

D[δt] = e−iHDδt (24)

and the unitary operator

U [δt] = e−iH0δt. (25)

For a time-evolution from t ∈ [0, T ] with terminal T = nδt
for n time steps, the time-evolution operator takes the form

U (i)(T ) =

(
D
[
δt

2

]
U [δt] D

[
δt

2

])n

= D
[
δt

2

]
U [δt]

(
D[δt] U [δt]

)n−1

D
[
δt

2

]
.

(26)

Here, we have combined neighboring half time steps of dis-
sipative operations, which is valid since HD commutes with
itself for any choice of jump operators.

Note that this then takes the same form as the functions
in Eq. (15) although without the stochastic operator Jϵ[jδt],
leading to the initial time-evolution functions

F (i)
j [δt] =



D
[
δt
2

]
U [δt], j = n,

D[δt] U [δt], 0 < j < n,

D
[
δt
2

]
, j = 0,

(27)

where

Fj [δt] = Jϵ[δt] F (i)
j [δt], ∀j. (28)

C. Dynamic TDVP

For the unitary time-evolution U , we employ a dynamic
TDVP method. The simulation begins with the two-site TDVP
(2TDVP) which allows the bond dimensions of the MPS to
grow naturally up to a maximum bond dimension χmax. Once
this threshold is reached, we switch to the one-site TDVP
(1TDVP), confining the evolution to the current manifold, ef-
fectively capping the bond dimension and ensuring computa-
tional feasibility for the remainder of the simulation. This dy-
namic approach enables the necessary entanglement growth
in the early stages while controlling the computational cost
later on, making optimal use of available resources. In this
section, we define a sweep as two half-sweeps, one from
ℓ ∈ [1, . . . , L] and back for ℓ ∈ [L, . . . , 1]. For a time step
δt this leads to two half-sweeps of δt

2 .

1. 1TDVP and 2TDVP as tensor networks

To implement this approach, we express the state vector as
a partitioning around one of its site tensors

|Φ⟩ = |ΦL
ℓ−1⟩ ⊗Mℓ ⊗ |ΦR

ℓ+1⟩ . (29)

By fixing the MPS to a mixed canonical form at site ℓ and
applying the conjugate transpose of the partitioned single-site
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FIG. 3. This figure visualizes each step of the various forward- and
backward-evolving equations of 1TDVP and 2TDVP indicated by
the black dashed line. This shows the reduced practical form of the
network caused by the MPS’s mixed canonical form. The tensors sur-
rounded by the dashed lines (corresponding to Heff) are contracted,
exponentiated with the Lanczos method, then applied to the remain-
ing tensors to update them. (Top) 1TDVP forward-evolving and
2TDVP backward-evolving network where Heff

3 (H̃eff
3,4) is a degree-6

tensor. (Middle) 1TDVP backward-evolving network where H̃eff
3 is a

degree-4 tensor. (Bottom) 2TDVP forward-evolving network where
Heff

3,4 is a degree-8 tensor.

map |ΦL
ℓ−1⟩ ⊗ |ΦR

ℓ+1⟩ to each side of Eq. (83), the forward-
evolving ODEs simplify to L local ODEs of the form

d

dt
Mℓ(t) = −iHeff

ℓ Mℓ(t), ℓ = 1, . . . , L, (30)

with a local effective Hamiltonian Heff
ℓ , which dictates how to

evolve each site tensor Mℓ of the MPS. This process and the
tensor network representation of Heff

ℓ is visualized in Fig. 3.
Once Heff

ℓ is computed, we matricize and exponentiate it
using the Lanczos method [52]. After applying the Lanczos
method, the site tensor is vectorized and updated according to
the solution

Mℓ(t+ δt) = e−iHeff
ℓ δtMℓ(t). (31)

A QR decomposition is then applied to shift the orthogonality
center from ℓ 7→ ℓ + 1 resulting in Mℓ = M̃ℓCℓ, where M̃ℓ

replaces the previous site tensor and creates an updated MPS
|Φ̃⟩. The bond tensor Cℓ then evolves according to the sim-
plified backward-evolving ODE, which is obtained by multi-
plying the conjugate transpose of |ΦL

ℓ ⟩ ⊗ |ΦR
ℓ+1⟩ into each

side of Eq. (84)

d

dt
Cℓ(t) = +iH̃eff

ℓ Cℓ(t), ℓ = 1, . . . , L− 1

with an effective Hamiltonian H̃eff
ℓ as shown in Fig. 3. Again,

the Lanczos method is used to update the bond tensor

Cℓ(t+ δt) = e+iH̃eff
ℓ δtCℓ(t), (32)

after which it is contracted along its bond dimension with the
neighboring site Cℓ(t+ δt)Mℓ+1(t) to continue the sweep.

In the 2TDVP scheme, the process is modified by extend-
ing Eq. (77) to sum over two neighboring sites and adjusting
Eq. (78) and Eq. (79) to act on both sites ℓ and ℓ+ 1

Kℓ,ℓ+1 = |ΦL
ℓ−1⟩ ⟨Φ

L
ℓ−1| ⊗ Iℓ ⊗ Iℓ+1 ⊗ |ΦR

ℓ+2⟩ ⟨Φ
R
ℓ+2| ,

(33)
and

Fℓ,ℓ+1 = |ΦL
ℓ−1⟩ ⟨Φ

L
ℓ−1| ⊗ Iℓ ⊗ |ΦR

ℓ+1⟩ ⟨Φ
R
ℓ+1| . (34)

This results in the equations to update two tensors simultane-
ously

Mℓ,ℓ+1(t+ δt) = e−iHeff
ℓ,ℓ+1δtMℓ,ℓ+1(t), (35)

and

Cℓ,ℓ+1(t+ δt) = e+iH̃eff
ℓ,ℓ+1δtCℓ,ℓ+1(t), (36)

where the effective Hamiltonians are defined as the tensor
networks in Fig. 3. Note that the 1TDVP forward-evolution
and the 2TDVP backward-evolution are functionally the same
with a different prefactor in the exponentiation sinceCℓ,ℓ+1 =
Mℓ.

Compared to 1TDVP, this operation requires contraction of
the bond between Mℓ and Mℓ+1. After the time-evolution of
the merged site tensors, a singular value decomposition (SVD)
is applied with some threshold smax such that the bond dimen-
sion χℓ can be updated and allowed to grow to maintain a low
error.

Practically, this results in a DMRG-like [9] algorithm since
TDVP reduces to a spatial sweep across sites for all ℓ =
1, . . . , L, where at each site (or pair of sites) we alternate be-
tween a forward-evolving update to a given site tensor, fol-
lowed by a backward-evolving update to its bond tensor.

2. Hybrid strategy

During the 1TDVP and 2TDVP sweeps, we compute the ef-
fective Hamiltonians using left and right environments which
are updated and reused throughout the evolution [16]. Ad-
ditionally, to effectively compute the matrix exponential, we
apply the Lanczos method with a limited number of iterations
[52], which significantly speeds up the computation of the ex-
ponential for large matrices, particularly when the bond di-
mensions grow large. Both of these are essential procedures
to ensure that the TJM is scalable.

To summarize, the described algorithm allows us to define
the unitary time-evolution operator U [δt] as a piece-wise con-
ditional with error in O(δt3) since TDVP is a second-order
method [51], given by
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U [δt] =


∏L−2

ℓ=1

(
e−iHeff

ℓ,ℓ+1δte+iH̃eff
ℓ,ℓ+1δt

)
e−iHeff

L−1,Lδt if ∀ℓ : χℓ < χmax,

∏L−1
ℓ=1

(
e−iHeff

ℓ δte+iH̃eff
ℓ δt
)
e−iHeff

L δt if ∃ℓ : χℓ ≥ χmax.

(37)

D. Dissipative contraction

The dissipative operator D[δt] is created by exploiting the
structure of the exponentiation of local jump operators in
Eq. (24). This operation can be factorized into purely local
operations due to the commutativity of the sums of single site
operators. As a result, the dissipation term is equivalent to
a single contraction of the dissipative operator D[δt] into the
current MPS |Φ(t)⟩. Additionally, this does not increase the
bond dimension when applied to an MPS and the dissipative
contraction is exact without inducing errors. This contraction
is visualized in Fig. 4.

In this work, we focus on single-site jump operators Lm ∈
CdL×dL

where each Lm is a tensor product of identity matri-
ces I ∈ Cd×d and a local non-identity operator L[ℓ]

m ∈ Cd×d

acting on some site ℓ = 1, . . . , L. Specifically, for each
m = 1, . . . , k, the operator Lm can be written as

Lm = I⊗(ℓ−1) ⊗ L[ℓ]
m ⊗ I⊗(L−ℓ+1) = I\ℓ ⊗ L[ℓ]

m , (38)

where L[ℓ]
m acts on the ℓth site and I\ℓ denotes the identity op-

erator acting on all sites except ℓ. This allows the dissipative
Hamiltonian to be localized site-wise

HD = − i

2

k∑
m=1

γmL
†
mLm

= − i

2

L∑
ℓ=1

[ ∑
j∈S(ℓ)

γj(I\ℓ ⊗ L
[ℓ]†
j L

[ℓ]
j )
]
,

(39)

where S(ℓ) ⊆ [1, . . . , k] is the set of indices for the jump
operators in {Lm}km=1 for which there is a non-identity term
at site ℓ. When exponentiated, this results in

D[δt] = e
−i

(
− i

2

∑L
ℓ=1

[∑
j∈S(ℓ) γj(I\ℓ⊗L

[ℓ]†
j L

[ℓ]
j

])
δt

=

L∏
ℓ=1

e−
1
2

∑
j∈S(ℓ) γj(I\ℓ⊗L

[ℓ]†
j L

[ℓ]
j )δt

=

L∏
ℓ=1

eI\ℓ⊗(− 1
2 δt

∑
j∈S(ℓ) γjL

[ℓ]†
j L

[ℓ]
j )

=

L⊗
ℓ=1

e−
1
2 δt

∑
j∈S(ℓ) γjL

[ℓ]†
j L

[ℓ]
j =

L⊗
ℓ=1

Dℓ[δt].

(40)

The resulting operator corresponds to a factorization of site
tensors where Dℓ[δt] ∈ Cd×d for ℓ ∈ [1, . . . , L].

FIG. 4. This figure explains the contraction of the factorized dissipa-
tive MPO D (local matrices) into an MPS |Ψ⟩. Each local tensor is
equivalent to the exponentiation of the local jump operators accord-

ing to Dℓ = e−
1
2
δt
∑

j∈S(ℓ) L
[ℓ]†
j L

[ℓ]
j . This process does not change

the bond dimension of the MPS and does not require a mixed canon-
ical form.

E. Stochastic jump process

Following each F (i)
j , we perform the jump process Jϵ[δt]

for determining if (and how) jump operators should be ap-
plied to the MPS. Jϵ[δt] is the value of a stochastic function
J that maps a randomly selected ϵ ∈ [0, 1] in combination
with a time step size δt to an operator. This operator is either
the identity operator if no jump occurs or a single site-jump
operator L[ℓ]

m ,m = 1, . . . , k in the case of a jump,. This op-
erator, encoded as a single-site tensor, is then contracted into
the sampling MPS |Φ(t)⟩.

We apply the jump process Jϵ[δt] following each opera-
tion defined in Eq. (15). This means that first the initial time-
evolved state vector from t 7→ t+ δt is created

|Φ(i)(t+ δt)⟩ = F (i)
j [δt] |Φ(t)⟩ .

From this we create

|Φ(t+ δt)⟩ = Jϵ[δt] |Φ(i)(t+ δt)⟩ , (41)

where the operator Jϵ[δt] acts as described in the following.
First, the overall stochastic factor δp(t) is determined as in

the MCWF by taking the inner product of this state, where we
begin to sweep across the state to maintain a mixed canoni-
cal form following the dissipative contraction. This reduces
the calculation to contracting the final tensor of the MPS with
itself, i.e.,

δp = 1− ⟨Φ(i)(t+ δt)|Φ(i)(t+ δt)⟩

= 1−
d∑

σL=1

χL−1,χL∑
aL−1,aL=1

M
σL,aL−1,aL

L M
σL,aL−1,aL

L .
(42)

In contrast to the MCWF, we do not use a first-order approx-
imation of e−iHδt to calculate δp(t) since the time-evolution
has been carried out by the TDVP projectors and the dissipa-
tive contraction. Next, ϵ ∈ [0, 1] is sampled uniformly, which
subsequently leads to two possible paths.
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1. No jump occurs

If ϵ ≥ δp, we normalize |Φ(i)(t+ δt)⟩. In this case, the
dissipative contraction itself represents the noisy interactions
from time t 7→ t+ δt.

2. A jump occurs

If ϵ < δp, we generate the probability distribution of all
possible jump operators using the initial time-evolved state

Πm(t) =
δtγm
δp(t)

⟨Φ(i)(t+ δt)|L†
mLm |Φ(i)(t+ δt)⟩ (43)

for m = 1, . . . , k. At any given site ℓ, we can cal-
culate the probability Πj(t) for j ∈ S(ℓ) according to
⟨Φ(i)(t+ δt)|L†

jLj |Φ(i)(t+ δt)⟩ for the relevant jump op-
erators Lj . When performed in a half-sweep across ℓ =
[1, . . . , L] where at each site the MPS is fixed into its mixed
canonical form, the probability is calculated by a contraction
of the jump operator and the site tensor Mℓ

N
σ′
ℓ,aℓ,aℓ−1

ℓ =

d∑
σℓ=1

L
σ′
ℓ,σℓ

m M
σℓ,aℓ−1,aℓ

ℓ . (44)

Note that this is not directly updating the MPS but rather using
the current state of its tensors to calculate the stochastic fac-
tors. Then, the inner product of this new tensor with itself is
evaluated while scaling it accordingly as done in the MCWF

Πm(t) =
δtγm
δp(t)

d∑
σℓ=1

χℓ−1,χℓ∑
aℓ−1,aℓ=1

N
σ′
ℓ,aℓ−1,aℓ

ℓ N
σ′
ℓ,aℓ,aℓ−1

ℓ .

(45)
This is repeated for j ∈ S(ℓ) until all jump probabilities at
site ℓ are calculated. We then move to the next site ℓ 7→ ℓ+ 1
performing the same process until ℓ = L and the half-sweep
is complete.

This yields the probability distribution Π(t) =
{Πm(t)}km=1 from which we can randomly select a jump
operator Lm to apply to |Φ(i)(t+ δt)⟩. This is achieved by
multiplying Lm into the relevant site tensorMℓ with elements

M̃
σℓ,αℓ,αℓ−1

ℓ :=
√
γm

d∑
σ′
ℓ=1

L
[ℓ] σ′

ℓ,σℓ
m M

σ′
ℓ,αℓ,αℓ−1

ℓ .

The result is the updated MPS

|Φ(t+ δt)⟩ =
d∑

σ1,...,σL=1

Mσ1
1 . . . M̃σℓ

ℓ . . .MσL

L |σ1, . . . , σL⟩ .

The state is then normalized before moving onto the next
time step. Note that this is a fundamental departure from the
MCWF in which the jump is applied to the state at the previ-
ous time t.

FIG. 5. This figure visualizes the tensor network required to calcu-
late δpm for a given jump operator Lm, which is equivalent to the
expectation value of L†

mLm. The mixed canonical form reduces the
computational effort drastically since all site tensors to the left and
the right of the targeted site can be ignored as they reduce to identity
operations. This leads to performing the calculation of the probabil-
ity distribution Π(t) by sweeping across the network where at each
site we place the MPS in mixed canonical form and calculate the
probability of jumps at that site Lj , j ∈ S(ℓ).

F. Algorithm

With all necessary tensor network methods established, we
can now combine the procedures from the previous sections
to construct the complete TJM algorithm.

1. Initialization

The TJM requires the following components:

1. |Ψ(0)⟩: Initial quantum state vector, represented as an
MPS.

2. H0: Hermitian system Hamiltonian, represented as an
MPO.

3. {Lm}km=1, {γm}km=1: A set of single-site jump oper-
ators stored as matrices with their respective coupling
factors.

4. δt: Time step size.

5. T : Total evolution time.

6. χmax: Maximum allowed bond dimension.

7. N : Number of trajectories.

2. Time evolution of the sampling MPS

Once these components are defined, the noisy time evolu-
tion from t ∈ [0, T ] is performed by iterating through each
time step using the operators described in Eq. (15). We first
initialize the sampling MPS for the time evolution. The initial
state |Ψ(0)⟩ is evolved using the operator F0 = Jϵ[δt]D

[
δt
2

]
,
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which includes a half-time step dissipative contraction and a
stochastic jump process Jϵ[δt]

|Φ(δt)⟩ = F0 |Ψ(0)⟩ . (46)

The algorithm then evolves the system to each successive time
step t = jδt using the operators Fj = Jϵ[δt] D[δt] U [δt] as
seen in Eq. (18)∣∣Φ((j + 1)δt

)〉
= Fj |Φ(jδt)⟩ . (47)

Each iteration involves the following.

• A full time step unitary operation U [δt] using the dy-
namic TDVP:

– If any bond dimension χℓ < χmax, 2TDVP is ap-
plied, allowing the bond dimensions to grow dy-
namically.

– If the bond dimension has reached χmax, 1TDVP
is applied to constrain further growth and maintain
computational efficiency.

• A full time step dissipative contraction D[δt] where the
non-unitary part of the evolution is applied.

• A jump process to determine whether quantum jumps
occur, including normalization of the state.

This process is repeated until the time evolution reaches ter-
minal T .

3. Retrieving the quantum state

At any point during the time evolution, the quantum
state can be retrieved by applying the final function Fn =
Jϵ[δt] D

[
δt
2

]
U [δt] as if the system has evolved to the stop-

ping time

|Ψ(δt)⟩ = Fn |Φ(δt)⟩ . (48)

The state is then normalized. This allows for the state to be
inspected or observables to be calculated at any intermediate
time without compromising the reduction in error from the
Strang splitting. The above process is repeated from the be-
ginning for each of the N trajectories, providing access to a
compact storage of the density matrix and its evolution as well
as the ability to calculate expectation values.

IV. COMPUTATIONAL COMPLEXITY AND
CONVERGENCE GUARANTEES

While the TJM method proposed here is in practice highly
functional and performs well, it can also be equipped with
tight bounds concerning the computational and memory com-
plexity as well as with convergence guarantees. This section is
devoted to justifying this utility in approximating Lindbladian
dynamics by analyzing the mathematical behavior of the TJM
based on its convergence and error bounds. Since we assert

Method Time Evolution Storage Exp. Value

Lindblad O(nd6L) O(d2L) O(d6L)
MCWF O(Nnd3L) O(NdL) O(Nd4L)
MPDO O(nLd4D2

HD2
s) O(Ld2D2

s) O(Ld2D3
s)

TJM O(NnLχ3
max[dD + d2]) O(NLdχ2

max) O(NLdDχ3
max)

TABLE I. This table compares the complexities between each
method, including the time to generate the time-evolution, store the
final data structure, and calculate expectation values with the result.
These are dependent on the physical dimension d, system size L,
time steps n, trajectories N , MPS bond dimension χmax, system
MPO bond dimension D, density matrix bond dimension Ds, and
Hamiltonian bond dimension DH according to the W II algorithm
[53, 54]. Note that this assumes that all information is kept, despite
the TJM being embarassingly parallel, where the individual trajec-
tories could be used to calculate an expectation value and then be
discarded in most practical contexts.

that the TJM is highly-scalable compared to other methods,
this analytical proof serves to lend credence to large-scale re-
sults, which may have no other method against which we can
benchmark. These important points are discussed here, while
substantial additional details are presented in the methods and
appendix sections.

A. Computational effort

We derive and compare the computational and memory
complexity of the exact calculation of the Lindblad equation,
the MCWF, a Lindblad MPDO, and the TJM method in de-
tail in Sec. VIII D–VIII F and Appendix C. The results are
summarized in Table I, showcasing the highly beneficial and
favorable scaling of the computational and memory complex-
ities of the TJM method.

B. Monte Carlo convergence

The convergence of the TJM is stated in terms of the density
matrix standard deviation, which we define as follows.

Definition 1 (Density matrix variance). Let ∥ · ∥ be a matrix
norm, and letX ∈ Cn×n be a matrix-valued random variable
defined on a probability space (Ω,F ,P), where P is a prob-
ability measure. The variance of X with respect to the norm
∥ · ∥ is defined as

V[X] = E
[
∥X − E[X]∥2

]
, (49)

where E[X] denotes the expectation of X . The expectation
E[X] is computed entrywise, with each entry being the expec-
tation according to the respective marginal distributions of the
entries. Specifically, for each i, j,

E[X]i,j = EPi,j [xi,j ], (50)

where xi,j is the (i, j)-th entry of the matrix X , and Pi,j is
the marginal distribution of xi,j induced by P. The expecta-
tion value of the norm of a matrix E[∥ · ∥] is defined as the
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multidimensional integral over the function ∥ · ∥ : Cn×n → R
according to its marginal distributions Pi,j .

The standard deviation of X with respect to the norm ∥ · ∥
is then defined as

σ(X) =
√
V[X] =

√
E [∥X − E[X]∥2]. (51)

For the proof of the convergence, we furthermore need addi-
tional properties of the density matrix variance, which specif-
ically hold true for the Frobenius norm. They are given in Ap-
pendix B. With this, the convergence of TJM can be proved as
follows.

Theorem 2 (Convergence of TJM). Let d ∈ N be the physi-
cal dimension and L ∈ N be the number of sites in the open
quantum system described by the Lindblad master equation
Eq. (1). Furthermore, let ρN (t) = 1

N

∑N
i=1 |Ψi(t)⟩ ⟨Ψi(t)|

be the approximation of the solution ρ(t) of the Lindblad mas-
ter equation in MPO format at time t ∈ [0, T ] for some ending
time T > 0 and N ∈ N trajectories, where |Ψi(t)⟩ is a tra-
jectory sampled according to the TJM in MPS format of full
bond dimension. Then, the expectation value of the approxi-
mation of the corresponding density matrix ρN (t) ∈ CdL×dL

is given by ρ(t) and there exists a c > 0 such that the standard
deviation of ρN (t) can be upper bounded by

σ(ρN (t)) ≤ c√
N

(52)

for all matrix norms ∥ · ∥ defined on CdL,dL

.

The full proof of Theorem 2 can be found in Appendix B. For
the convenience of the reader, a short sketch of the proof is
provided here:

Proof. By the law of large numbers and the equivalence proof
in Appendix A, it follows that for everyN ∈ N and every time
t ∈ [0, T ] we have that E[ρN (t)] = ρ(t). The proof is carried
out in state vector and density matrix format since MPSs and
MPOs with full bond dimension exactly represent the corre-
sponding vectors and matrices. Thus, we denote the state vec-
tor of a trajectory sampled according to the TJM at time t
by |Ψi(t)⟩. Using Lemma 4 and the fact that each trajectory
is independently and identically distributed, we see that the
variance of VF [ρN (t)] decreases linearly with N by

VF [ρN (t)] = VF

[
1

N

N∑
i=1

|Ψi(t)⟩ ⟨Ψi(t)|

]
(53)

=
1

N2
VF

[
N∑
i=1

|Ψi(t)⟩ ⟨Ψi(t)|

]

=
1

N2

N∑
i=1

VF [|Ψi(t)⟩ ⟨Ψi(t)|] (54)

=
1

N
VF [|Ψ1(t)⟩ ⟨Ψ1(t)|] ≤

4

N
, (55)

where the second to last step follows from the identical dis-
tribution of all |Ψi(t)⟩ ⟨Ψi(t)| for i = 1, . . . , N . Hence, the
Frobenius norm standard deviation is upper bounded by

σF [ρN (t)] =
1√
N
σF [|Ψ1(t)⟩ ⟨Ψ1(t)|] ≤

2√
N
. (56)

By the equivalence of norms on finite vector spaces, there ex-
ists c1, c2 ∈ R such that c1∥A∥F ≤ ∥A∥ ≤ c2∥A∥F for all
complex square matrices A and all matrix norms ∥ · ∥. Con-
sequently, the convergence rate O(1/

√
N) also holds true in

trace norm and any other relevant matrix norm and is indepen-
dent of system size. The statement then follows directly.

C. Error measures

The major error sources of the TJM are as follows:

1. the time step error of the Strang splitting (O(δt3)) [49],

2. the time step error of the dynamic TDVP (O(δt3) per
time step and O(δt2) for the whole time-evolution), and

3. the projection error of the dynamic TDVP.

Note that for 2TDVP the projection error is exactly zero if
we consider Hamiltonians with only nearest neighbor inter-
actions [15, 16] such that the projection error depends on the
Hamiltonian structure. If each of the mentioned errors were
zero, we would in fact calculate the MCWF from which we
know that its stochastic uncertainty decreases with increasing
number of trajectories according to the standard Monte Carlo
convergence rate as shown in Sec. IV B.

The projection error of 1TDVP can be calculated as
the norm of the difference between the true time evolu-
tion vector H0 |Φ⟩ and the projected time evolution vector
PMχ,|Φ⟩H0 |Φ⟩. It depends on the structure of the Hamilto-
nian and the chosen bond dimensions χ ∈ NL+1

ϵ(χ) = ∥(I − PMχ,|Φ⟩)H0 |Φ⟩ ∥2. (57)

This error can be evaluated as shown in Ref. [55]. It is
well-known that the 1TDVP projector solves the minimiza-
tion problem

PMχ,|Φ⟩H0 |Φ⟩ = argmin
M∈Mχ

∥H0 |Φ⟩ −M∥2. (58)

It can thus be noted that TJM uses the computational resources
in an optimal way regarding the accuracy in time-evolution
[13]. The errors in the dissipative contraction and in the jump
application are both zero.

V. BENCHMARKING

To benchmark the proposed TJM, we consider a 10-site
transverse-field Ising model (TFIM),

H0 = −J
L−1∑
i=1

Z [i]Z [i+1] − g

L∑
j=1

X [j], (59)
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FIG. 6. This plot shows the error in a local observable as a function
of TJM trajectories at time Jt = 1 plotted for various time step
sizes δt. Each point on the lines is generated by averaging over the
error of 100 batches of N trajectories. The dotted lines correspond
to standard first-order Trotterization to serve as a reference for the
TJM’s second-order splitting. The standard deviation of δt = 0.1
in the TJM over all samples is plotted as the shaded area. We see
that the TJM converges according to the predicted ∼ C√

N
, in this

example C = 0.1, (denoted by the solid black line) for all times dt.
This illustrates that the second-order splitting leads to low time step
error such that N dominates δt as a relevant variable in the TJM.

where X [i] and Z [i] are Pauli operators acting on the i-th site
of a 1D chain. We evolve this system under a noise model that
consists of single-site relaxation and dephasing operators,

σ− =

(
0 1
0 0

)
, Z =

(
1 0
0 −1

)
, (60)

on all sites in the lattice. Thus, our set of Lindblad jump op-
erators is given by

{Lm}2Lm=1 = {σ[1]
− , . . . , σ

[L]
− , Z [1], . . . , Z [L]} (61)

with coupling factors γ = γ− = γz = 0.1.
All simulations reported here were performed on a

consumer-grade Intel i5-13600KF CPU (5.1 GHz, 14 cores,
20 threads), using a parallelization scheme in which each
TJM trajectory runs on a separate thread. This setup ex-
emplifies how the TJM can handle large-scale open quan-
tum system simulations efficiently even without specialized
high-performance hardware. An implementation can be found
in the MQT-YAQS package available at [56] as part of the
Munich Quantum Toolkit [57].

A. Monte Carlo convergence

We first examine how the TJM converges with respect to
the number of trajectories N and the time step size δt. As an
exact reference, a direct solution of the Lindblad equation via
QuTiP [58, 59] is used.

In Fig. 6, the absolute error in the expectation value of a
local X operator at the chain’s center is plotted, evaluated at
Jt = 1 for up to N = 104 trajectories and for several time
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FIG. 7. This plot complements Fig. 6 to show the convergence at
various times Jt = [0, 10] with δt = 0.1 according to number of
trajectories N and bond dimension χ. Each subplot shows the error
in expectation value of a local observable at each site during the time-
evolution, calculated by averaging 1000 batches of N trajectories.
The color map is centered at a threshold ϵ = 10−2 such that blue
areas indicate lower errors and red areas indicate higher errors. We
first see that the TJM is independent of time scale and that it shows
similar errors over all sites and all times. We also observe that the
trajectories have a significantly larger effect compared to the bond
dimension of the individual trajectories. While χ = 2 is unable to
capture some dynamics even with high trajectories, the convergence
of χ = 4 and χ = 8 are effectively identical.

step sizes δt ∈ {0.1, 0.2, 0.5}. Each point in the plot rep-
resents an average over 100 independent batches of N tra-
jectories. The dotted lines correspond to a first-order Trotter
decomposition of the TJM serving as a baseline. The solid
lines correspond to the second-order Trotterization used as a
basis for the TJM. The solid black line represents the expected
Monte Carlo convergence ∝ 1/

√
N (with prefactor C = 0.1).

For the first-order Trotter method (dotted lines), larger step
sizes (δt = 0.2 or 0.5) induce a plateau, indicating that Trot-
ter errors dominate when N becomes large. By contrast, for
δt = 0.1, the first-order method follows the 1/

√
N trend more

closely.
In comparison, the second-order TJM approach (solid lines)

maintains ∼ 1/
√
N scaling for all tested values of δt, con-

firming that higher-order Trotterization reduces the inherent
time step error below the level where it competes with Monte
Carlo sampling error. While it is possible that for very large
N (beyond those shown here) time discretization errors might
again appear, in practice our second-order scheme keeps these
systematic errors well below the scale relevant to typical sim-
ulation tolerances.

B. Effect of bond dimension and elapsed time

Next, we explore how the TJM’s accuracy depends on the
maximum bond dimension χ of the trajectory MPS and the
total evolution time T . We compute

ϵ =
∣∣⟨X⟩ − ⟨X̃⟩

∣∣,
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FIG. 8. These plots show the results of the evolution of a 30-site noisy XXX Heisenberg model with parameters J = 1, h = 0.5 and a
domain-wall initial state with wall at site 15. The noise model includes relaxation σ− and excitation σ+, both with strength γ− = γ+ = 0.1.
First, we run the TJM with γ = 0 to generate a noise-free reference which requires only a single “trajectory”. Then, we run it again with
γ = 0.1 using N = 100 and bond dimension χ = 4. Finally, this is compared against the time evolution of a Lindbladian using an MPDO
with max bond dimension D = 400 (which is reached at t ≈ 4 before truncation). All simulations use a timestep δt = 0.1. Both TJM runs
were executed in roughly 5 minutes, while the MPDO has taken over 24 hours.

where ⟨X⟩ is the exact observable (via QuTiP) and ⟨X̃⟩
is the TJM result, for each site at discrete times Jt ∈
{0, 0.1, . . . , 10} using a time step δt = 0.1. We vary the
bond dimension χ ∈ {2, 4, 8} and the number of trajecto-
ries N ∈ {100, 1000, 10000}. The resulting errors, averaged
over 1000 batches for each (N,χ), are shown in Fig. 7 using
a color map centered at ϵ = 10−2.

First, we note that the error appears consistent across all
sites except for slightly increased values at the boundary sites.
This indicates that the TJM’s local updates do not inherently
favor any region of the chain.

Second, while the simulation time T can affect the com-
plexity of the noisy dynamics, the TJM generally maintains
similar accuracy at all times. Indeed, times closer to the initial
state (Jt ≈ 0) exhibit very low errors (blue regions) simply
because noise has had less time to build up correlations or de-
viations.

Finally, the bond dimension χ plays a comparatively minor
role in the overall error. Although χ = 2 sometimes fails to
capture certain features (leading to increased error in specific
time windows), χ = 4 and χ = 8 give nearly identical results.
Interestingly, χ = 4 can even show slightly better conver-
gence than χ = 8 in some patches, which likely is a sampling
artifact within the batches.

In summary, these benchmarks confirm that (i) the time step
error is effectively minimized by the second-order Trotteriza-
tion, leaving Monte Carlo sampling as the primary source of
error, and (ii) increasing the number of trajectories N is typi-
cally more crucial than increasing the bond dimension χ.

VI. NEW FRONTIERS

In this section, we push the limits of the TJM to large-scale
noisy quantum simulations, highlighting its practical utility
and the physical insights it can provide. Concretely, we ex-
plore a noisy XXX Heisenberg chain described by the Hamil-
tonian

H0 = −J
(L−1∑

i=1

X [i]X [i+1] + Y [i]Y [i+1] + Z [i]Z [i+1]
)

− h

L∑
j=1

Z [j],

subject to relaxation (γ−) and excitation (γ+) noise processes.
Each simulation begins with a domain-wall initial state

|Ψ(0)⟩ = |σ1 σ2 . . . σℓ . . . σL⟩ , σℓ =

{
0, 1 ≤ ℓ < L

2 ,

1, L
2 ≤ ℓ ≤ L,

such that the top half of the chain is initialized in the spin-
down |0⟩ state and the bottom half in the spin-up |1⟩ state,
thus forming a sharp “wall”. We track the local magnetization
⟨Z⟩ at each site as the primary observable of interest.

To demonstrate the scalability of our approach, we simulate
system sizes ranging from moderate L = 30 to quite large
L = 100, and then up toL = 1000 sites. By examining a wide
range of noise strengths and run times, we reveal how noise
impacts the evolution of such extended systems—insights that
are otherwise out of reach for many conventional methods.
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FIG. 9. This figure shows the results of the large-scale simulation of the domain-wall state with wall at site 50 evolved according to a noisy
100-site XXX Heisenberg model with parameters J = 1, h = 0.5. Each column corresponds to a different elapsed time of the time evolution
Jt = 1, 5, 10, respectively. Each plot shows the effect of various coupling factors from very weak noise γ = 10−4 to very strong noise γ = 10
at the corresponding times. At each time, we see a threshold where noise begins to dominate the state, overwhelming its natural dynamics.
These simulations were run with N = 100 trajectories, bond dimension χ = 4, and time step δt = 0.5. This took approximately 2.5 hours to
run.

A. Comparison with MPDO Lindbladians (30 sites)

In the first test, we use the TJM to simulate a 30-site noisy
Heisenberg XXX model (J = 1, h = 0.5) with a domain-
wall initial state at site 15 and compare our results against
a state-of-the-art MPDO Lindbladian approach (implemented
via the LindbladMPO package [54]). The results are de-
picted in Fig. 8.

To establish a baseline, we first run a noise-free simula-
tion using the standard time-dependent variational principle
(TDVP). In practice, this is equivalent to the TJM with γ = 0
and N = 1. We observe that the initial domain wall begins to
spread from the central site at early times (Jt < 1), reflect-
ing off boundaries multiple times and broadening further after
each reflection.

Next, we investigate a noisy scenario by setting γ = 0.1.
Here, we run the TJM with N = 100 trajectories, bond di-
mension χ = 4, and a time step δt = 0.1. As expected, the
noise damps out the coherent domain-wall disturbance over
the same time window (0 ≤ Jt ≤ 10), leading to uniform
⟨Z⟩ = 0 values across the chain compared to the noise-free
case.

We also compare these TJM results to a Lindbladian sim-
ulation using an MPDO with bond dimension D = 400. We
observe that the TJM aligns well with the MPDO dynamics
although there is some visible dynamics in the TJM simula-
tion that the MPDO does not capture (seen as vague lines past
Jt = 4) due to the truncation of the bond dimension. Addi-

tionally, whereas both TJM simulations (noise-free and noisy)
took only about 5 minutes compute time in total, the MPDO
simulation required over 24 hours, yet yielded broadly similar
results. This highlights that the TJM can achieve comparable
accuracy with substantially reduced computation time.

B. Exploring noise in large systems (100 sites)

In the second test, we push the model complexity beyond
the regime of most conventional methods by simulating a 100-
site noisy XXX Heisenberg chain (J = 1, h = 0.5) with
a domain-wall initial state at site 50. Here, we vary γ over
100 logarithmically spaced values from 10−4 to 101 at times
Jt ∈ [0, 10]. We run the TJM with N = 100 trajectories,
bond dimension χ = 4, and a step size δt = 0.5. We then
extract snapshots of ⟨Z⟩ at Jt = {1, 5, 10} as illustrated in
Fig. 9. The full test took approximately 2.5 hours.

Overall, we observe a clear distinction between a weak-
noise regime (for smaller γ) in which the domain wall behaves
similarly to the noise-free case, and a strong-noise regime
(larger γ) where noise dominates the system dynamics. At
early times (Jt = 1), only γ ≳ 5 × 10−2 visibly alters the
local measurements. By Jt = 5 and Jt = 10, the threshold
beyond which noise washes out the domain wall drops fur-
ther to γ ≳ 10−2. As we can see this threshold shifting, we
expect longer timescales to inevitably also be overcome even
by weak noise. Thus, even for a significantly larger system,
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FIG. 10. These plots show the results of the evolution of a 1000-site noisy XXX Heisenberg model with parameters J = 1, h = 0.5 and a
domain-wall initial state with wall at site 500. First, we run the TJM with γ = 0 to generate a noise-free reference which requires only a
single ”trajectory”. Then, we run it again with γ = 0.1 using N = 100 and bond dimension χ = 4. Next, we run it again with γ = 0.1 using
N = 100 and bond dimension χ = 4. Finally, we plot the difference ∆ between these two plots. While visually very similar, we see that the
TJM is able to capture even relatively minor noise effects, and, as a result, show how this can eventually lead to macroscopic changes.

modest noise can radically suppress the domain-wall features.
Nevertheless, we are able to capture these dynamics in a fea-
sible runtime using the TJM.

C. Pushing the envelope (1000 sites)

Finally, we demonstrate the scalability of the TJM by sim-
ulating a noisy XXX Heisenberg chain of 1000 sites. While
our method can handle even larger systems – especially if mi-
grated from consumer-grade to server-grade hardware – we
choose 1000 sites here as a reasonable upper bound for our
present setup. This test, which took roughly 7.5 hours, main-
tains the same parameters as before: we run a noise-free sim-
ulation (γ = 0) requiring only a single trajectory, and then a
noisy simulation with γ = 0.1, bond dimension χ = 4, and
N = 100 trajectories at time step δt = 0.5.

In Fig. 10, we show the time evolution of the noisy and
noise-free systems along with the difference ∆ = ⟨ZNoisy⟩ −
⟨ZNoise-Free⟩. While the overall domain-wall structure appears
visually similar at a glance, single-site quantum jumps from
relaxation and excitation lead to small, localized “scarring”
that accumulates into increasingly macroscopic changes by
Jt = 10. Notably, although the larger lattice provides more
possible sites for noise to act upon, the size may confer par-
tial robustness in early stages of evolution. Consequently, we
see that even a modest amount of noise (γ = 0.1) can sub-
tly alter the state in a way that becomes significant over time.
These results underscore that the TJM can efficiently capture
open-system dynamics in large spin chains on a consumer-

grade CPU, thus opening new frontiers for studying the inter-
play between coherent dynamics and environmental noise at
unprecedented scales.

VII. DISCUSSION

All quantum system environments are open to some extent,
and hence, having powerful tools available that classically
simulate interacting open quantum many-body systems is cru-
cial. While recent years have seen a development towards
large-scale, state-of-the-art-simulations for quantum ground
state and quantum circuit simulations, the same cannot quite
be said for the simulation of open quantum systems. This
seems a grave omission, given the important role quantum
many-body systems play in notions of quantum simulation
[4, 5]. The present work is meant to close this gap, providing a
massively scalable algorithm for the simulation of Markovian
open quantum systems by means of tensor networks, paving
the way for large-scale classical simulations of open quantum
systems matching similar tools for equilibrium problems. By
bridging the gap between theoretical frameworks and practi-
cal applications, this work not only advances the field of open
quantum systems but also contributes to the broader goal of
realizing robust and scalable quantum technologies in real-
world settings. It is our hope that this work can provide im-
portant services in the benchmarking and design of state-of-
the-art physical platforms of quantum simulators in the labo-
ratory, as well as inspire and facilitate research into large-scale
open quantum systems and noisy quantum hardware that was
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previously infeasible.
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A. Matrix product states

Consider a one-dimensional lattice made of L ∈ N sites,
each corresponding to a local Hilbert space Hd of dimension
d ∈ N. The Hilbert space of the full lattice is then defined
by the iterative tensor product of the L local Hilbert spaces
H =

⊗L
ℓ=1 Hd. Elements |Ψ⟩ of this multi-site Hilbert space

H are state vectors defined by

|Ψ⟩ =
d∑

σ1,...,σL=1

Ψσ1...σL
|σ1, . . . , σL⟩ (62)

where σℓ ∈ [1, . . . , d] are the physical dimensions for all ℓ =
1, . . . , L and Ψ ∈ CdL

with elements Ψσ1...σL
∈ C.

The vector |Ψ⟩ ∈ CdL

can be decomposed into a matrix
product state (MPS) [9, 11, 61]

|Ψ⟩ =
d∑

σ1,...,σL=1

Mσ1
1 . . .MσL

L |σ1, . . . , σL⟩ , (63)

which is made of L degree-3 tensors

M := {Mℓ ∈ Cd×χℓ−1×χℓ | ℓ = 1, . . . , L}, (64)

consisting of d matrices corresponding to each index σℓ

Mℓ := {Mσℓ

ℓ ∈ Cχℓ−1×χℓ | σℓ = 1, . . . , d}. (65)

This structure’s complexity is determined by its bond dimen-
sions χℓ ∈ N (where χ0 = χL = 1), which scale with the
entanglement entropy of the quantum state it represents. For
the rest of this work we denote a quantum state vector living
in H as |Ψ⟩ and we use the bold notation |Ψ⟩ for the same
quantum state vector in an MPS representation.

The MPS representation is non-unique and gauge-invariant
for representing a given quantum state such that the individual
tensors can be placed in canonical forms which allow many
operations to reduce in complexity. These conditions are the
left canonical form

d∑
σℓ=1

χℓ−1∑
aℓ−1=1

M
σℓ,aℓ−1,aℓ

ℓ M
σℓ,aℓ−1,aℓ

ℓ = I ∈ Cχℓ×χℓ , (66)

and the right canonical form

d∑
σℓ=1

χℓ∑
aℓ=1

M
σℓ,aℓ−1,aℓ

ℓ M
σℓ,aℓ−1,aℓ

ℓ = I ∈ Cχℓ−1×χℓ−1 , (67)

where aℓ ∈ [1, . . . , χℓ] and M is the conjugated tensor. Fi-
nally, these can be combined to fix the MPS in a mixed canon-
ical form around an orthogonality center at site tensor j

d∑
σℓ=1

χℓ−1∑
aℓ−1=1

M
σℓ,aℓ−1,aℓ

ℓ M
σℓ,aℓ−1,aℓ

ℓ = I such that ℓ < j,

d∑
σℓ=1

χℓ∑
aℓ=1

M
σℓ,aℓ−1,aℓ

ℓ M
σℓ,aℓ−1,aℓ

ℓ = I such that ℓ > j.

(68)

FIG. 11. This figure shows a 5-site MPS in mixed canonical form
with orthogonality center at site 3. The indices dj indicate the physi-
cal dimensions and χj the bond dimensions. A dashed line indicates
a dummy index where χj = 1. We use right-pointing triangles to de-
note the left-canonical form and left-pointing triangles for the right-
canonical form. A tensor with no required form is shown by a circle.

A visualization of an MPS in site-canonical form at j = 3
can be found in Fig. 11 where the triangular tensors indicate
canonical forms and the circular tensor indicates an arbitrary
form.

B. Matrix product (density) operators

Just as states on a one-dimensional lattice can be repre-
sented by MPS, the operators acting upon these states can be
represented by a tensor train known as matrix product oper-
ators (MPO) [62, 63]. Suppose we have a bounded operator
O ∈ B(H) such that

O =

d∑
σ1,σ′

1,...,σL,σ′
L=1

Wσ1,σ
′
1,...,σL,σ′

L |σ1, . . . , σL⟩⟨σ′
1, . . . , σ

′
L| ,

(69)
where W ∈ Cd2L

and for each element Wσ1,σ′
1,...,σL,σ′

L
we

have σℓ, σ′
ℓ ∈ {1, . . . , d} for all ℓ = 1, . . . , L. This coefficient

tensor W can then be decomposed into a list of L degree-4
tensors

W := {Wℓ ∈ Cd×d×Dℓ−1×Dℓ | ℓ = 1, . . . , L}, (70)

created by degree-2 tensors for the indices σℓ, σ′
ℓ:

Wℓ := {Wσℓ,σ
′
ℓ

ℓ ∈ CDℓ−1×Dℓ | σℓ, σ′
ℓ = 1, . . . , d}. (71)

Next, we define multi-indices

σ = (σ1, . . . , σL), σ′ = (σ′
1, . . . , σ

′
L),

and write

|σ⟩ ≡ |σ1, . . . , σL⟩ , ⟨σ′| ≡ ⟨σ′
1, . . . , σ

′
L| ,

as well as

W (σ,σ′) :=

L∏
ℓ=1

W
σℓ,σ

′
ℓ

ℓ .

Then the MPO in bold notation is compactly written as

O =

d∑
σ,σ′=1

Wσ,σ′
|σ⟩⟨σ′| . (72)
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FIG. 12. An MPDO can be created by a weighted summation of MPS structures and their conjugates as described in Sec. VIII B. However,
this can lead to massive MPDO bond dimensions since the bonds for each state vector |Ψj⟩ are combined such that Dℓ =

∏N
j=1(χ

2
ℓ)j . This

equivalence is critical for the foundations of this work. However, we avoid creating an MPDO directly due to the large bond dimensions.

Like the MPS, the computational complexity is determined
by the bond dimensions Dℓ ∈ N, which are related to the
operator entanglement [64, 65].

Particularly important for this work, density matrices, i.e.,
mixed quantum states, can be represented in this MPO format,
known as matrix product density operators (MPDO) [66]. A
mixed quantum state ρ ∈ B(H) is equivalent to a finite sum of
the outer product of N ∈ N state vectors |Ψj⟩ and weighted
by probabilities pj with j = 1, . . . , N such that

ρ =

N∑
j=1

pj |Ψj⟩ ⟨Ψj | , (73)

and
∑

j pj = 1. If the pure states are represented as
MPS according to Eq. (63), this outer product would re-
sult in an MPO structure with degree-4 site tensors Wℓ ∈
Cd×d×Dℓ−1×Dℓ , ℓ = 1, . . . , L which can be decomposed in
a sum of N outer products of MPS given by

{Mℓ,j ∈ Cd×χℓ−1×χℓ |ℓ = 1, . . . , L}Nj=1 (74)

such that each site Wℓ is represented by

N∑
j=1

M ℓ,j ⊗Mℓ,j . (75)

The bond dimensions of the MPO are made of the con-
stituent MPS bonds such that Dℓ−1 =

∑N
i=1 χ

2
ℓ−1,i and

Dℓ =
∑N

i=1 χ
2
ℓ,i, where χℓ,i is the ℓ-th bond dimension of

the i-th MPS. This can be seen in Fig. 12.

C. Time-dependent variational principle

1. Overview

Let |Ψ(t)⟩ ∈ H for some t ∈ R+ be a time-dependent
quantum state represented by an MPS with bond dimensions
χ = {χ0, . . . , χL}. Then |Ψ(t)⟩ can be understood as an
element of a manifold Mχ ⊆ H, solely defined by the set
of bond dimensions χ. As the bond dimensions increase, this
manifold covers a larger part of the Hilbert space such that
Mχ ⊂ Mχ′ ⊆ H [55] for χ < χ′. Generally, time-evolution
of some state with the time-dependent Schrödinger equation
(TDSE) according to some Hamiltonian H ∈ B(H) leads to
a growth of the bond dimensions, which severely limits the
computational efficiency.

FIG. 13. A time-dependent MPS |Ψ(t)⟩ with fixed bond dimensions
χ can be viewed as a point on a manifold Mχ ∈ H. The time-
evolution caused by −iH |Ψ(t)⟩ will generally leave the manfiold,
requiring a larger bond dimension to represent. TDVP projects this
time-evolution to the tangent space of the original manifold (shown
by the projector PMχ,|Ψ(t)⟩). Each point in the tangent space can be
described as a linear combination of partial derivatives of the origi-
nal point such that by solving a set of site-wise coupled differential
equations, we can evolve purely on the original manifold and limit
the growth in bond dimension to represent |Ψ(t+ δt)⟩.

By utilizing the manifold picture of MPS, we get a power-
ful method known as the time-dependent variational principle
(TDVP). Rather than allowing the bond dimension to grow,
this method projects the Hamiltonian to the tangent space of
the current MPS manifold before carrying out the time evo-
lution [15] as visualized in Fig. 13. In a more precise form,
TDVP solves the projected TDSE

d

dt
|Ψ(t)⟩ = −iPMχ,|Ψ(t)⟩H |Ψ(t)⟩ , (76)

where PMχ,|Ψ(t)⟩ ∈ B(H) is a projector that projects an
MPS onto the tangent space of the manifold Mχ at the point
|Ψ(t)⟩. TDVP offers significant advantages over other time
evolution methods, such as time-evolving block decimation
(TEBD) [11, 39, 67], by avoiding Trotter and truncation errors
while conserving the system’s norm and energy [13, 55]. This
benefit is transformed into projection error which results in
the optimal representation of an MPS at a lower bond dimen-
sion (on the smaller manifold) compared to the sub-optimal
truncated MPS [16]. The simplest form of TDVP known as
1TDVP leads to 2L − 1 coupled local ordinary differential
equations (ODEs) which correspond to a one-site integration
scheme similar to the density matrix renormalization group
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(DMRG) method [9]. This can then be extended to an n-site
integration scheme [15], allowing for the simultaneous inte-
gration of neighboring sites. Higher-order nTDVP reduces
projection error, such that if a Hamiltonian has n′-body inter-
actions, no projection error occurs for n′ ≤ n, although at the
cost of higher computational complexity [16].

2. Coupled ordinary differential equations

For 1TDVP, the projection can be expressed as a projector
splitting at each site,

PMχ,|Φ⟩ =

L∑
ℓ=1

Kℓ,|Φ⟩ −
L−1∑
ℓ=1

Gℓ,|Φ⟩, (77)

which always depend on the current MPS |Φ(t)⟩, where

Kℓ,|Φ⟩ = |ΦL
ℓ−1⟩ ⟨Φ

L
ℓ−1| ⊗ Iℓ ⊗ |ΦR

ℓ+1⟩ ⟨Φ
R
ℓ+1| , (78)

represents the Krylov projectors [68] of the MPS |Φ⟩ that fix
the orthogonality center at site ℓ, and whereGℓ,|Φ⟩ are defined
as

Gℓ,|Φ⟩ = |ΦL
ℓ ⟩ ⟨Φ

L
ℓ | ⊗ |ΦR

ℓ+1⟩ ⟨Φ
R
ℓ+1| . (79)

We have dropped the time parameter t for ease of notation.
Here, the left bipartition of the MPS |Φ⟩ around the orthogo-
nality center ℓ is expressed as

|ΦL
ℓ ⟩ =

d∑
σ1,...,σℓ=1

Mσ1
1 . . .Mσℓ

ℓ |σ1, . . . , σℓ⟩ , (80)

and the right bipartition is given by

|ΦR
ℓ ⟩ =

d∑
σℓ,...,σL=1

Mσℓ

ℓ . . .MσL

L |σℓ+1, . . . , σL⟩ , (81)

where Mℓ with ℓ = 1, . . . , L are the site tensors of |Φ⟩.
When we substitute the definition of PMχ,|Φ⟩ into Eq. (76),
we derive a set of coupled local ordinary differential equa-
tions (ODEs) that describe the evolution of the state vector
|Φ⟩, where we use the bold notation H0 to denote the system
Hamiltonian in MPO format as

d

dt
|Φ⟩ = −i

L∑
ℓ=1

Kℓ,|Φ⟩H0 |Φ⟩+ i

L−1∑
ℓ=1

Gℓ,|Φ⟩H0 |Φ⟩ .

(82)
This is then split into L forward-evolving terms given by

d

dt
|Φ⟩ = −iKℓ,|Φ⟩H0 |Φ⟩ , (83)

and L− 1 backward-evolving terms

d

dt
|Φ⟩ = +iGℓ,|Φ⟩H0 |Φ⟩ , (84)

D. Computational effort of running the simulation

After having presented the basics of tensor network simu-
lations, we now derive original material on the computational
effort of running a simulation with the tensor jump method
(TJM) as developed in this work. We can analyze the total
complexity of the TJM by breaking it down into its constituent
components. For this, we have a given number of trajecto-
ries N and a total number n of time steps to perform (regard-
less of the size of δt itself). The complexity of calculating N
trajectories with n time steps with time step size δt depends
on the complexity of the dissipative contraction D, the cal-
culation of the probability distribution of the jump operators
Lm,m = 1, . . . , k, and the complexity of a one-site TDVP
step [69].

The unitary time-evolution U according to 1TDVP has a
complexity of

O(L[d2D2χ2
max + dDχ3

max + d2χ3
max]), (85)

where D is the maximum bond dimension of the Hamilto-
nian MPO. Since the majority of time steps is performed with
1TDVP and 2TDVP is not performed with maximum bond
dimension, the scaling of 2TDVP is not relevant for the TJM.
Additionally, the complexity of 1TDVP and 2TDVP only dif-
fers in terms of the local dimension d, which scales quadratic
in d for 1TDVP and cubic in 2TDVP. Following this, the dis-
sipative sweep D scales according to

O(Ld2χ2
max). (86)

The complexity of the stochastic process J is determined
by three parts: the calculation of the probability distribution,
the sampling of a jump operator (which is in O(1) and there-
fore negligible), and its application. This leads to a total com-
plexity of

O(kdχ3
max + d2χ2

max), (87)

for k total jump operators Lm,m = 1, . . . , k. Putting all this
together, we end up with a total complexity of the TJM in

O
(
Nn
[
L(d2D2χ2

max + dDχ3
max + d2χ3

max

+ d2χ2
max) + kdχ3

max + d2χ2
max

])
,

where the dominant terms come from the TDVP sweep and
the calculation of the probability distribution. Since the num-
ber of jump operators k is related to the system size L, e.g.,
a fixed number of jump operators per site, we can rewrite the
complexity using k = αL as

O
(
NnLχ3

max

[
dD + d2 + αd

])
,

where α ∈ N. However, since we assume jumps only occur
rarely, the TDVP sweep dominates the stochastic process such
that this reduces to

O
(
NnLχ3

max

[
dD + d2

])
, (88)



20

where we assume d,D ≪ χmax.
In comparison, the runtime to solve the Lindblad equation

directly scales as O(nd6L) when using the superoperator for-
malism [42]. The MCWF method, with the same assump-
tions made for the TJM, requires O(Nnd3L) and a Lindblad
MPDO requires O(nLd4D2

HD
2
s) such that Ds is the bond di-

mension of the MPO representing the density matrix (where
we expect Ds ≫ χmax), and DH is the bond dimension of
the Hamiltonian MPO format using the W II algorithm (anal-
ogous to χmax and D in the TJM, respectively) [53].

E. Resources required for storing the results

For a given maximum bond dimension χmax, the mem-
ory complexity to store N MPS trajectories is given by
O(NLdχ2

max). Exactly solving the Lindblad equation in ma-
trix format requires storing the density matrix and all other
operators in its full dimension. When stored as a complex-
valued matrix, ρ has a memory complexity O(d2L) such that
it scales exponentially for increasing L. Storing N trajecto-
ries |Ψ⟩ ∈ CdL

reduces the memory complexity from O(d2L)
to O(NdL) compared to the Lindbladian approach. Mean-
while, an MPDO simulation requires O(Ld2D2

s) to store the
time-evolved density matrix.

We can compare the TJM and the MCWF complexities to
determine the χmax necessary for the TJM to be more compact.
This results in the requirement that

χmax <

√
dL

Ld
. (89)

Since
√
dL/(Ld) → ∞ as L→ ∞, we see that for large sys-

tem sizes the TJM is always more compact than the MCWF.
When compared against the MPDO, we similarly see that the
TJM is more compact if

χmax < Ds

√
d

N
, (90)

where we expectDs ≫ χmax for large-scale applications, par-
ticularly those with long timescales.

F. Resources required for calculating expectation values

Naturally, we can also use the stored states to solve expec-
tation values. If we sample a local observable O ∈ B(H) at
a time step t, each method has distinct requirements to calcu-
late ⟨O(t)⟩. The MPS trajectories from the TJM can be used
to calculate the expectation value of an MPO by performingN
MPS-MPO-MPS contractions. This results in a complexity of
O(NL(dDχ3

max+d
2D2χ2

max)) for an MPO with max bond di-
mension D [16, 70]. With the assumption that χmax > d2, D2

in most cases this is dominated by the cubic term, resulting in
complexity

O(NLdDχ3
max). (91)

In comparison, using the density matrix ρ(t) from the
Lindbladian, calculating ⟨O(t)⟩ = Tr[ρ(t)O] has complex-
ity O(d6L). Replacing the density matrix with the trajectories
of the MCWF reduces this to O(Nd4L) while an MPDO re-
quires O(Ld2D3

s).

Appendix A: Proof of equivalence of MCWF and Lindblad master equation

Theorem 3 (Equivalence of MCWF and Lindblad master equation). Given the Lindblad master equation as in Eq. (1) with
solution ρ(t), and the MCWF Hamiltonian defined as

H = H0 −
iℏ
2

k∑
m=1

γmL
†
mLm, (A1)

consider the following: Let |ψi(t)⟩ for i = 1, . . . , N be state vector trajectories sampled from the initial state ρ(0). The average
of the outer products of these sampled pure states at time t is given by

µ̄N (t) =
1

N

N∑
i=1

|ψi(t)⟩ ⟨ψi(t)| . (A2)

If the time step δt converges to 0, it holds that

ρ(t) = lim
N→∞

µ̄N (t) ∀t. (A3)

Proof. For N → ∞, a time-evolved state is described by combining the possibilities of a jump occurring or not such that

µ̄(t+ δt) = (1− δp)
U(δt)µ̄(t)U†(δt)√
1− δp

√
1− δp

+

k∑
m=1

δpm
Lmµ̄(t)L

†
m√

δpm
√
δpm/(γmδt)

= µ̄(t)− iHδtµ̄(t) + µ̄(t)iH†δt+ δt

k∑
m=1

γmLmµ̄(t)L
†
m +O(δt2),

(A4)
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where we have used the definition of the matrix exponential up to the second summand U(δt) = e−iδtH = 1− iHδt+O(δt2).
Taking the derivative such that the LHS of the master equation is created, it follows that

d

dt
µ̄(t) = lim

δt→0

µ̄(t+ δt)− µ̄(t)

δt

= lim
δt→0

(
−iHµ̄(t) + µ̄(t)iH† +

k∑
m=1

γmLmµ̄(t)L
†
m +O(δt)

)

= −iHµ̄(t) + µ̄(t)iH† +

k∑
m=1

γmLmµ̄(t)L
†
m + lim

δt→0
(O(δt))

= −iHµ̄(t) + µ̄(t)iH† +

k∑
m=1

γmLmµ̄(t)L
†
m

= −i

(
H0 −

iℏ
2

k∑
m=1

γmL
†
mLm

)
µ̄(t) + µ̄(t)i

(
H0 +

iℏ
2

k∑
m=1

γmL
†
mLm

)
+

k∑
m=1

γmLmµ̄(t)L
†
m

= −i[H0, µ̄(t)]−
k∑

m=1

γm

(
Lmµ̄(t)L

†
m − 1

2

{
L†
mLm, µ̄(t)

})
.

(A5)

This has the form of the RHS of the master equation such that for a sufficiently small time step δt we have that

ρ(t) = lim
N→∞

1

N

N∑
j=1

|ψj(t)⟩ ⟨ψj(t)| , ∀t. (A6)

Since for a fixed t ∈ [0, T ] every sample |ψj(t)⟩ , j = 1, . . . , N is independent and identically distributed, it follows from the
law of large numbers that ρ(t) = E[µN (t)] for all N, t.

Appendix B: Frobenius variance

We present a lemma that is helpful in proving Monte Carlo convergence in the main text.

Lemma 4 (Frobenius variance). Let X,Y ∈ Cn×n be uncorrelated random matrices with E[X] = E[Y ] = A and the Fobenius
norm for a squared complex matrix A ∈ Cn,n be given as ∥A∥F =

√
Tr(A†A) =

∑
i,j |ai,j |2. Then, the variance according to

the Frobenius norm is given by

VF [X] = E
[
∥X − E[X]∥2F

]
, (B1)

and it holds true that

i) VF (X + Y ) = VF (X) + VF (Y ),

ii) for any scalar a ∈ R, VF (aX) = a2VF (X).

The proof of Lemma 4 is straightforward and is presented subsequently.

Definition 5 (Density matrix variance and standard deviation). Let ∥ ·∥ be a matrix norm, and letX ∈ Cn×n be a matrix-valued
random variable defined on a probability space (Ω,F ,P), where P is a probability measure. The variance of X with respect to
the norm ∥ · ∥ is defined as

V[X] = E
[
∥X − E[X]∥2

]
, (B2)

where E[X] denotes the expectation of X . The expectation E[X] is computed entrywise with each entry being the expectation
according to the respective marginal distributions of the entries. Specifically, for each i, j ∈ {1, . . . , n},

E[X]i,j = EPi,j
[xi,j ], (B3)

where xi,j is the (i, j)-th entry of the matrix X , and Pi,j is the marginal distribution of xi,j induced by P. The expectation value
of the norm of a matrix E[∥ · ∥] is defined as the multidimensional integral over the function ∥ · ∥ : Cn,n 7→ R according to its
marginal distributions Pi,j . The standard deviation of X with respect to the norm ∥ · ∥ is then defined as

σ(X) =
√
V[X] =

√
E [∥X − E[X]∥2]. (B4)
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In what follows, we make use of the Frobenius norm, defined for a squared complex matrixA ∈ Cn,n as ∥A∥F :=
√

Tr(A†A) =∑
i,j |ai,j |2.

Lemma 6 (Frobenius variance). Let X,Y ∈ Cn,n be uncorrelated random matrices with E[X] = E[Y ] = A. Then the variance
according to the Frobenius norm is given as

VF [X] = E
[
∥X − E[X]∥2F

]
, (B5)

and it holds true that

i) VF (X + Y ) = VF (X) + VF (Y ),

ii) for any scalar a ∈ R, VF (aX) = a2VF (X).

Proof. First, we prove that VF [X + Y ] = VF [X] + VF [Y ] when X and Y are uncorrelated random matrices. The variance for
a random matrix X with respect to the Frobenius norm is defined as

VF [X] = E[∥X −A∥2F ] = E

 n∑
i,j

|xi,j − ai,j |2
 , (B6)

where A = E[X] and ai,j are the elements of A. Similarly, the variance for Y is

VF [Y ] = E[∥Y −A∥2F ] = E

 n∑
i,j

|yi,j − ai,j |2
 . (B7)

To find the variance of X + Y , note that E[X + Y ] = E[X] + E[Y ] = 2A. Therefore,

VF [X + Y ] = E
[
∥(X + Y )− E[X + Y ]∥2F

]
(B8)

= E

 n∑
i,j

|(xi,j + yi,j)− 2ai,j |2
 .

Expanding the squared term, we have

|(xi,j + yi,j)− 2ai,j |2 = | ((xi,j − ai,j) + (yi,j − ai,j)) |2

= |xi,j − ai,j |2 + |yi,j − ai,j |2

+ 2Re
(
(xi,j − ai,j)(yi,j − ai,j)

)
.

Taking the expectation and using the fact that X and Y are uncorrelated, we get

E
[
|(xi,j − ai,j) + (yi,j − ai,j)|2

]
= E

[
|xi,j − ai,j |2

]
+ E

[
|yi,j − ai,j |2

]
(B9)

+ 2E
[
Re((xi,j − ai,j)(yi,j − ai,j))

]
.

As with X and Y , xi,j and yi,j are also uncorrelated for all i, j = 1, . . . , n and hence E [Re((xi,j − ai,j)(yi,j − ai,j))] = 0.
Thus, this reduces to

E
[
(xi,j − ai,j)

2
]
+ E

[
(yi,j − ai,j)

2
]
. (B10)

Summing over all elements (i, j), we get

VF [X + Y ] =

n∑
i,j

E
[
(xi,j − ai,j)

2
]
+

n∑
i,j

E
[
(yi,j − ai,j)

2
]

(B11)

= VF [X] + VF [Y ].
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Next, we prove that VF [aX] = a2VF [X] for any scalar a ∈ R. The variance for aX is

VF [aX] = E[∥aX − E[aX]∥2F ]. (B12)

Since E[aX] = aE[X] = aA, we have

VF [aX] = E
[
∥aX − aA∥2F

]
. (B13)

Factoring out a from the Frobenius norm, we get

∥aX − aA∥F = |a|∥X −A∥F , (B14)

and thus

∥aX − aA∥2F = a2∥X −A∥2F . (B15)

Taking the expectation, we obtain

VF [aX] = E[a2∥X −A∥2F ] = a2E[∥X −A∥2F ] = a2VF [X]. (B16)

Therefore, we have shown that for any scalar a ∈ R,

VF [aX] = a2VF [X]. (B17)

Theorem 7 (Convergence of TJM). Let d ∈ N be the physical dimension and L ∈ N be the number of sites in the open
quantum system described by the Lindblad master equation Eq. (1). Furthermore, let ρN (t) = 1

N

∑N
j=1 |Ψj(t)⟩ ⟨Ψj(t)| be the

approximation of the solution ρ(t) of the Lindblad master equation in MPO format at time t ∈ [0, T ] for some ending time T > 0
and N ∈ N trajectories, where |Ψj(t)⟩ is a trajectory sampled according to the TJM in MPS format of full bond dimension.
Then, the expectation value of the approximation of the corresponding density matrix ρN (t) ∈ CdL,dL

is given by ρ(t) and there
exists a c > 0 such that the standard deviation of ρN (t) can be upper bounded by

σ(ρN (t)) ≤ c√
N

(B18)

for all matrix norms ∥ · ∥ defined on CdL,dL

.

Proof. For a sufficiently small time step δt, it can be shown that the average of the trajectories converges to the solution ρ(t) of
the Lindblad equation as the number N of trajectories approaches infinity, for all t, namely

lim
N→∞

1

N

N∑
j=1

|ψj(t)⟩ ⟨ψj(t)| = lim
N→∞

ρN (t) = ρ(t), t ∈ [0, T ]. (B19)

From Theorem 3 we know that ρ(t) = E[ρN (t)] for allN, t. Additionally, letX(t) = X1(t). We know that VF [X(t)] is bounded
since every realization of X(t) and E[X(t)] are density matrices, so they have trace 1. Thus, we have that 0 ≤ ∥ρ1 − ρ2∥F ≤ 2
for all density matrices ρ1, ρ2 ∈ B(H) regardless of the system size.

To get a realization X(t) for a certain t ∈ [0, T ], we simulate a trajectory from X(0) by choosing a sufficiently small
discretization δt and stop the simulation at X(t). Now it is easy to check that the variance of VF [ρN (t)] decreases linearly with
N . Concretely,

VF [ρN (t)] = VF

[
1

N

N∑
i=1

Xi(t)

]
=

1

N2
VF

[
N∑
i=1

Xi(t)

]

=
1

N2

N∑
i=1

VF [Xi(t)] =
1

N
VF [X(t)] (B20)

≤ 4

N
, (B21)
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where we have used that VF [aX(t)] = a2VF [X(t)], VF [X1(t) +X2(t)] = VF [X1(t)] +VF [X2(t)] and the fact that the Xi(t)
are independent samples and identically distributed. Thus, the Frobenius norm standard deviation is upper bounded by

σF [ρN (t)] =
1√
N
σF [X(t)] ≤ 2√

N
. (B22)

By the equivalence of norms on finite vector spaces, there exists c1, c2 ∈ R such that c1∥A∥F ≤ ∥A∥ ≤ c2∥A∥F for all complex
square matrices A and all matrix norms ∥ · ∥. Thus, the convergence rate O(1/

√
N) also holds true in trace norm and any other

relevant matrix norm and is independent of system size. The proposition follows directly.

Appendix C: Complexity of TJM

For a TJM procedure we sample N ∈ N trajectories, each with n = T
δt ∈ N time steps, where T ∈ R+ is the terminal

time and δt the time step size. Since each time step consists of the calculation of the probability over the jump operators, jump
application, TDVP step, and a dissipative contraction, the total complexity can be calculated as

O(Nn(probability distribution + jump application + TDVP + Dissipative contraction)). (C1)

For the complexity calculation, we consider χmax as the maximum bond dimension of the MPS |Ψ(t)⟩, d the dimension of the
local Hilbert space, D as the maximum bond dimension of the MPO representing the Hamiltonian H0 of the closed system.

The calculation of the probability distribution can be seen as an efficient sweep across the MPS |Ψ(t)⟩, where at each site
ℓ = 1, . . . , L we have to contract the jump operators L[ℓ]

j , j ∈ S(ℓ) into the ℓ-th site tensor and calculate the inner product
of the MPS which requires O(kχ3

maxd) operations since it has to be done for every jump operator Lm,m = 1, . . . , k. The
sampling of an ϵ ∈ [0, 1], which is uniformly distributed has complexity O(1). It is like sampling a jump operator according to
the distribution Π(t) [71]. Since Lm are single-site operators, the jump application is just a contraction of a matrix in Cd×d into
a site tensor of |Ψ(t)⟩, which takes O(χ2

maxd
2) operations.

The complexity of the 2TDVP is given by O(L(χ2
maxd

3D2+χ3
maxd

2D+χ3
maxd

3)), whereas the single-site version scales with
O(L(χ2

maxd
2D2 + χ3

maxdD + χ3
maxd

2)). Since in TJM the 2TDVP is not performed with maximum bond dimension χmax, the
1TDVP complexity is of primary interest. In the dissipative contraction D[δt], each of the L site tensors has to be contracted with
a single site tensor Dℓ ∈ Cd,d, which requires O(d2χ2

max) operations, leading to a complexity of O(Ld2χ2
max) for the dissipative

contraction.
Collecting the above considerations, the total complexity of the TJM is given as

O
(
Nn
[
L(d2D2χ2

max + dDχ3
max + d2χ3

max

+ d2χ2
max) + kdχ3

max + d2χ2
max

])
.

(C2)

Dominant terms are the squared physical dimension d, the cubic bond dimension χmax of the MPS in the TDVP sweep and the
product dD of the physical dimension and the bond dimension of the MPO, such that the shorthand complexity of TJM is

O
(
NnLχ3

max

[
dD + d2

])
. (C3)
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